Interaction of Selected Anthracycline and Tetracycline Chemotherapeutics with Poly(I:C) Molecules
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40321536
PubMed Central
PMC12044458
DOI
10.1021/acsomega.4c05483
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Despite the natural ability of the immune system to recognize cancer and, in some patients, even to eliminate it, cancer cells have acquired numerous evading mechanisms. With the increasing knowledge and focus shifting from targeting rapidly proliferating cells with chemotherapy to modulating the immune system, there have been recent efforts to integrate (e.g., simultaneously or sequentially) various therapeutic approaches. Combining the oncolytic activity of some chemotherapeutics with immunostimulatory molecules, so-called chemoimmunotherapy, is an attractive strategy. An example of such an immunostimulatory molecule is polyinosinic:polycytidylic acid [Poly(I:C)], a synthetic analogue of double-stranded RNA characterized by rapid nuclease degradation hampering its biological activity. This study investigated the possible interactions of tetracycline and anthracycline chemotherapeutics with different commercial Poly(I:C) molecules and protection against nuclease degradation. Fluorescence spectroscopy and circular dichroism revealed an interaction of all of the selected chemotherapeutics with Poly(I:C)s and the ability of doxycycline and minocycline to prolong the resistance to RNase cleavage, respectively. The partial protection was observed in vitro as well.
BIOCEV 1st Faculty of Medicine Charles University 252 50 Vestec Czech Republic
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV 252 50 Vestec Czech Republic
TumorSHOT Italská 2581 67 Vinohrady Praha 2 Prague 120 00 Czech Republic
See more in PubMed
Bray F.; Laversanne M.; Weiderpass E.; Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127 (16), 3029–3030. 10.1002/cncr.33587. PubMed DOI
Cui Z.; Willingham M. C.; Hicks A. M.; Alexander-Miller M. A.; Howard T. D.; Hawkins G. A.; Miller M. S.; Weir H. M.; Du W.; DeLong C. J. Spontaneous regression of advanced cancer: identification of a unique genetically determined, age-dependent trait in mice. Proc. Natl. Acad. Sci. U.S.A. 2003, 100 (11), 6682–6687. 10.1073/pnas.1031601100. PubMed DOI PMC
Koch J.; Hau J.; Jensen H. E.; Nielsen C. H.; Rieneck K. The cellular cancer resistance of the SR/CR mouse. Apmis 2012, 120 (12), 974–987. 10.1111/j.1600-0463.2012.02925.x. PubMed DOI
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12 (1), 31–46. 10.1158/2159-8290.CD-21-1059. PubMed DOI
Hanahan D.; Weinberg R. A. The hallmarks of cancer. Cell 2000, 100 (1), 57–70. 10.1016/S0092-8674(00)81683-9. PubMed DOI
Hanahan D.; Weinberg R. A. Hallmarks of cancer: the next generation. Cell 2011, 144 (5), 646–674. 10.1016/j.cell.2011.02.013. PubMed DOI
Mokhtari R. B.; Homayouni T. S.; Baluch N.; Morgatskaya E.; Kumar S.; Das B.; Yeger H. Combination therapy in combating cancer. Oncotarget 2017, 8 (23), 38022–38043. 10.18632/oncotarget.16723. PubMed DOI PMC
Apetoh L. Chemoimmunotherapy combinations: translating basic knowledge into clinical successes. Gene Immun. 2024, 25 (2), 99–101. 10.1038/s41435-024-00264-9. PubMed DOI
Padrón L. J.; Maurer D. M.; O’Hara M. H.; O’Reilly E. M.; Wolff R. A.; Wainberg Z. A.; Ko A. H.; Fisher G.; Rahma O.; Lyman J. P.; et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat. Med. 2022, 28 (6), 1167–1177. 10.1038/s41591-022-01829-9. PubMed DOI PMC
Correale P.; Cusi M. G.; Micheli L.; Nencini C.; Del Vecchio M. T.; Torino F.; Aquino A.; Bonmassar E.; Francini G.; Giorgi G. Chemo-immunotherapy of colorectal carcinoma: preclinical rationale and clinical experience. Invest. New Drugs 2006, 24 (2), 99–110. 10.1007/s10637-006-5932-7. PubMed DOI
Marabelle A.; Tselikas L.; de Baere T.; Houot R. Intratumoral immunotherapy: using the tumor as the remedy. Ann. Oncol. 2017, 28 (suppl_12), xii33–xii43. 10.1093/annonc/mdx683. PubMed DOI
Correia A. S.; Gärtner F.; Vale N. Drug combination and repurposing for cancer therapy: the example of breast cancer. Heliyon 2021, 7 (1), e0594810.1016/j.heliyon.2021.e05948. PubMed DOI PMC
Le Naour J.; Thierry S.; Scuderi S. A.; Boucard-Jourdin M.; Liu P.; Bonnin M.; Pan Y.; Perret C.; Zhao L.; Mao M.; et al. A Chemically Defined TLR3 Agonist with Anticancer Activity. Oncoimmunology 2023, 12 (1), 2227510.10.1080/2162402X.2023.2227510. PubMed DOI PMC
De Waele J.; Verhezen T.; van der Heijden S.; Berneman Z. N.; Peeters M.; Lardon F.; Wouters A.; Smits E. A systematic review on poly(I:C) and poly-ICLC in glioblastoma: adjuvants coordinating the unlocking of immunotherapy. J. Exp. Clin. Cancer Res. 2021, 40 (1), 213.10.1186/s13046-021-02017-2. PubMed DOI PMC
Bianchi F.; Pretto S.; Tagliabue E.; Balsari A.; Sfondrini L. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol. Ther. 2017, 18 (10), 747–756. 10.1080/15384047.2017.1373220. PubMed DOI PMC
Sales Conniff A.; Encalada G.; Patel S.; Bhandary M.; Al-Takrouri F.; Heller L. Poly(I:C) transfection induces a pro-inflammatory cascade in murine mammary carcinoma and fibrosarcoma cells. RNA Biol. 2022, 19 (1), 841–851. 10.1080/15476286.2022.2084861. PubMed DOI PMC
Kowash H. M.; Potter H. G.; Edye M. E.; Prinssen E. P.; Bandinelli S.; Neill J. C.; Hager R.; Glazier J. D. Poly(I:C) source, molecular weight and endotoxin contamination affect dam and prenatal outcomes, implications for models of maternal immune activation. Brain Behav. Immun. 2019, 82, 160–166. 10.1016/j.bbi.2019.08.006. PubMed DOI
Komal A.; Noreen M.; El-Kott A. F. TLR3 agonists: RGC100, ARNAX, and poly-IC: a comparative review. Immunol. Res. 2021, 69 (4), 312–322. 10.1007/s12026-021-09203-6. PubMed DOI PMC
Sultan H.; Salazar A. M.; Celis E. Poly-ICLC, a multi-functional immune modulator for treating cancer. Semin. Immunol. 2020, 49, 101414.10.1016/j.smim.2020.101414. PubMed DOI
Alvarez M.; Molina C.; Garasa S.; Ochoa M. C.; Rodriguez-Ruiz M. E.; Gomis G.; Cirella A.; Olivera I.; Glez-Vaz J.; Gonzalez-Gomariz J.; et al. Intratumoral neoadjuvant immunotherapy based on the BO-112 viral RNA mimetic. Oncoimmunology 2023, 12 (1), 2197370.10.1080/2162402X.2023.2197370. PubMed DOI PMC
Chukwudi C. U.; Good L. Interaction of the tetracyclines with double-stranded RNAs of random base sequence: new perspectives on the target and mechanism of action. J. Antibiot. 2016, 69 (8), 622–630. 10.1038/ja.2015.145. PubMed DOI
Chukwudi C. U.; Good L. Doxycycline inhibits pre-rRNA processing and mature rRNA formation in E. coli. J. Antibiot. 2019, 72 (4), 225–236. 10.1038/s41429-019-0149-0. PubMed DOI
Chukwudi C. U.; Good L. Doxycycline induces Hok toxin killing in host E. coli. PLoS One 2020, 15 (7), e023563310.1371/journal.pone.0235633. PubMed DOI PMC
Chopra I.; Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65 (2), 232–260. 10.1128/MMBR.65.2.232-260.2001. PubMed DOI PMC
Warner A. J.; Hathaway-Schrader J. D.; Lubker R.; Davies C.; Novince C. M. Tetracyclines and bone: Unclear actions with potentially lasting effects. Bone 2022, 159, 116377.10.1016/j.bone.2022.116377. PubMed DOI PMC
Nonaka L.; Connell S. R.; Taylor D. E. 16S rRNA mutations that confer tetracycline resistance in Helicobacter pylori decrease drug binding in Escherichia coli ribosomes. J. Bacteriol. 2005, 187 (11), 3708–3712. 10.1128/JB.187.11.3708-3712.2005. PubMed DOI PMC
Brodersen D. E.; Clemons W. M. Jr.; Carter A. P.; Morgan-Warren R. J.; Wimberly B. T.; Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 2000, 103 (7), 1143–1154. 10.1016/S0092-8674(00)00216-6. PubMed DOI
Hori N.; Denesyuk N. A.; Thirumalai D. Shape changes and cooperativity in the folding of the central domain of the 16S ribosomal RNA. Proc. Natl. Acad. Sci. U.S.A. 2021, 118 (10), e202083711810.1073/pnas.2020837118. PubMed DOI PMC
Khan M. A.; Musarrat J. Interactions of tetracycline and its derivatives with DNA in vitro in presence of metal ions. Int. J. Biol. Macromol. 2003, 33 (1–3), 49–56. 10.1016/S0141-8130(03)00066-7. PubMed DOI
Oehler R.; Polacek N.; Steiner G.; Barta A. Interaction of tetracycline with RNA: photoincorporation into ribosomal RNA of Escherichia coli. Nucleic Acids Res. 1997, 25 (6), 1219–1224. 10.1093/nar/25.6.1219. PubMed DOI PMC
Pioletti M.; Schlünzen F.; Harms J.; Zarivach R.; Glühmann M.; Avila H.; Bashan A.; Bartels H.; Auerbach T.; Jacobi C.; et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 2001, 20 (8), 1829–1839. 10.1093/emboj/20.8.1829. PubMed DOI PMC
Chen Y. F.; Yang Y. N.; Chu H. R.; Huang T. Y.; Wang S. H.; Chen H. Y.; Li Z. L.; Yang Y. S. H.; Lin H. Y.; Hercbergs A.; et al. Role of Integrin αvβ3 in Doxycycline-Induced Anti-Proliferation in Breast Cancer Cells. Front. Cell Dev. Biol. 2022, 10, 829788.10.3389/fcell.2022.829788. PubMed DOI PMC
Qin Y.; Zhang Q.; Lee S.; Zhong W. L.; Liu Y. R.; Liu H. J.; Zhao D.; Chen S.; Xiao T.; Meng J.; et al. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells. Oncotarget 2015, 6 (38), 40667–40679. 10.18632/oncotarget.5842. PubMed DOI PMC
Sun T.; Zhao N.; Ni C. S.; Zhao X. L.; Zhang W. Z.; Su X.; Zhang D. F.; Gu Q.; Sun B. C. Doxycycline inhibits the adhesion and migration of melanoma cells by inhibiting the expression and phosphorylation of focal adhesion kinase (FAK). Cancer Lett. 2009, 285 (2), 141–150. 10.1016/j.canlet.2009.05.004. PubMed DOI
Mattioli R.; Ilari A.; Colotti B.; Mosca L.; Fazi F.; Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol. Aspects Med. 2023, 93, 101205.10.1016/j.mam.2023.101205. PubMed DOI
Airoldi M.; Barone G.; Gennaro G.; Giuliani A. M.; Giustini M. Interaction of doxorubicin with polynucleotides. A spectroscopic study. Biochemistry 2014, 53 (13), 2197–2207. 10.1021/bi401687v. PubMed DOI
Canzoneri J. C.; Oyelere A. K. Interaction of anthracyclines with iron responsive element mRNAs. Nucleic Acids Res. 2008, 36 (21), 6825–6834. 10.1093/nar/gkn774. PubMed DOI PMC
Ijäs H.; Shen B.; Heuer-Jungemann A.; Keller A.; Kostiainen M. A.; Liedl T.; Ihalainen J. A.; Linko V. Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release. Nucleic Acids Res. 2021, 49 (6), 3048–3062. 10.1093/nar/gkab097. PubMed DOI PMC
Micallef I.; Baron B. Doxorubicin: An overview of the anti-cancer and chemoresistance mechanisms. Ann. Clin. Toxicol. 2020, 3, 1031.
Palù G.; Valisena S.; Ciarrocchi G.; Gatto B.; Palumbo M. Quinolone binding to DNA is mediated by magnesium ions. Proc. Natl. Acad. Sci. U.S.A. 1992, 89 (20), 9671–9675. 10.1073/pnas.89.20.9671. PubMed DOI PMC
Kohn K. W. Mediation of Divalent Metal Ions in the Binding of Tetracycline to Macromolecules. Nature 1961, 191 (4794), 1156–1158. 10.1038/1911156a0. PubMed DOI
Sirajuddin M.; Ali S.; Badshah A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol., B 2013, 124, 1–19. 10.1016/j.jphotobiol.2013.03.013. PubMed DOI
Scollo F.; Evci H.; Amaro M.; Jurkiewicz P.; Sykora J.; Hof M. What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on?. Front. Chem. 2021, 9, 738350.10.3389/fchem.2021.738350. PubMed DOI PMC
Lakowicz J. R.; Keating-Nakamoto S. Red-edge excitation of fluorescence and dynamic properties of proteins and membranes. Biochemistry 1984, 23 (13), 3013–3021. 10.1021/bi00308a026. PubMed DOI PMC
Sillén L. G.; Hartiala K. J.; Liem D. H.; Ryhage R.; Stevens R. High-speed Computers as a Supplement to Graphical Methods. III. Twist Matrix Methods for Minimizing the Error-square Sum in Problems with Many Unknown Constants. Acta Chem. Scand. 1964, 18, 1085–1098. 10.3891/acta.chem.scand.18-1085. DOI
Silindir M.; Özer A. Y. Sterilization Methods and the Comparison of E-Beam Sterilization with Gamma Radiation Sterilization. FABAD J. Pharm. Sci. 2009, 34, 43–53.
Lahtz C.; Bates S. E.; Jiang Y.; Li A. X.; Wu X.; Hahn M. A.; Pfeifer G. P. Gamma irradiation does not induce detectable changes in DNA methylation directly following exposure of human cells. PLoS One 2012, 7 (9), e4485810.1371/journal.pone.0044858. PubMed DOI PMC
Tankovskaia S.; Kotb O.; Dommes O.; Paston S. DNA damage induced by gamma-radiation revealed from UV absorption spectroscopy. J. Phys.: Conf. Ser. 2018, 1038, 012027.10.1088/1742-6596/1038/1/012027. PubMed DOI
Husain M. A.; Ishqi H. M.; Rehman S. U.; Sarwar T.; Afrin S.; Rahman Y.; Tabish M. Elucidating the interaction of sulindac with calf thymus DNA: biophysical and in silico molecular modelling approach. New J. Chem. 2017, 41 (24), 14924–14935. 10.1039/C7NJ03698A. DOI
Zhou X.; Zhang G.; Pan J. Groove binding interaction between daphnetin and calf thymus DNA. Int. J. Biol. Macromol. 2015, 74, 185–194. 10.1016/j.ijbiomac.2014.12.018. PubMed DOI
Li N.; Hu X.; Pan J.; Zhang Y.; Gong D.; Zhang G. Insights into the mechanism of groove binding between 4–octylphenol and calf thymus DNA. Spectrochim. Acta, Part A 2020, 238, 118454.10.1016/j.saa.2020.118454. PubMed DOI
Genna V.; Iglesias-Fernández J.; Reyes-Fraile L.; Villegas N.; Guckian K.; Seth P.; Wan B.; Cabrero C.; Terrazas M.; Brun-Heath I.; et al. Controlled sulfur-based engineering confers mouldability to phosphorothioate antisense oligonucleotides. Nucleic Acids Res. 2023, 51 (10), 4713–4725. 10.1093/nar/gkad309. PubMed DOI PMC
Thiele D.; Guschlbauer W.; Favre A. Protonated polynucleotide structures. Biochim. Biophys. Acta 1972, 272 (1), 22–26. 10.1016/0005-2787(72)90028-7. PubMed DOI
Kumar G. S.; Das S.; Bhadra K.; Maiti M. Protonated forms of poly[d(G-C)] and poly(dG).poly(dC) and their interaction with berberine. Bioorg. Med. Chem. 2003, 11 (23), 4861–4870. 10.1016/j.bmc.2003.09.028. PubMed DOI
Ucci J. W.; Kobayashi Y.; Choi G.; Alexandrescu A. T.; Cole J. L. Mechanism of interaction of the double-stranded RNA (dsRNA) binding domain of protein kinase R with short dsRNA sequences. Biochemistry 2007, 46 (1), 55–65. 10.1021/bi061531o. PubMed DOI
Douthart R. J.; Burnett J. P.; Beasley F. W.; Frank B. H. Binding of ethidium bromide to double-stranded ribonucleic acid. Biochemistry 1973, 12 (2), 214–220. 10.1021/bi00726a006. PubMed DOI
Lambs L.; Venturim M.; Révérend B. D.-L.; Kozlowski H.; Berthon G. Metal ion-tetracycline interactions in biological fluids: Part 8. Potentiometric and spectroscopic studies on the formation of Ca(II) and Mg(II) complexes with 4-dedimethylamino-tetracycline and 6-desoxy-6-dem. J. Inorg. Biochem. 1988, 33 (3), 193–209. 10.1016/0162-0134(88)80049-7. PubMed DOI
Reuss A.; Vogel M.; Weigand J.; Suess B.; Wachtveitl J. Tetracycline Determines the Conformation of Its Aptamer at Physiological Magnesium Concentrations. Biophys. J. 2014, 107 (12), 2962–2971. 10.1016/j.bpj.2014.11.001. PubMed DOI PMC
Kaiser C.; Vogel M.; Appel B.; Weigand J.; Müller S.; Suess B.; Wachtveitl J. Magnesium Ion-Driven Folding and Conformational Switching Kinetics of Tetracycline Binding Aptamer: Implications for in vivo Riboswitch Engineering. J. Mol. Biol. 2023, 435 (20), 168253.10.1016/j.jmb.2023.168253. PubMed DOI
Jin L.; Amaya-Mazo X.; Apel M. E.; Sankisa S. S.; Johnson E.; Zbyszynska M. A.; Han A. Ca2+ and Mg2+ bind tetracycline with distinct stoichiometries and linked deprotonation. Biophys. Chem. 2007, 128 (2), 185–196. 10.1016/j.bpc.2007.04.005. PubMed DOI
Sun W.; Pertzev A.; Nicholson A. W. Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis. Nucleic Acids Res. 2005, 33 (3), 807–815. 10.1093/nar/gki197. PubMed DOI PMC
Smole A.; Krajnik A. K.; Oblak A.; Pirher N.; Jerala R. Delivery system for the enhanced efficiency of immunostimulatory nucleic acids. Innate Immun. 2013, 19 (1), 53–65. 10.1177/1753425912450346. PubMed DOI