Association of HLA class I type with prevalence and outcome of patients with acute myeloid leukemia and mutated nucleophosmin

. 2018 ; 13 (12) : e0204290. [epub] 20181217

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu klinické zkoušky, časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30557403

Acute myeloid leukemia with mutated nucleophosmin (NPMc+ AML) forms a distinct AML subgroup with better prognosis which can potentially be associated with immune response against the mutated nucleophosmin (NPM). As the T-cell-mediated immunity involves antigen presentation on HLA class I molecules, we hypothesized that individuals with suitable HLA type could be less prone to develop NPMc+ AML. We compared HLA class I distribution in NPMc+ AML patient cohort (398 patients from 5 centers) with the HLA allele frequencies of the healthy population and found HLA-A*02, B*07, B*40 and C*07 underrepresented in the NPMc+ AML group. Presence of B*07 or C*07:01 antigen was associated with better survival in patients without concomitant FLT3 internal tandem duplication. Candidate NPM-derived immunopeptides were found for B*40 and B*07 using prediction software tools. Our findings suggest that a T-cell-mediated immune response could actually explain better prognosis of NPMc+ patients and provide a rationale for attempts to explore the importance of immunosuppressive mechanisms in this AML subgroup.

Zobrazit více v PubMed

Teague R, Kline J. Immune evasion in acute myeloid leukemia: current concepts and future directions. Journal for ImmunoTherapy of Cancer 2013;1(1):13. PubMed PMC

Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol 2016. July;103:62–77. 10.1016/j.critrevonc.2016.04.020 PubMed DOI

Greiner J, Hofmann S, Schmitt M, Gotz M, Wiesneth M, Schrezenmeier H, et al. Acute myeloid leukemia with mutated nucleophosmin 1: an immunogenic acute myeloid leukemia subtype and potential candidate for immune checkpoint inhibition. Haematologica 2017. December;102(12):e499–e501. 10.3324/haematol.2017.176461 PubMed DOI PMC

Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Kohnke T, et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia 2016. February;30(2):484–491. 10.1038/leu.2015.214 PubMed DOI

Poh SL, Linn YC. Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts. Cancer Immunol Immunother 2016. May;65(5):525–536. 10.1007/s00262-016-1815-8 PubMed DOI PMC

Anguille S, Van Tendeloo VF, Berneman ZN. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 2012. October;26(10):2186–2196. 10.1038/leu.2012.145 PubMed DOI

Dvorakova D, Racil Z, Jeziskova I, Palasek I, Protivankova M, Lengerova M, et al. Monitoring of minimal residual disease in acute myeloid leukemia with frequent and rare patient-specific NPM1 mutations. Am J Hematol 2010. December;85(12):926–929. 10.1002/ajh.21879 PubMed DOI

Liso A, Colau D, Benmaamar R, De Groot A, Martin W, Benedetti R, et al. Nucleophosmin leukaemic mutants contain C-terminus peptides that bind HLA class I molecules. Leukemia 2008. February;22(2):424–426. 10.1038/sj.leu.2404887 PubMed DOI

Greiner J, Schneider V, Schmitt M, Gotz M, Dohner K, Wiesneth M, et al. Immune responses against the mutated region of cytoplasmatic NPM1 might contribute to the favorable clinical outcome of AML patients with NPM1 mutations (NPM1mut). Blood 2013. August 8;122(6):1087–1088. 10.1182/blood-2013-04-496844 PubMed DOI

Kuzelova K, Brodska B, Fuchs O, Dobrovolna M, Soukup P, Cetkovsky P. Altered HLA Class I Profile Associated with Type A/D Nucleophosmin Mutation Points to Possible Anti-Nucleophosmin Immune Response in Acute Myeloid Leukemia. PLoS One 2015. May 20;10(5):e0127637 10.1371/journal.pone.0127637 PubMed DOI PMC

Dorak MT, Shao W, Machulla HK, Lobashevsky ES, Tang J, Park MH, et al. Conserved extended haplotypes of the major histocompatibility complex: further characterization. Genes Immun 2006. September;7(6):450–467. 10.1038/sj.gene.6364315 PubMed DOI

Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005. January 20;352(3):254–266. 10.1056/NEJMoa041974 PubMed DOI

Brodska B, Kracmarova M, Holoubek A, Kuzelova K. Localization of AML-related nucleophosmin mutant depends on its subtype and is highly affected by its interaction with wild-type NPM. PLoS One 2017. April 6;12(4):e0175175 10.1371/journal.pone.0175175 PubMed DOI PMC

Brauer KM, Werth D, von Schwarzenberg K, Bringmann A, Kanz L, Grunebach F, et al. BCR-ABL activity is critical for the immunogenicity of chronic myelogenous leukemia cells. Cancer Res 2007. June 1;67(11):5489–5497. 10.1158/0008-5472.CAN-07-0302 PubMed DOI

Scheich F, Duyster J, Peschel C, Bernhard H. The immunogenicity of Bcr-Abl expressing dendritic cells is dependent on the Bcr-Abl kinase activity and dominated by Bcr-Abl regulated antigens. Blood 2007. October 1;110(7):2556–2560. 10.1182/blood-2007-01-071001 PubMed DOI

Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006. May 15;107(10):4011–4020. 10.1182/blood-2005-08-3167 PubMed DOI

Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. Nucleic Acids Res 2012. July;40(Web Server issue):W525–30. 10.1093/nar/gks438 PubMed DOI PMC

Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 2003. May;12(5):1007–1017. 10.1110/ps.0239403 PubMed DOI PMC

Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 2008. July 1;36(Web Server issue):W509–12. 10.1093/nar/gkn202 PubMed DOI PMC

Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 2005. May 31;6:132 10.1186/1471-2105-6-132 PubMed DOI PMC

Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, et al. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 2008. January 25;4:2-7580-4-2. PubMed PMC

Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994. January 1;152(1):163–175. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...