Phosphorylation of TRF2 promotes its interaction with TIN2 and regulates DNA damage response at telomeres
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36651296
PubMed Central
PMC9943673
DOI
10.1093/nar/gkac1269
PII: 6991041
Knihovny.cz E-zdroje
- MeSH
- fosforylace MeSH
- lidé MeSH
- poškození DNA MeSH
- protein TRF2 * MeSH
- proteiny vázající telomery * metabolismus MeSH
- proteomika MeSH
- shelterinový komplex * MeSH
- telomery metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protein TRF2 * MeSH
- proteiny vázající telomery * MeSH
- shelterinový komplex * MeSH
- TINF2 protein, human MeSH Prohlížeč
Protein phosphatase magnesium-dependent 1 delta (PPM1D) terminates the cell cycle checkpoint by dephosphorylating the tumour suppressor protein p53. By targeting additional substrates at chromatin, PPM1D contributes to the control of DNA damage response and DNA repair. Using proximity biotinylation followed by proteomic analysis, we identified a novel interaction between PPM1D and the shelterin complex that protects telomeric DNA. In addition, confocal microscopy revealed that endogenous PPM1D localises at telomeres. Further, we found that ATR phosphorylated TRF2 at S410 after induction of DNA double strand breaks at telomeres and this modification increased after inhibition or loss of PPM1D. TRF2 phosphorylation stimulated its interaction with TIN2 both in vitro and at telomeres. Conversely, induced expression of PPM1D impaired localisation of TIN2 and TPP1 at telomeres. Finally, recruitment of the DNA repair factor 53BP1 to the telomeric breaks was strongly reduced after inhibition of PPM1D and was rescued by the expression of TRF2-S410A mutant. Our results suggest that TRF2 phosphorylation promotes the association of TIN2 within the shelterin complex and regulates DNA repair at telomeres.
Zobrazit více v PubMed
Hanahan D., Weinberg RobertA.. Hallmarks of cancer: the next generation. Cell. 2011; 144:646–674. PubMed
Jackson S.P., Bartek J.. The DNA-damage response in human biology and disease. Nature. 2009; 461:1071–1078. PubMed PMC
Ciccia A., Elledge S.J.. The DNA damage response: making it safe to play with knives. Mol. Cell. 2010; 40:179–204. PubMed PMC
Bartek J., Lukas J.. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell. Biol. 2007; 19:238–245. PubMed
Lindqvist A., de Bruijn M., Macurek L., Bras A., Mensinga A., Bruinsma W.. Wip1 confers G2 checkpoint recovery competence by counteracting p53-dependent transcriptional repression. EMBO J. 2009; 28:3196–3206. PubMed PMC
Jaiswal H., Benada J., Müllers E., Akopyan K., Burdova K., Koolmeister T., Helleday T., Medema R.H., Macurek L., Lindqvist A.. ATM/Wip1 activities at chromatin control Plk1 re-activation to determine G2 checkpoint duration. EMBO J. 2017; 36:2161–2176. PubMed PMC
Shreeram S., Demidov O., Hee W., Yamaguchi H., Onishi N., Kek C.. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol. Cell. 2006; 23:757–764. PubMed
Macurek L., Lindqvist A., Voets O., Kool J., Vos H., Medema R.. Wip1 phosphatase is associated with chromatin and dephosphorylates gammaH2AX to promote checkpoint inhibition. Oncogene. 2010; 15:2281–2291. PubMed
Moon S., Lin L., Zhang X., Nguyen T., Darlington Y., Waldman A., Lu X., LA. D.. Wildtype p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair. J. Biol. Chem. 2010; 23:12935–12947. PubMed PMC
Burdova K., Storchova R., Palek M., Macurek L.. WIP1 promotes homologous recombination and modulates sensitivity to PARP inhibitors. Cells. 2019; 8:1258. PubMed PMC
Le Guezennec X., Bulavin D.V. WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem. Sci. 2010; 35:109–114. PubMed
Bulavin D.V., Demidov O.N., Saito S.i., Kauraniemi P., Phillips C., Amundson S.A., Ambrosino C., Sauter G., Nebreda A.R., Anderson C.W.et al. .. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat. Genet. 2002; 31:210. PubMed
Husby S., Hjermind Justesen E., Grønbæk K.. Protein phosphatase, Mg(2+)/Mn(2+)-dependent 1D (PPM1D) mutations in haematological cancer. Br. J. Haematol. 2021; 192:697–705. PubMed
Pecháčková S., Burdová K., Macurek L.. WIP1 phosphatase as pharmacological target in cancer therapy. J. Mol. Med. 2017; 95:589–599. PubMed PMC
Denchi E.L., de Lange T.. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007; 448:1068. PubMed
de Lange T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 2018; 52:223–247. PubMed
Broccoli D., Smogorzewska A., Chong L., de Lange T.. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 1997; 17:231–235. PubMed
Schmutz I., Timashev L., Xie W., Patel D.J., de Lange T. TRF2 binds branched DNA to safeguard telomere integrity. Nat. Struct. Mol. Biol. 2017; 24:734–742. PubMed
Benarroch-Popivker D., Pisano S., Mendez-Bermudez A., Lototska L., Kaur P., Bauwens S., Djerbi N., Latrick C.M., Fraisier V., Pei B.et al. .. TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol. Cell. 2016; 61:274–286. PubMed PMC
Necasová I., Janoušková E., Klumpler T., Hofr C.. Basic domain of telomere guardian TRF2 reduces D-loop unwinding whereas Rap1 restores it. Nucleic Acids Res. 2017; 45:12170–12180. PubMed PMC
Baumann P., Cech T.R.. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science. 2001; 292:1171–1175. PubMed
Lei M., Podell E.R., Cech T.R.. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol. 2004; 11:1223–1229. PubMed
Xin H., Liu D., Wan M., Safari A., Kim H., Sun W., O’Connor M.S., Songyang Z.. TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature. 2007; 445:559–562. PubMed
Takai K.K., Kibe T., Donigian J.R., Frescas D., de Lange T.. Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol. Cell. 2011; 44:647–659. PubMed PMC
Ye J.Z., Donigian J.R., van Overbeek M., Loayza D., Luo Y., Krutchinsky A.N., Chait B.T., de Lange T.. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J. Biol. Chem. 2004; 279:47264–47271. PubMed
Frescas D., de Lange T.. Binding of TPP1 protein to TIN2 protein is required for POT1a,b protein-mediated telomere protection. J. Biol. Chem. 2014; 289:24180–24187. PubMed PMC
Kim S.H., Davalos A.R., Heo S.J., Rodier F., Zou Y., Beausejour C., Kaminker P., Yannone S.M., Campisi J.. Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes. J. Cell. Biol. 2008; 181:447–460. PubMed PMC
O’Connor M.S., Safari A., Xin H., Liu D., Songyang Z.. A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc. Natl. Acad. Sci. U.S.A. 2006; 103:11874–11879. PubMed PMC
Frescas D., de Lange T.. TRF2-tethered TIN2 can mediate telomere protection by TPP1/POT1. Mol. Cell. Biol. 2014; 34:1349–1362. PubMed PMC
Chen Y., Yang Y., van Overbeek M., Donigian J.R., Baciu P., de Lange T., Lei M.. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science. 2008; 319:1092–1096. PubMed
Hu C., Rai R., Huang C., Broton C., Long J., Xu Y., Xue J., Lei M., Chang S., Chen Y.. Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex. Cell. Res. 2017; 27:1485–1502. PubMed PMC
Griffith J.D., Comeau L., Rosenfield S., Stansel R.M., Bianchi A., Moss H., de Lange T.. Mammalian telomeres end in a large duplex loop. Cell. 1999; 97:503–514. PubMed
Doksani Y., Wu J.Y., de Lange T., Zhuang X.. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell. 2013; 155:345–356. PubMed PMC
Sarek G., Vannier J.B., Panier S., Petrini J.H.J., Boulton S.J.. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol. Cell. 2015; 57:622–635. PubMed PMC
Sarek G., Kotsantis P., Ruis P., Van Ly D., Margalef P., Borel V., Zheng X.F., Flynn H.R., Snijders A.P., Chowdhury D.et al. .. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature. 2019; 575:523–527. PubMed PMC
Okamoto K., Bartocci C., Ouzounov I., Diedrich J.K., Yates J.R. 3rd, Denchi E.L.. A two-step mechanism for TRF2-mediated chromosome-end protection. Nature. 2013; 494:502–505. PubMed PMC
Dimitrova N., Chen Y.C., Spector D.L., de Lange T.. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature. 2008; 456:524–528. PubMed PMC
van Steensel B., Smogorzewska A., de Lange T.. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998; 92:401–413. PubMed
Sfeir A., Kosiyatrakul S.T., Hockemeyer D., MacRae S.L., Karlseder J., Schildkraut C.L., de Lange T.. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell. 2009; 138:90–103. PubMed PMC
Kaur P., Barnes R., Pan H., Detwiler A., Liu M., Mahn C., Hall J., Messenger Z., You C., Piehler J.et al. .. TIN2 is an architectural protein that facilitates TRF2-mediated trans- and cis-interactions on telomeric DNA. Nucleic Acids Res. 2021; 49:13000–13018. PubMed PMC
Bandaria J.N., Qin P., Berk V., Chu S., Yildiz A.. Shelterin protects chromosome ends by compacting telomeric chromatin. Cell. 2016; 164:735–746. PubMed PMC
Timashev L.A., Babcock H., Zhuang X., de Lange T.. The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction. Genes Dev. 2017; 31:578–589. PubMed PMC
Vancevska A., Douglass K.M., Pfeiffer V., Manley S., Lingner J.. The telomeric DNA damage response occurs in the absence of chromatin decompaction. Genes Dev. 2017; 31:567–577. PubMed PMC
Pechackova S., Burdova K., Benada J., Kleiblova P., Jenikova G., Macurek L.. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016; 7:14458–14475. PubMed PMC
Grolimund L., Aeby E., Hamelin R., Armand F., Chiappe D., Moniatte M., Lingner J.. A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nat. Commun. 2013; 4:2848. PubMed
van den Berg J., A G.M., Kielbassa K., Feringa F.M., Freire R., Medema R.H. A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression. Nucleic Acids Res. 2018; 46:10132–10144. PubMed PMC
Friskes A., Koob L., Krenning L., Severson T.M., Koeleman E.S., Vergara X., Schubert M., van den Berg J., Evers B., Manjón A.G.et al. .. Double-strand break toxicity is chromatin context independent. Nucleic Acids Res. 2022; 50:9930–9947. PubMed PMC
Smogorzewska A., de Lange T.. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 2002; 21:4338–4348. PubMed PMC
Gilmartin A.G., Faitg T.H., Richter M., Groy A., Seefeld M.A., Darcy M.G., Peng X., Federowicz K., Yang J., Zhang S.-Y.et al. .. Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction. Nat. Chem. Biol. 2014; 10:181–187. PubMed
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M.. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 2014; 13:2513–2526. PubMed PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016; 13:731–740. PubMed
Storchova R., Burdova K., Palek M., Medema R.H., Macurek L.. A novel assay for screening WIP1 phosphatase substrates in nuclear extracts. FEBS J. 2021; 288:6035–6051. PubMed
Chapman J.R., Jackson S.P.. Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep. 2008; 9:795–801. PubMed PMC
Janovič T., Stojaspal M., Veverka P., Horáková D., Hofr C.. Human telomere repeat binding factor TRF1 replaces TRF2 bound to shelterin core hub TIN2 when TPP1 is absent. J. Mol. Biol. 2019; 431:3289–3301. PubMed
Kim D., Jensen S., Noble K., Roux K., Motamedchaboki K., Roux K.. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell. 2016; 27:1188–1196. PubMed PMC
Roux K.J., Kim D.I., Raida M., Burke B.. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 2012; 196:801–810. PubMed PMC
Chuman Y., Kurihashi W., Mizukami Y., Nashimoto T., Yagi H., Sakaguchi K.. PPM1D430, a novel alternative splicing variant of the human PPM1D, can dephosphorylate p53 and exhibits specific tissue expression. J. Biochem. 2009; 145:1–12. PubMed
Mendez-Bermudez A., Lototska L., Bauwens S., Giraud-Panis M.J., Croce O., Jamet K., Irizar A., Mowinckel M., Koundrioukoff S., Nottet N.et al. .. Genome-wide control of heterochromatin replication by the telomere capping protein TRF2. Mol. Cell. 2018; 70:449–461. PubMed
Wilson F.R., Ho A., Walker J.R., Zhu X.D.. Cdk-dependent phosphorylation regulates TRF1 recruitment to PML bodies and promotes C-circle production in ALT cells. J. Cell. Sci. 2016; 129:2559–2572. PubMed
Hussain T, PurohitG S.D., Kar A, Kishore Mukherjee A, Sharma S, Sengupta S, Dhapola P, Maji B, Vedagopuram S, Horikoshi N Tet al. .. Transcription regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 is epigenetically controlled through the REST repressor complex. Sci. Rep. 2017; 7:11541. PubMed PMC
Imran S.A.M., Yazid M.D., Cui W., Lokanathan Y.. The intra- and extra-telomeric role of TRF2 in the DNA damage response. Int. J. Mol. Sci. 2021; 22:9900. PubMed PMC
Pawluk A., Amrani N., Zhang Y., Garcia B., Hidalgo-Reyes Y., Lee J., Edraki A., Shah M., Sontheimer E.J., Maxwell K.L.et al. .. Naturally occurring off-switches for CRISPR-Cas9. Cell. 2016; 167:1829–1838. PubMed PMC
Bermudez-Hernandez K., Keegan S., Whelan D.R., Reid D.A., Zagelbaum J., Yin Y., Ma S., Rothenberg E., Fenyö D. A method for quantifying molecular interactions using stochastic modelling and super-resolution microscopy. Sci. Rep. 2017; 7:14882. PubMed PMC
Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. 3rd, Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N., Lerenthal Y.et al. .. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007; 316:1160–1166. PubMed
Kahn J.D., Miller P.G., Silver A.J., Sellar R.S., Bhatt S., Gibson C., McConkey M., Adams D., Mar B., Mertins P.et al. .. PPM1D truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood. 2018; 132:1095. PubMed PMC
Yamaguchi H., Durell S.R., Chatterjee D.K., Anderson C.W., Appella E.. The Wip1 phosphatase PPM1D dephosphorylates SQ/TQ motifs in checkpoint substrates phosphorylated by PI3K-like kinases. Biochemistry. 2007; 46:12594–12603. PubMed
Chen B., Gilbert L.A., Cimini B.A., Schnitzbauer J., Zhang W., Li G.W., Park J., Blackburn E.H., Weissman J.S., Qi L.S.et al. .. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013; 155:1479–1491. PubMed PMC
Takai H., Smogorzewska A., de Lange T.. DNA damage foci at dysfunctional telomeres. Curr. Biol. 2003; 13:1549–1556. PubMed
Mao P., Liu J., Zhang Z., Zhang H., Liu H., Gao S., Rong Y.S., Zhao Y.. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells. Nat. Commun. 2016; 7:12154. PubMed PMC
Doksani Y., de Lange T.. Telomere-internal double-strand breaks are repaired by homologous recombination and PARP1/Lig3-dependent end-joining. Cell Rep. 2016; 17:1646–1656. PubMed PMC
Veverka P., Janovič T., Hofr C.. Quantitative biology of human shelterin and telomerase: searching for the weakest point. Int. J. Mol. Sci. 2019; 20:3186. PubMed PMC
Hu C., Rai R., Huang C., Broton C., Long J., Xu Y., Xue J., Lei M., Chang S., Chen Y.. Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex. Cell. Res. 2017; 27:1485–1502. PubMed PMC
Van Ly D., Low R.R.J., Frölich S., Bartolec T.K., Kafer G.R., Pickett H.A., Gaus K., Cesare A.J.. Telomere loop dynamics in chromosome end protection. Mol. Cell. 2018; 71:510–525. PubMed
Shreeram S., Demidov O.N., Hee W.K., Yamaguchi H., Onishi N., Kek C., Timofeev O.N., Dudgeon C., Fornace A.J., Anderson C.W.et al. .. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol. Cell. 2006; 23:757–764. PubMed
Fradet-Turcotte A., Canny M.D., Escribano-Diaz C., Orthwein A., Leung C.C.Y., Huang H., Landry M.-C., Kitevski-LeBlanc J., Noordermeer S.M., Sicheri F.et al. .. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature. 2013; 499:50–54. PubMed PMC
Walker J.R., Zhu X.D.. Post-translational modifications of TRF1 and TRF2 and their roles in telomere maintenance. Mech. Ageing. Dev. 2012; 133:421–434. PubMed
Tanaka H., Mendonca M.S., Bradshaw P.S., Hoelz D.J., Malkas L.H., Meyn M.S., Gilley D. DNA damage-induced phosphorylation of the human telomere-associated protein TRF2. PNAS. 2005; 102:15539–15544. PubMed PMC
Huda N., Tanaka H., Mendonca M.S., Gilley D. DNA damage-induced phosphorylation of TRF2 is required for the fast pathway of DNA double-strand break repair. Mol. Cell. Biol. 2009; 29:3597–3604. PubMed PMC
Bradshaw P.S., Stavropoulos D.J., Meyn M.S.. Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat. Genet. 2005; 37:193–197. PubMed
Shreeram S., Hee W., Demidov O., Kek C., Yamaguchi H., Fornace A.. Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. J. Exp. Med. 2006; 203:2793–2799. PubMed PMC
Hsu J.I., Dayaram T., Tovy A., De Braekeleer E., Jeong M., Wang F., Zhang J., Heffernan T.P., Gera S., Kovacs J.J.et al. .. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell. Stem. Cell. 2018; 23:700–713. PubMed PMC
Kleiblova P., Shaltiel I.A., Benada J., Sevčík J., Pecháčková S., Pohlreich P., Voest E.E., Dundr P., Bartek J., Kleibl Z.et al. .. Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J. Cell. Biol. 2013; 201:511–521. PubMed PMC