Cold-induced secondary dormancy and its regulatory mechanisms in Beta vulgaris

. 2022 Apr ; 45 (4) : 1315-1332. [epub] 20220128

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35064681

Grantová podpora
BB/M000583/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M00192X/1 Biotechnology and Biological Sciences Research Council - United Kingdom

The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chilling-induced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root. Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance. The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.

Zobrazit více v PubMed

Abts, W. , Van de Poel, B. , Vandenbussche, B. & De Proft, M.P. (2014) Ethylene is differentially regulated during sugar beet germination and affects early root growth in a dose‐dependent manner. Planta, 240(4), 679–686. PubMed

Alexa, A. & Rahnenfuhere, J. (2018). Gene set enrichment analysis with topGO.

Argyris, J. , Dahal, P. , Hayashi, E. , Still, D.W. & Bradford, K.J. (2008) Genetic variation for lettuce seed thermoinhibition is associated with temperature‐sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiology, 148(2), 926–947. PubMed PMC

Auge, G.A. , Blair, L.K. , Burghardt, L.T. , Coughlan, J. , Edwards, B. , Leverett, L.D. et al. (2015) Secondary dormancy dynamics depends on primary dormancy status in Arabidopsis thaliana . Seed Science Research, 25(2), 230–246.

Banovetz, S.J. & Scheiner, S.M. (1994) Secondary seed dormancy in Coreopsis lanceolata . American Midland Naturalist, 131(1), 75–83.

Baskin, C.C. & Baskin, J.M. (2006) The natural history of soil seed banks of arable land. Weed Science, 54, 549–557.

Baskin, C.C. & Baskin, J.M. (2014) Seeds—ecology, biogeography, and evolution of dormancy and germination. San Diego, London: Academic Press.

Baskin, J.M. & Baskin, C.C. (1978) Temperature requirements for after‐ripening of seeds of a winter annual induced into secondary dormancy by low winter temperatures. Bulletin of the Torrey Botanical Club, 105(2), 104–107.

Baskin, J.M. & Baskin, C.C. (1983) Seasonal changes in the germination responses of buried seeds of Arabidopsis thaliana and ecological interpretation. Botanical Gazette, 144, 540–543.

Bentsink, L. , Jowett, J. , Hanhart, C.J. & Koornneef, M. (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. PNAS, 103(45), 17042–17047. PubMed PMC

Bryant, F.M. , Hughes, D. , Hassani‐Pak, K. & Eastmond, P.J. (2019) Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 transactivates DELAY OF GERMINATION1 to establish primary seed dormancy in Arabidopsis. Plant Cell, 31(6), 1276–1288. PubMed PMC

Cadman, C.S.C. , Toorop, P.E. , Hilhorst, H.W.M. & Finch‐Savage, W.E. (2006) Gene expression profiles of Arabidopsis Cvi seed during cycling through dormant and non‐dormant states indicate a common underlying dormancy control mechanism. The Plant Journal, 46, 805–822. PubMed

Chahtane, H. , Kim, W. & Lopez‐Molina, L. (2017) Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. Journal of Experimental Botany, 68(4), 857–869. PubMed

Chang, Y.N. , Zhu, C. , Jiang, J. , Zhang, H.M. , Zhu, J.K. & Duan, C.G. (2020) Epigenetic regulation in plant abiotic stress responses. Journal of Integrative Plant Biology, 62(5), 563–580. PubMed

Chen, F. & Bradford, K.J. (2000) Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiology, 124(3), 1265–1274. PubMed PMC

Chen, F. , Nonogaki, H. & Bradford, K.J. (2002) A gibberellin‐regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination. Journal of Experimental Botany, 53(367), 215–223. PubMed

Chen, N.C. , Wang, H. , Abdelmageed, H. , Veerappan, V. , Tadege, M. & Allen, R.D. (2020) HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. New Phytologist, 227(3), 840–856. PubMed PMC

Chhun, T. , Chong, S.Y. , Park, B.S. , Wong, E.C.C. , Yin, J.L. , Kim, M. et al. (2016) HSI2 repressor recruits MED13 and HDA6 to down‐regulate seed maturation gene expression directly during Arabidopsis early seedling growth. Plant and Cell Physiology, 57(8), 1689–1706. PubMed

Chung, S. , Kwon, C. & Lee, J.H. (2021) Epigenetic control of abiotic stress signaling in plants. Genes & Genomics. 10.1007/s13258-021-01163-3 PubMed DOI

da Silva, E.A.A. , Toorop, P.E. , van Aelst, A.C. & Hilhorst, H.W.M. (2004) Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination. Planta, 220, 251–261. PubMed

Deihimfard, R. , Rahimi‐Moghaddam, S. & Chenu, K. (2019) Risk assessment of frost damage to sugar beet simulated under cold and semi‐arid environments. International Journal of Biometeorology, 63(4), 511–521. PubMed

Dekkers, B.J. , He, H. , Hanson, J. , Willems, L.A. , Jamar, D.C. , Cueff, G. , et al. (2016) The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant J, 85(4), 451–465. PubMed

Dohm, J.C., Minoche, A.E. , Holtgräwe, D. , Capella‐Gutiérrez, S. , Zakrzewski, F. , et al. (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 505–509(7484), 546–549. PubMed

Donohue, K. , Rubio de Casas, R. , Burghardt, L. , Kovach, K. & Willis, C.G. (2010) Germination, postgermination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics, 41, 293–319.

Durr, C. & Boiffin, J. (1995) Sugar beet seedling growth from germination to first leaf stage. Journal of Agricultural Science, 124, 427–435.

Fernandez‐Pascual, E. , Mattana, E. & Pritchard, H.W. (2019) Seeds of future past: climate change and the thermal memory of plant reproductive traits. Biological Reviews, 94(2), 439–456. PubMed

Finch‐Savage, W.E. & Bassel, G.W. (2016) Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3), 567–591. PubMed

Finch‐Savage, W.E. & Footitt, S. (2017) Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. Journal of Experimental Botany, 68(4), 843–856. PubMed

Finch‐Savage, W.E. & Leubner‐Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist, 171, 501–523. PubMed

Footitt, S. , Clewes, R. , Feeney, M. , Finch‐Savage, W.E. & Frigerio, L. (2019) Aquaporins influence seed dormancy and germination in response to stress. Plant, Cell and Environment, 42(8), 2325–2339. PubMed PMC

Footitt, S. , Douterelo‐Soler, I. , Clay, H. & Finch‐Savage, W.E. (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone‐signaling pathways. PNAS, 108, 20236–20241. PubMed PMC

Footitt, S. , Müller, K. , Kermode, A.R. & Finch‐Savage, W.E. (2015) Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals. The Plant Journal, 81(3), 413–425. PubMed PMC

Footitt, S. , Walley, P.G. , Lynn, J.R. , Hambidge, A.J. , Penfield, S. & Finch‐Savage, W.E. (2020) Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytologist, 225(5), 2035–2047. PubMed PMC

Gnesutta, N. , Saad, D. , Chaves‐Sanjuan, A. , Mantovani, R. & Nardini, M. (2017) Crystal structure of the Arabidopsis thaliana L1L/NF‐YC3 histone‐fold dimer reveals specificities of the LEC1 family of NF‐Y subunits in plants. Molecular Plant, 10(4), 645–648. PubMed

Gobin, A. (2018) Weather‐related risks in Belgian arable agriculture. Agricultural Systems, 159, 225–236.

Graeber, K. , Linkies, A. , Steinbrecher, T. , Mummenhoff, K. , Tarkowská, D. , Turečková, V. , et al. (2014) DELAY OF GERMINATION 1 mediates a conserved coat dormancy mechanism for the temperature‐ and gibberellin‐dependent control of seed germination. PNAS, 111, E3571–E3580. PubMed PMC

Graeber, K. , Linkies, A. , Wood, A.T. & Leubner‐Metzger, G. (2011) A guideline to family‐wide comparative state‐of‐the‐art quantitative RT‐PCR analysis exemplified with a Brassicaceae cross‐species seed germination case study. The Plant Cell, 23, 2045–2063. PubMed PMC

Graeber, K. , Nakabayashi, K. , Miatton, E. , Leubner‐Metzger, G. & Soppe, W.J. (2012) Molecular mechanisms of seed dormancy. Plant, Cell & Environment, 35, 1769–1786. PubMed

Hawkins, K.K. , Allen, P.S. & Meyer, S.E. (2017) Secondary dormancy induction and release in Bromus tectorum seeds: the role of temperature, water potential and hydrothermal time. Seed Science Research, 27(1), 12–25.

He, H. , de Souza Vidigal, D. , Snoek, L.B. , Schnabel, S. , Nijveen, H. , Hilhorst, H. et al. (2014) Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis. Journal of Experimental Botany, 65(22), 6603–6615. PubMed PMC

Hermann, K. , Meinhard, J. , Dobrev, P. , Linkies, A. , Pesek, B. , Hess, B. , et al. (2007) 1‐Aminocyclopropane‐1‐carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.)—a comparative study of fruits and seeds. Journal of Experimental Botany, 58, 3047–3060. PubMed

Hilhorst, H.W.M. (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Science Research, 5, 61–73.

Hilhorst, H.W.M. (1998) The regulation of secondary dormancy. The membrane hypothesis revisited. Seed Science Research, 8, 77–90.

Hoffmann, C.M. & Kluge‐Severin, S. (2011) Growth analysis of autumn and spring sown sugar beet. European Journal of Agronomy, 34(1), 1–9.

Holloway, T. , Steinbrecher, T. , Perez, M. , Seville, A. , Stock, D. , Nakabayashi, K. et al. (2021) Coleorhiza‐enforced seed dormancy: a novel mechanism to control germination in grasses. New Phytologist, 229(4), 2179–2191. PubMed

Huang, Z. , Footitt, S. , Tang, A. & Finch‐Savage, W.E. (2018) Predicted global warming scenarios impact on the mother plant to alter seed dormancy and germination behaviour in Arabidopsis. Plant Cell & Environment, 41(1), 187–197. PubMed

Hundertmark, M. & Hincha, D.K. (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana . BMC Genomics, 9, 118. PubMed PMC

Ignatz, M. , Hourston, J.E. , Turečková, V. , Strnad, M. , Meinhard, J. , Fischer, U. , et al. (2019) The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet. Planta, 250, 1717–1729. PubMed PMC

Jo, L. , Pelletier, J.M. , Hsu, S.W. , Baden, R. , Goldberg, R.B. & Harada, J.J. (2020) Combinatorial interactions of the LEC1 transcription factor specify diverse developmental programs during soybean seed development. PNAS, 117(2), 1223–1232. PubMed PMC

Joosen, R.V. , Kodde, J. , Willems, L.A. , Ligterink, W. , van der Plas, L.H. & Hilhorst, H.W. (2010) GERMINATOR: a software package for high‐throughput scoring and curve fitting of Arabidopsis seed germination. The Plant Journal, 62(1), 148–159. PubMed

Kockelmann, A. , Tilcher, R. & Fischer, U. (2011) Seed production and processing. Sugar Tech, 12(3), 267–275.

Lamichhane, J.R. , Constantin, J. , Aubertot, J.N. & Durr, C. (2019) Will climate change affect sugar beet establishment of the 21st century? Insights from a simulation study using a crop emergence model. Field Crops Research, 238, 64–73.

Lepiniec, L. , Devic, M. , Roscoe, T.J. , Bouyer, D. , Zhou, D.X. , Boulard, C. , et al. (2018) Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reproduction, 31(3), 291–307. PubMed

Leprince, O. , Pellizzaro, A. , Berriri, S. & Buitink, J. (2017) Late seed maturation: drying without dying. Journal of Experimental Botany, 68(4), 827–841. PubMed

Lim, S. , Park, J. , Lee, N. , Jeong, J. , Toh, S. , Watanabe, A. , et al. (2013) ABA‐INSENSITIVE3, ABA‐INSENSITIVE5, and DELLAs interact to activate the expression of SOMNUS and other high‐temperature‐inducible genes in imbibed seeds in Arabidopsis. The Plant Cell, 25(12), 4863–4878. PubMed PMC

Liu, L. , Liu, F.X. , Chu, J.F. , Yi, X. , Fan, W.Q. , Tang, T. et al. (2019) A transcriptome analysis reveals a role for the indole GLS‐linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.). BMC Plant Biology, 19. PubMed PMC

Liu, Y.K. , Dang, P.Y. , Liu, L.X. & He, C.Z. (2019) Cold acclimation by the CBF‐COR pathway in a changing climate: lessons from Arabidopsis thaliana . Plant Cell Reports, 38(5), 511–519. PubMed PMC

Ma, Y. , Dai, X. , Xu, Y. , Luo, W. , Zheng, X. , Zeng, D. , et al. (2015) COLD1 confers chilling tolerance in rice. Cell, 160(6), 1209–1221. PubMed

MacGregor, D.R. , Kendall, S.L. , Florance, H. , Fedi, F. , Moore, K. , Paszkiewicz, K. , et al. (2015) Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytologist, 205(2), 642–652. PubMed

MacGregor, D.R. , Zhang, N. , Iwasaki, M. , Chen, M. , Dave, A. , Lopez‐Molina, L. et al. (2019) ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development. Plant Journal, 98(2), 277–290. PubMed PMC

Minoche, A.E. , Dohm, J.C. , Schneider, J. , Holtgräwe, D. , Viehöver, P. , Montfort, M. , et al. (2015) Exploiting single‐molecule transcript sequencing for eukaryotic gene prediction. Genome Biology, 16, 184. PubMed PMC

Moore, F.C. & Lobell, D.B. (2015) The fingerprint of climate trends on European crop yields. PNAS, 112(9), 2670–2675. PubMed PMC

Müller, K. , Linkies, A. , Vreeburg, R.A.M. , Fry, S.C. , Krieger‐Liszkay, A. & Leubner‐Metzger, G. (2009) In vivo cell wall loosening by hydroxyl radicals during cress (Lepidium sativum L.) seed germination and elongation growth. Plant Physiology, 150, 1855–1865. PubMed PMC

Née, G. , Kramer, K. , Nakabayashi, K. , Yuan, B. , Xiang, Y. , Miatton, E. , et al. (2017) DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nature Communications, 8, 72. PubMed PMC

Nee, G. , Obeng‐Hinneh, E. , Sarvari, P. , Nakabayashi, K. & Soppe, W.J.J. (2015) Secondary dormancy in Brassica napus is correlated with enhanced BnaDOG1 transcript levels. Seed Science Research, 25(2), 221–229.

Nishimura, N. , Tsuchiya, W. , Moresco, J.J. , Hayashi, Y. , Satoh, K. , Kaiwa, N. , et al. (2018) Control of seed dormancy and germination by DOG1‐AHG1 PP2C phosphatase complex via binding to heme. Nature Communications, 9, 2132. PubMed PMC

Nonogaki, H. (2006) Seed germination—the biochemical and molecular mechanisms. Breeding Science, 56, 93–105.

Nonogaki, H. (2017) Seed biology updates—highlights and new discoveries in seed dormancy and germination research. Frontiers in Plant Science, 8, 524. PubMed PMC

Nonogaki, H. (2019) Seed germination and dormancy: the classic story, new puzzles, and evolution. Journal of Integrative Plant Biology, 61(5), 541–563. PubMed

North, H. , Baud, S. , Debeaujon, I. , Dubos, C. , Dubreucq, B. , Grappin, P. , et al. (2010) Arabidopsis seed secrets unravelled after a decade of genetic and omics‐driven research. The Plant Journal, 61(6), 971–981. PubMed

Park, J., Lim, C.J. , Shen, M. , Park, H.J. , Cha, J.Y. , et al. (2018) Epigenetic switch from repressive to permissive chromatin in response to cold stress. PNAS, 115(23), E5400–E5409. PubMed PMC

Porcel, R. , Bustamante, A. , Ros, R. , Serrano, R. & Mulet Salort, J.M. (2018) BvCOLD1: a novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant, Cell & Environment, 41(12), 2844–2857. PubMed

Riley, M.L. , Schmidt, T. , Artamonova, I.I. , Wagner, C. , Volz, A. , Heumann, K. , et al. (2007) PEDANT genome database: 10 years online. Nucleic Acids Research, 35, D354–D357. PubMed PMC

Rodriguez‐Gacio Mdel, C. , Iglesias‐Fernandez, R. , Carbonero, P. & Matilla, A.J. (2012) Softening‐up mannan‐rich cell walls. Journal of Experimental Botany, 63(11), 3976–3988. PubMed

Rose, J.K. , Braam, J. , Fry, S.C. & Nishitani, K. (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant & Cell Physiology, 43(12), 1421–1435. PubMed

Salimi, Z. & Boelt, B. (2019) From emergence to flowering: four beet (Beta vulgaris ssp.) cultivars' phenological response to seed priming. Agronomy, 9(12), 863.

Scheler, C. , Weitbrecht, K. , Pearce, S.P. , Hampstead, A. , Büttner‐Mainik, A. , Lee, K.J. , et al. (2015) Promotion of testa rupture during garden cress germination involves seed compartment‐specific expression and activity of pectin methylesterases. Plant Physiology, 167, 200–215. PubMed PMC

Sechet, J. , Frey, A. , Effroy‐Cuzzi, D. , Berger, A. , Perreau, F. , Cueff, G. , et al. (2016) Xyloglucan metabolism differentially impacts the cell wall characteristics of the endosperm and embryo during Arabidopsis seed germination. Plant Physiology, 170(3), 1367–1380. PubMed PMC

Sester, M. , Durr, C. , Darmency, H. & Colbach, N. (2006) Evolution of weed beet (Beta vulgaris L.) seed bank: quantification of seed survival, dormancy, germination and pre‐emergence growth. European Journal of Agronomy, 24(1), 19–25.

Sester, M. , Durr, C. , Darmency, H. & Colbach, N. (2007) Modelling the effects of cropping systems on the seed bank dynamics and the emergence of weed beet. Ecological Modelling, 204(1‐2), 47–58.

Sester, M. , Tricault, Y. , Darmency, H. & Colbach, N. (2008) GeneSys‐Beet: a model of the effects of cropping systems on gene flow between sugar beet and weed beet. Field Crops Research, 107(3), 245–256.

Shigeyama, T. , Watanabe, A. , Tokuchi, K. , Toh, S. , Sakurai, N. , Shibuya, N. et al. (2016) alpha‐Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana . Journal of Experimental Botany, 67(19), 5615–5629. PubMed PMC

Soltani, E. , Baskin, J.M. & Baskin, C.C. (2019) A review of the relationship between primary and secondary dormancy, with reference to the volunteer crop weed oilseed rape (Brassica napus). Weed Research, 59(1), 5–14.

Steinbrecher, T. & Leubner‐Metzger, G. (2017) The biomechanics of seed germination. Journal of Experimental Botany, 68, 765–783. PubMed

Sun, L.X. & van Nocker, S. (2010) Analysis of promoter activity of members of the PECTATE LYASE‐LIKE (PLL) gene family in cell separation in Arabidopsis. BMC Plant Biology, 10, 10. PubMed PMC

Takemura, Y. , Kuroki, K. , Shida, Y. , Araki, S. , Takeuchi, Y. , Tanaka, K. , et al. (2015) Comparative transcriptome analysis of the less‐dormant Taiwanese pear and the dormant Japanese pear during winter season. PLoS ONE, 10, 10. PubMed PMC

Tao, Z. , Hu, H.M. , Luo, X. , Jia, B. , Du, J.M. & He, Y.H. (2019) Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. Nature Plants, 5(4), 424–435. PubMed

Toh, S. , Kamiya, Y. , Kawakami, N. , Nambara, E. , McCourt, P. & Tsuchiya, Y. (2012) Thermoinhibition uncovers a role of strigolactones in Arabidopsis seed germination. Plant & Cell Physiology, 53, 107–117. PubMed

Uluisik, S. & Seymour, G.B. (2020) Pectate lyases: their role in plants and importance in fruit ripening. Food Chemistry, 309, 309. PubMed

Vaistij, F.E. , Barros‐Galvão, T. , Cole, A.F. , Gilday, A.D. , He, Z. , Li, Y. , et al. (2018) MOTHER‐OF‐FT‐AND‐TFL1 represses seed germination under far‐red light by modulating phytohormone responses in Arabidopsis thaliana . PNAS, 115(33), 8442–8447. PubMed PMC

Walck, J.L. , Baskin, J.M. , Baskin, C.C. & Hidayati, S. (2005) Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Science Research, 15, 189–196.

Walck, J.L. , Hidayati, S.N. , Dixon, K.W. , Thompson, K. & Poschlod, P. (2011) Climate change and plant regeneration from seed. Global Change Biology, 17(6), 2145–2161.

Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. New York: Springer‐Verlag.

Wilhelmsson, P. , Chandler, J.O. , Fernandez‐Pozo, N. , Graeber, K. , Ullrich, K.K. & Arshad, W. et al. (2019) Usability of reference‐free transcriptome assemblies for detection of differential expression: a case study on Aethionema arabicum dimorphic seeds. BMC Genomics, 20, 95. PubMed PMC

Yamamoto, A. , Kagaya, Y. , Toyoshima, R. , Kagaya, M. , Takeda, S. & Hattori, T. (2009) Arabidopsis NF‐YB subunits LEC1 and LEC1‐LIKE activate transcription by interacting with seed‐specific ABRE‐binding factors. Plant Journal, 58(5), 843–856. PubMed

Yamauchi, Y. , Ogawa, M. , Kuwahara, A. , Hanada, A. , Kamiya, Y. & Yamaguchi, S. (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. The Plant Cell, 16(2), 367–378. PubMed PMC

Yan, D. , Duermeyer, L. , Leoveanu, C. & Nambara, E. (2014) The functions of the endosperm during seed germination. Plant & Cell Physiology, 55(9), 1521–1533. PubMed

Zohner, C.M. , Mo, L. , Renner, S.S. , Svenning, J.C. , Vitasse, Y. , Benito, B.M. , et al. (2020) Late‐spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. PNAS, 117(22), 12192–12200. PubMed PMC

Zykwinska, A. , Thibault, J.F. & Ralet, M.C. (2007) Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged. Journal of Experimental Botany, 58(7), 1795–1802. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace