Altered HLA Class I Profile Associated with Type A/D Nucleophosmin Mutation Points to Possible Anti-Nucleophosmin Immune Response in Acute Myeloid Leukemia

. 2015 ; 10 (5) : e0127637. [epub] 20150520

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25992555

Nucleophosmin 1 (NPM1) mutations are frequently found in patients with acute myeloid leukemia (AML) and the newly generated sequences were suggested to induce immune response contributing to the relatively favorable outcome of patients in this AML subset. We hypothesized that if an efficient immune response against mutated nucleophosmin can be induced in vivo, the individuals expressing HLA alleles suitable for presenting NPM-derived peptides should be less prone to developing AML associated with NPM1 mutation. We thus compared HLA class I frequencies in a cohort of patients with mutated NPM1 (63 patients, NPMc+), a cohort of patients with wild-type NPM1 (94 patients, NPMwt) and in normal individuals (large datasets available from Allele Frequency Net Database). Several HLA allelic groups were found to be depleted in NPMc+ patients, but not in NPMwt compared to the normal distribution. The decrease was statistically significant for HLA B(*)07, B(*)18, and B(*)40. Furthermore, statistically significant advantage in the overall survival was found for patients with mutated NPM1 expressing at least one of the depleted allelic groups. The majority of the depleted alleles were predicted to bind potent NPM-derived immunopeptides and, importantly, these peptides were often located in the unmutated part of the protein. Our analysis suggests that individuals expressing specific HLA allelic groups are disposed to develop an efficient anti-AML immune response thanks to aberrant cytoplasmic localization of the mutated NPM protein.

Zobrazit více v PubMed

Martelli MP, Sportoletti P, Tiacci E, Martelli MF, Falini B. Mutational landscape of AML with normal cytogenetics: biological and clinical implications. Blood Rev 2013;27: 13–22. 10.1016/j.blre.2012.11.001 PubMed DOI

Federici L, Falini B. Nucleophosmin mutations in acute myeloid leukemia: a tale of protein unfolding and mislocalization. Protein Sci 2013;22: 545–556. 10.1002/pro.2240 PubMed DOI PMC

Nakagawa M, Kameoka Y, Suzuki R. Nucleophosmin in acute myelogenous leukemia. N Engl J Med 2005;352: 1819–20; author reply 1819–20. PubMed

Falini B, Bolli N, Shan J, Martelli MP, Liso A, Pucciarini A, et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood 2006;107: 4514–4523. PubMed

Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005;352: 254–266. PubMed

Liso A, Bogliolo A, Freschi V, Martelli MP, Pileri SA, Santodirocco M, et al. In human genome, generation of a nuclear export signal through duplication appears unique to nucleophosmin (NPM1) mutations and is restricted to AML. Leukemia 2008;22: 1285–1289. PubMed

Liu Y, He P, Liu F, Shi L, Zhu H, Zhao J, et al. Prognostic significance of NPM1 mutations in acute myeloid leukemia: A meta-analysis. Mol Clin Oncol 2014;2: 275–281. PubMed PMC

Pfeiffer T, Schleuning M, Mayer J, Haude KH, Tischer J, Buchholz S, et al. Influence of molecular subgroups on outcome of acute myeloid leukemia with normal karyotype in 141 patients undergoing salvage allogeneic stem cell transplantation in primary induction failure or beyond first relapse. Haematologica 2013;98: 518–525. 10.3324/haematol.2012.070235 PubMed DOI PMC

Liso A, Colau D, Benmaamar R, De Groot A, Martin W, Benedetti R, et al. Nucleophosmin leukaemic mutants contain C-terminus peptides that bind HLA class I molecules. Leukemia 2008;22: 424–426. PubMed

Swoboda RK, Somasundaram R, Caputo L, Berencsi K, von Franzke P, Taylor DD, et al. Nucleophosmin is recognized by a cytotoxic T cell line derived from a rectal carcinoma patient. Int J Cancer 2010;127: 1124–1130. 10.1002/ijc.25133 PubMed DOI PMC

Greiner J, Ono Y, Hofmann S, Schmitt A, Mehring E, Gotz M, et al. Mutated regions of nucleophosmin 1 elicit both CD4(+) and CD8(+) T-cell responses in patients with acute myeloid leukemia. Blood 2012;120: 1282–1289. 10.1182/blood-2011-11-394395 PubMed DOI

Greiner J, Schneider V, Schmitt M, Gotz M, Dohner K, Wiesneth M, et al. Immune responses against the mutated region of cytoplasmatic NPM1 might contribute to the favorable clinical outcome of AML patients with NPM1 mutations (NPM1mut). Blood 2013;122: 1087–1088. 10.1182/blood-2013-04-496844 PubMed DOI

Pitiot AS, Santamaria I, Garcia-Suarez O, Centeno I, Astudillo A, Rayon C, et al. A new type of NPM1 gene mutation in AML leading to a C-terminal truncated protein. Leukemia 2007;21: 1564–1566. PubMed

Erlich H. HLA DNA typing: past, present, and future. Tissue Antigens 2012;80: 1–11. 10.1111/j.1399-0039.2012.01881.x PubMed DOI

Bidwell J, Navarrete C editors. Histocompatibility testing.: Imperial College Press; 2000.

Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. Nucleic Acids Res 2012;40(Web Server issue):W525–30. 10.1093/nar/gks438 PubMed DOI PMC

Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 2003;12: 1007–1017. PubMed PMC

Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 2008;36(Web Server issue):W509–12. 10.1093/nar/gkn202 PubMed DOI PMC

Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 2005;6: 132 PubMed PMC

Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, et al. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 2008;4: 2-7580-4-2. 10.1186/1745-7580-4-7 PubMed DOI PMC

Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Research 2011;39(suppl 1): D913–D919. PubMed PMC

Posthuma EF, Falkenburg JH, Apperley JF, Gratwohl A, Hertenstein B, Schipper RF, et al. HLA-DR4 is associated with a diminished risk of the development of chronic myeloid leukemia (CML). Chronic Leukemia Working Party of the European Blood and Marrow Transplant Registry. Leukemia 2000;14: 859–862. PubMed

Navarrete C, Alonso A, Awad J, McCloskey D, Ganesan TS, Amess J, et al. HLA class I and class II antigen associations in acute leukaemias. J Immunogenet 1986;13: 77–84. PubMed

Fernandez-Torres J, Flores-Jimenez D, Arroyo-Perez A, Granados J, Lopez-Reyes A. HLA-B*40 allele plays a role in the development of acute leukemia in Mexican population: a case-control study. Biomed Res Int 2013;2013:705862 10.1155/2013/705862 PubMed DOI PMC

Ozdilli K, Oguz FS, Anak S, Kekik C, Carin M, Gedikoglu G. The frequency of HLA class I and II alleles in Turkish childhood acute leukaemia patients. J Int Med Res 2010;38: 1835–1844. PubMed

Bortin MM, D'Amaro J, Bach FH, Rimm AA, van Rood JJ. HLA associations with leukemia. Blood 1987;70: 227–232. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...