Phosphorylation of TRF2 promotes its interaction with TIN2 and regulates DNA damage response at telomeres

. 2023 Feb 22 ; 51 (3) : 1154-1172.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36651296

Protein phosphatase magnesium-dependent 1 delta (PPM1D) terminates the cell cycle checkpoint by dephosphorylating the tumour suppressor protein p53. By targeting additional substrates at chromatin, PPM1D contributes to the control of DNA damage response and DNA repair. Using proximity biotinylation followed by proteomic analysis, we identified a novel interaction between PPM1D and the shelterin complex that protects telomeric DNA. In addition, confocal microscopy revealed that endogenous PPM1D localises at telomeres. Further, we found that ATR phosphorylated TRF2 at S410 after induction of DNA double strand breaks at telomeres and this modification increased after inhibition or loss of PPM1D. TRF2 phosphorylation stimulated its interaction with TIN2 both in vitro and at telomeres. Conversely, induced expression of PPM1D impaired localisation of TIN2 and TPP1 at telomeres. Finally, recruitment of the DNA repair factor 53BP1 to the telomeric breaks was strongly reduced after inhibition of PPM1D and was rescued by the expression of TRF2-S410A mutant. Our results suggest that TRF2 phosphorylation promotes the association of TIN2 within the shelterin complex and regulates DNA repair at telomeres.

Zobrazit více v PubMed

Hanahan D., Weinberg RobertA.. Hallmarks of cancer: the next generation. Cell. 2011; 144:646–674. PubMed

Jackson S.P., Bartek J.. The DNA-damage response in human biology and disease. Nature. 2009; 461:1071–1078. PubMed PMC

Ciccia A., Elledge S.J.. The DNA damage response: making it safe to play with knives. Mol. Cell. 2010; 40:179–204. PubMed PMC

Bartek J., Lukas J.. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell. Biol. 2007; 19:238–245. PubMed

Lindqvist A., de Bruijn M., Macurek L., Bras A., Mensinga A., Bruinsma W.. Wip1 confers G2 checkpoint recovery competence by counteracting p53-dependent transcriptional repression. EMBO J. 2009; 28:3196–3206. PubMed PMC

Jaiswal H., Benada J., Müllers E., Akopyan K., Burdova K., Koolmeister T., Helleday T., Medema R.H., Macurek L., Lindqvist A.. ATM/Wip1 activities at chromatin control Plk1 re-activation to determine G2 checkpoint duration. EMBO J. 2017; 36:2161–2176. PubMed PMC

Shreeram S., Demidov O., Hee W., Yamaguchi H., Onishi N., Kek C.. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol. Cell. 2006; 23:757–764. PubMed

Macurek L., Lindqvist A., Voets O., Kool J., Vos H., Medema R.. Wip1 phosphatase is associated with chromatin and dephosphorylates gammaH2AX to promote checkpoint inhibition. Oncogene. 2010; 15:2281–2291. PubMed

Moon S., Lin L., Zhang X., Nguyen T., Darlington Y., Waldman A., Lu X., LA. D.. Wildtype p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair. J. Biol. Chem. 2010; 23:12935–12947. PubMed PMC

Burdova K., Storchova R., Palek M., Macurek L.. WIP1 promotes homologous recombination and modulates sensitivity to PARP inhibitors. Cells. 2019; 8:1258. PubMed PMC

Le Guezennec X., Bulavin D.V. WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem. Sci. 2010; 35:109–114. PubMed

Bulavin D.V., Demidov O.N., Saito S.i., Kauraniemi P., Phillips C., Amundson S.A., Ambrosino C., Sauter G., Nebreda A.R., Anderson C.W.et al. .. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat. Genet. 2002; 31:210. PubMed

Husby S., Hjermind Justesen E., Grønbæk K.. Protein phosphatase, Mg(2+)/Mn(2+)-dependent 1D (PPM1D) mutations in haematological cancer. Br. J. Haematol. 2021; 192:697–705. PubMed

Pecháčková S., Burdová K., Macurek L.. WIP1 phosphatase as pharmacological target in cancer therapy. J. Mol. Med. 2017; 95:589–599. PubMed PMC

Denchi E.L., de Lange T.. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007; 448:1068. PubMed

de Lange T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 2018; 52:223–247. PubMed

Broccoli D., Smogorzewska A., Chong L., de Lange T.. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 1997; 17:231–235. PubMed

Schmutz I., Timashev L., Xie W., Patel D.J., de Lange T. TRF2 binds branched DNA to safeguard telomere integrity. Nat. Struct. Mol. Biol. 2017; 24:734–742. PubMed

Benarroch-Popivker D., Pisano S., Mendez-Bermudez A., Lototska L., Kaur P., Bauwens S., Djerbi N., Latrick C.M., Fraisier V., Pei B.et al. .. TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol. Cell. 2016; 61:274–286. PubMed PMC

Necasová I., Janoušková E., Klumpler T., Hofr C.. Basic domain of telomere guardian TRF2 reduces D-loop unwinding whereas Rap1 restores it. Nucleic Acids Res. 2017; 45:12170–12180. PubMed PMC

Baumann P., Cech T.R.. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science. 2001; 292:1171–1175. PubMed

Lei M., Podell E.R., Cech T.R.. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol. 2004; 11:1223–1229. PubMed

Xin H., Liu D., Wan M., Safari A., Kim H., Sun W., O’Connor M.S., Songyang Z.. TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature. 2007; 445:559–562. PubMed

Takai K.K., Kibe T., Donigian J.R., Frescas D., de Lange T.. Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol. Cell. 2011; 44:647–659. PubMed PMC

Ye J.Z., Donigian J.R., van Overbeek M., Loayza D., Luo Y., Krutchinsky A.N., Chait B.T., de Lange T.. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J. Biol. Chem. 2004; 279:47264–47271. PubMed

Frescas D., de Lange T.. Binding of TPP1 protein to TIN2 protein is required for POT1a,b protein-mediated telomere protection. J. Biol. Chem. 2014; 289:24180–24187. PubMed PMC

Kim S.H., Davalos A.R., Heo S.J., Rodier F., Zou Y., Beausejour C., Kaminker P., Yannone S.M., Campisi J.. Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes. J. Cell. Biol. 2008; 181:447–460. PubMed PMC

O’Connor M.S., Safari A., Xin H., Liu D., Songyang Z.. A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc. Natl. Acad. Sci. U.S.A. 2006; 103:11874–11879. PubMed PMC

Frescas D., de Lange T.. TRF2-tethered TIN2 can mediate telomere protection by TPP1/POT1. Mol. Cell. Biol. 2014; 34:1349–1362. PubMed PMC

Chen Y., Yang Y., van Overbeek M., Donigian J.R., Baciu P., de Lange T., Lei M.. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science. 2008; 319:1092–1096. PubMed

Hu C., Rai R., Huang C., Broton C., Long J., Xu Y., Xue J., Lei M., Chang S., Chen Y.. Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex. Cell. Res. 2017; 27:1485–1502. PubMed PMC

Griffith J.D., Comeau L., Rosenfield S., Stansel R.M., Bianchi A., Moss H., de Lange T.. Mammalian telomeres end in a large duplex loop. Cell. 1999; 97:503–514. PubMed

Doksani Y., Wu J.Y., de Lange T., Zhuang X.. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell. 2013; 155:345–356. PubMed PMC

Sarek G., Vannier J.B., Panier S., Petrini J.H.J., Boulton S.J.. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol. Cell. 2015; 57:622–635. PubMed PMC

Sarek G., Kotsantis P., Ruis P., Van Ly D., Margalef P., Borel V., Zheng X.F., Flynn H.R., Snijders A.P., Chowdhury D.et al. .. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature. 2019; 575:523–527. PubMed PMC

Okamoto K., Bartocci C., Ouzounov I., Diedrich J.K., Yates J.R. 3rd, Denchi E.L.. A two-step mechanism for TRF2-mediated chromosome-end protection. Nature. 2013; 494:502–505. PubMed PMC

Dimitrova N., Chen Y.C., Spector D.L., de Lange T.. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature. 2008; 456:524–528. PubMed PMC

van Steensel B., Smogorzewska A., de Lange T.. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998; 92:401–413. PubMed

Sfeir A., Kosiyatrakul S.T., Hockemeyer D., MacRae S.L., Karlseder J., Schildkraut C.L., de Lange T.. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell. 2009; 138:90–103. PubMed PMC

Kaur P., Barnes R., Pan H., Detwiler A., Liu M., Mahn C., Hall J., Messenger Z., You C., Piehler J.et al. .. TIN2 is an architectural protein that facilitates TRF2-mediated trans- and cis-interactions on telomeric DNA. Nucleic Acids Res. 2021; 49:13000–13018. PubMed PMC

Bandaria J.N., Qin P., Berk V., Chu S., Yildiz A.. Shelterin protects chromosome ends by compacting telomeric chromatin. Cell. 2016; 164:735–746. PubMed PMC

Timashev L.A., Babcock H., Zhuang X., de Lange T.. The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction. Genes Dev. 2017; 31:578–589. PubMed PMC

Vancevska A., Douglass K.M., Pfeiffer V., Manley S., Lingner J.. The telomeric DNA damage response occurs in the absence of chromatin decompaction. Genes Dev. 2017; 31:567–577. PubMed PMC

Pechackova S., Burdova K., Benada J., Kleiblova P., Jenikova G., Macurek L.. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016; 7:14458–14475. PubMed PMC

Grolimund L., Aeby E., Hamelin R., Armand F., Chiappe D., Moniatte M., Lingner J.. A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nat. Commun. 2013; 4:2848. PubMed

van den Berg J., A G.M., Kielbassa K., Feringa F.M., Freire R., Medema R.H. A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression. Nucleic Acids Res. 2018; 46:10132–10144. PubMed PMC

Friskes A., Koob L., Krenning L., Severson T.M., Koeleman E.S., Vergara X., Schubert M., van den Berg J., Evers B., Manjón A.G.et al. .. Double-strand break toxicity is chromatin context independent. Nucleic Acids Res. 2022; 50:9930–9947. PubMed PMC

Smogorzewska A., de Lange T.. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 2002; 21:4338–4348. PubMed PMC

Gilmartin A.G., Faitg T.H., Richter M., Groy A., Seefeld M.A., Darcy M.G., Peng X., Federowicz K., Yang J., Zhang S.-Y.et al. .. Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction. Nat. Chem. Biol. 2014; 10:181–187. PubMed

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M.. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 2014; 13:2513–2526. PubMed PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016; 13:731–740. PubMed

Storchova R., Burdova K., Palek M., Medema R.H., Macurek L.. A novel assay for screening WIP1 phosphatase substrates in nuclear extracts. FEBS J. 2021; 288:6035–6051. PubMed

Chapman J.R., Jackson S.P.. Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep. 2008; 9:795–801. PubMed PMC

Janovič T., Stojaspal M., Veverka P., Horáková D., Hofr C.. Human telomere repeat binding factor TRF1 replaces TRF2 bound to shelterin core hub TIN2 when TPP1 is absent. J. Mol. Biol. 2019; 431:3289–3301. PubMed

Kim D., Jensen S., Noble K., Roux K., Motamedchaboki K., Roux K.. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell. 2016; 27:1188–1196. PubMed PMC

Roux K.J., Kim D.I., Raida M., Burke B.. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 2012; 196:801–810. PubMed PMC

Chuman Y., Kurihashi W., Mizukami Y., Nashimoto T., Yagi H., Sakaguchi K.. PPM1D430, a novel alternative splicing variant of the human PPM1D, can dephosphorylate p53 and exhibits specific tissue expression. J. Biochem. 2009; 145:1–12. PubMed

Mendez-Bermudez A., Lototska L., Bauwens S., Giraud-Panis M.J., Croce O., Jamet K., Irizar A., Mowinckel M., Koundrioukoff S., Nottet N.et al. .. Genome-wide control of heterochromatin replication by the telomere capping protein TRF2. Mol. Cell. 2018; 70:449–461. PubMed

Wilson F.R., Ho A., Walker J.R., Zhu X.D.. Cdk-dependent phosphorylation regulates TRF1 recruitment to PML bodies and promotes C-circle production in ALT cells. J. Cell. Sci. 2016; 129:2559–2572. PubMed

Hussain T, PurohitG S.D., Kar A, Kishore Mukherjee A, Sharma S, Sengupta S, Dhapola P, Maji B, Vedagopuram S, Horikoshi N Tet al. .. Transcription regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 is epigenetically controlled through the REST repressor complex. Sci. Rep. 2017; 7:11541. PubMed PMC

Imran S.A.M., Yazid M.D., Cui W., Lokanathan Y.. The intra- and extra-telomeric role of TRF2 in the DNA damage response. Int. J. Mol. Sci. 2021; 22:9900. PubMed PMC

Pawluk A., Amrani N., Zhang Y., Garcia B., Hidalgo-Reyes Y., Lee J., Edraki A., Shah M., Sontheimer E.J., Maxwell K.L.et al. .. Naturally occurring off-switches for CRISPR-Cas9. Cell. 2016; 167:1829–1838. PubMed PMC

Bermudez-Hernandez K., Keegan S., Whelan D.R., Reid D.A., Zagelbaum J., Yin Y., Ma S., Rothenberg E., Fenyö D. A method for quantifying molecular interactions using stochastic modelling and super-resolution microscopy. Sci. Rep. 2017; 7:14882. PubMed PMC

Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. 3rd, Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N., Lerenthal Y.et al. .. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007; 316:1160–1166. PubMed

Kahn J.D., Miller P.G., Silver A.J., Sellar R.S., Bhatt S., Gibson C., McConkey M., Adams D., Mar B., Mertins P.et al. .. PPM1D truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood. 2018; 132:1095. PubMed PMC

Yamaguchi H., Durell S.R., Chatterjee D.K., Anderson C.W., Appella E.. The Wip1 phosphatase PPM1D dephosphorylates SQ/TQ motifs in checkpoint substrates phosphorylated by PI3K-like kinases. Biochemistry. 2007; 46:12594–12603. PubMed

Chen B., Gilbert L.A., Cimini B.A., Schnitzbauer J., Zhang W., Li G.W., Park J., Blackburn E.H., Weissman J.S., Qi L.S.et al. .. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013; 155:1479–1491. PubMed PMC

Takai H., Smogorzewska A., de Lange T.. DNA damage foci at dysfunctional telomeres. Curr. Biol. 2003; 13:1549–1556. PubMed

Mao P., Liu J., Zhang Z., Zhang H., Liu H., Gao S., Rong Y.S., Zhao Y.. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells. Nat. Commun. 2016; 7:12154. PubMed PMC

Doksani Y., de Lange T.. Telomere-internal double-strand breaks are repaired by homologous recombination and PARP1/Lig3-dependent end-joining. Cell Rep. 2016; 17:1646–1656. PubMed PMC

Veverka P., Janovič T., Hofr C.. Quantitative biology of human shelterin and telomerase: searching for the weakest point. Int. J. Mol. Sci. 2019; 20:3186. PubMed PMC

Hu C., Rai R., Huang C., Broton C., Long J., Xu Y., Xue J., Lei M., Chang S., Chen Y.. Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex. Cell. Res. 2017; 27:1485–1502. PubMed PMC

Van Ly D., Low R.R.J., Frölich S., Bartolec T.K., Kafer G.R., Pickett H.A., Gaus K., Cesare A.J.. Telomere loop dynamics in chromosome end protection. Mol. Cell. 2018; 71:510–525. PubMed

Shreeram S., Demidov O.N., Hee W.K., Yamaguchi H., Onishi N., Kek C., Timofeev O.N., Dudgeon C., Fornace A.J., Anderson C.W.et al. .. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol. Cell. 2006; 23:757–764. PubMed

Fradet-Turcotte A., Canny M.D., Escribano-Diaz C., Orthwein A., Leung C.C.Y., Huang H., Landry M.-C., Kitevski-LeBlanc J., Noordermeer S.M., Sicheri F.et al. .. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature. 2013; 499:50–54. PubMed PMC

Walker J.R., Zhu X.D.. Post-translational modifications of TRF1 and TRF2 and their roles in telomere maintenance. Mech. Ageing. Dev. 2012; 133:421–434. PubMed

Tanaka H., Mendonca M.S., Bradshaw P.S., Hoelz D.J., Malkas L.H., Meyn M.S., Gilley D. DNA damage-induced phosphorylation of the human telomere-associated protein TRF2. PNAS. 2005; 102:15539–15544. PubMed PMC

Huda N., Tanaka H., Mendonca M.S., Gilley D. DNA damage-induced phosphorylation of TRF2 is required for the fast pathway of DNA double-strand break repair. Mol. Cell. Biol. 2009; 29:3597–3604. PubMed PMC

Bradshaw P.S., Stavropoulos D.J., Meyn M.S.. Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat. Genet. 2005; 37:193–197. PubMed

Shreeram S., Hee W., Demidov O., Kek C., Yamaguchi H., Fornace A.. Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. J. Exp. Med. 2006; 203:2793–2799. PubMed PMC

Hsu J.I., Dayaram T., Tovy A., De Braekeleer E., Jeong M., Wang F., Zhang J., Heffernan T.P., Gera S., Kovacs J.J.et al. .. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell. Stem. Cell. 2018; 23:700–713. PubMed PMC

Kleiblova P., Shaltiel I.A., Benada J., Sevčík J., Pecháčková S., Pohlreich P., Voest E.E., Dundr P., Bartek J., Kleibl Z.et al. .. Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J. Cell. Biol. 2013; 201:511–521. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...