What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on?

. 2021 ; 9 () : 738350. [epub] 20211029

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34778202

The organization of biomolecules and bioassemblies is highly governed by the nature and extent of their interactions with water. These interactions are of high intricacy and a broad range of methods based on various principles have been introduced to characterize them. As these methods view the hydration phenomena differently (e.g., in terms of time and length scales), a detailed insight in each particular technique is to promote the overall understanding of the stunning "hydration world." In this prospective mini-review we therefore critically examine time-dependent fluorescence shift (TDFS)-an experimental method with a high potential for studying the hydration in the biological systems. We demonstrate that TDFS is very useful especially for phospholipid bilayers for mapping the interfacial region formed by the hydrated lipid headgroups. TDFS, when properly applied, reports on the degree of hydration and mobility of the hydrated phospholipid segments in the close vicinity of the fluorophore embedded in the bilayer. Here, the interpretation of the recorded TDFS parameters are thoroughly discussed, also in the context of the findings obtained by other experimental techniques addressing the hydration phenomena (e.g., molecular dynamics simulations, NMR spectroscopy, scattering techniques, etc.). The differences in the interpretations of TDFS outputs between phospholipid biomembranes and proteins are also addressed. Additionally, prerequisites for the successful TDFS application are presented (i.e., the proper choice of fluorescence dye for TDFS studies, and TDFS instrumentation). Finally, the effects of ions and oxidized phospholipids on the bilayer organization and headgroup packing viewed from TDFS perspective are presented as application examples.

Zobrazit více v PubMed

Abragam A. (1961). The Principles of Nuclear Magnetism. New York: Oxford Science Publications.

Abrams F. S., London E. (1993). Extension of the Parallax Analysis of Membrane Penetration Depth to the Polar Region of Model Membranes: Use of Fluorescence Quenching by a Spin-Label Attached to the Phospholipid Polar Headgroup. Biochemistry 32 (40), 10826–10831. 10.1021/bi00091a038 PubMed DOI

Amann-Winkel K., Bellissent-Funel M.-C., Bove L. E., Loerting T., Nilsson A., Paciaroni A., et al. (2016). X-ray and Neutron Scattering of Water. Chem. Rev. 116 (13), 7570–7589. 10.1021/acs.chemrev.5b00663 PubMed DOI

Amaro M., Brezovský J., Kováčová S., Maier L., Chaloupková R., Sýkora J., et al. (2013). Are Time-dependent Fluorescence Shifts at the Tunnel Mouth of Haloalkane Dehalogenase Enzymes Dependent on the Choice of the Chromophore? J. Phys. Chem. B. 117 (26), 7898–7906. 10.1021/jp403708c PubMed DOI

Amaro M., Brezovský J., Kováčová S., Sýkora J., Bednář D., Němec V., et al. (2015). Site-Specific Analysis of Protein Hydration Based on Unnatural Amino Acid Fluorescence. J. Am. Chem. Soc. 137 (15), 4988–4992. 10.1021/jacs.5b01681 PubMed DOI

Amaro M., Filipe H. A. L., Prates Ramalho J. P., Hof M., Loura L. M. S. (2016). Fluorescence of Nitrobenzoxadiazole (NBD)-labeled Lipids in Model Membranes is Connected Not to Lipid Mobility but to Probe Location. Phys. Chem. Chem. Phys. 18 (10), 7042–7054. 10.1039/c5cp05238f PubMed DOI

Amaro M., Reina F., Hof M., Eggeling C., Sezgin E. (2017). Laurdan and Di-4-ANEPPDHQ Probe Different Properties of the Membrane. J. Phys. D: Appl. Phys. 50 (13), 134004. 10.1088/1361-6463/aa5dbc PubMed DOI PMC

Amaro M., Šachl R., Jurkiewicz P., Coutinho A., Prieto M., Hof M. (2014). Time-resolved Fluorescence in Lipid Bilayers: Selected Applications and Advantages over Steady State. Biophys. J. 107 (12), 2751–2760. 10.1016/j.bpj.2014.10.058 PubMed DOI PMC

Arsov Z. (2015). Long-range Lipid-Water Interaction as Observed by Atr-Ftir Spectroscopy. Subcell. Biochem. 71, 127–159. 10.1007/978-3-319-19060-0_6 PubMed DOI

Arzhantsev S., Maroncelli M. (2005). Design and Characterization of a Femtosecond Fluorescence Spectrometer Based on Optical Kerr Gating. Appl. Spectrosc. 59 (2), 206–220. 10.1366/0003702053085007 PubMed DOI

Bagatolli L. A. (2012). LAURDAN Fluorescence Properties in Membranes: A Journey from the Fluorometer to the Microscope. Berlin: Springer. 3–35. 10.1007/4243_2012_42 DOI

Bagchi B. (2005). Water Dynamics in the Hydration Layer Around Proteins and Micelles. Chem. Rev. 105 (9), 3197–3219. 10.1021/cr020661+ PubMed DOI

Ball P. (2008). Water as an Active Constituent in Cell Biology. Chem. Rev. 108 (1), 74–108. 10.1021/cr068037a PubMed DOI

Beranova L., Cwiklik L., Jurkiewicz P., Hof M., Jungwirth P. (2010). Oxidation Changes Physical Properties of Phospholipid Bilayers: Fluorescence Spectroscopy and Molecular Simulations. Langmuir 26 (9), 6140–6144. 10.1021/la100657a PubMed DOI

Beranová L., Humpolíčková J., Sýkora J., Benda A., Cwiklik L., Jurkiewicz P., et al. (2012). Effect of Heavy Water on Phospholipid Membranes: Experimental Confirmation of Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 14 (42), 14516–14522. 10.1039/c2cp41275f PubMed DOI

Berkowitz M. L., Bostick D. L., Pandit S. (2006). Aqueous Solutions Next to Phospholipid Membrane Surfaces: Insights from Simulations. Chem. Rev. 106 (4), 1527–1539. 10.1021/cr0403638 PubMed DOI

Bhattacharyya K. (2008). Nature of Biological Water: a Femtosecond Study. Chem. Commun. (25), 2848–2857. 10.1039/b800278a PubMed DOI

Biedermannová L., Schneider B. (2016). Hydration of Proteins and Nucleic Acids: Advances in experiment and Theory. A Review. Biochim. Biophys. Acta (Bba) - Gen. Subjects. 1860 (9), 1821–1835. 10.1016/j.bbagen.2016.05.036 PubMed DOI

Boens N., Qin W., Basarić N., Hofkens J., Ameloot M., Pouget J., et al. (2007). Fluorescence Lifetime Standards for Time and Frequency Domain Fluorescence Spectroscopy. Anal. Chem. 79 (5), 2137–2149. 10.1021/ac062160k PubMed DOI PMC

Borle F., Seelig J. (1983). Hydration of Escherichia coli Lipids. Biochim. Biophys. Acta Biomembr. 735 (1), 131–136. 10.1016/0005-2736(83)90268-7 PubMed DOI

Calero C., Franzese G. (2019). Membranes with Different Hydration Levels: The Interface between Bound and Unbound Hydration Water. J. Mol. Liquids. 273, 488–496. 10.1016/j.molliq.2018.10.074 DOI

Chang C.-W., Guo L., Kao Y.-T., Li J., Tan C., Li T., et al. (2010). Ultrafast Solvation Dynamics at Binding and Active Sites of Photolyases. Proc. Natl. Acad. Sci. 107 (7), 2914–2919. 10.1073/pnas.1000001107 PubMed DOI PMC

Chen Y.-T., Chao W.-C., Kuo H.-T., Shen J.-Y., Chen I.-H., Yang H.-C., et al. (2016). Probing the Polarity and Water Environment at the Protein-Peptide Binding Interface Using Tryptophan Analogues. Biochem. Biophys. Rep. 7, 113–118. 10.1016/j.bbrep.2016.05.022 PubMed DOI PMC

Chosrowjan H., Taniguchi S., Tanaka F. (2015). Ultrafast Fluorescence Upconversion Technique and its Applications to Proteins. FEBS J. 282 (16), 3003–3015. 10.1111/febs.13180 PubMed DOI

Choudhury S. D., Nath S., Pal H. (2008). Excited-state Proton Transfer Behavior of 7-Hydroxy-4-Methylcoumarin in AOT Reverse Micelles. J. Phys. Chem. B. 112 (26), 7748–7753. 10.1021/jp8004019 PubMed DOI

Choudhury S. D., Pal H. (2009). Modulation of Excited-State Proton-Transfer Reactions of 7-Hydroxy-4-Methylcoumarin in Ionic and Nonionic Reverse Micelles. J. Phys. Chem. B. 113 (19), 6736–6744. 10.1021/jp8111759 PubMed DOI

Cohen B. E., Mcananey T. B., Park E. S., Jan Y. N., Boxer S. G., Jan L. Y., et al. (2016). Probing Protein Electrostatics with a Synthetic Fluorescent Amino Acid. Science 296 (5573), 1700–1703. 10.1126/science.1069346 PubMed DOI

Demchenko A. P. (2002). The Red-Edge Effects: 30 Years of Exploration. Luminescence 17 (1), 19–42. 10.1002/bio.671 PubMed DOI

Disalvo E. A., Bakás L. S. (1986). “Influence of the Surface Charge Distribution and Water Layers on the Permeability Properties of Lipid Bilayers,” in Electrical Double Layers in Biology. Editor Blank M. (Boston, MA: Springer; ).

Disalvo E. A. (2015). Membrane Hydration: A Hint to a New Model for Biomembranes. Subcell. Biochem. 71, 1–16. 10.1007/978-3-319-19060-0_1 PubMed DOI

Duboué-Dijon E., Laage D. (2014). Comparative Study of Hydration Shell Dynamics Around a Hyperactive Antifreeze Protein and Around Ubiquitin. J. Chem. Phys. 141 (22), 22D529. 10.1063/1.4902822 PubMed DOI

Duboué-Dijon E., Fogarty A. C., Hynes J. T., Laage D. (2016). Dynamical Disorder in the DNA Hydration Shell. J. Am. Chem. Soc. 138 (24), 7610–7620. 10.1021/jacs.6b02715 PubMed DOI

Fery-Forgues S., Fayet J.-P., Lopez A. (1993). Drastic Changes in the Fluorescence Properties of NBD Probes with the Polarity of the Medium: Involvement of a TICT State? J. Photochem. Photobiol. A: Chem. 70 (3), 229–243. 10.1016/1010-6030(93)85048-d DOI

Fischermeier E., Pospíšil P., Sayed A., Hof M., Solioz M., Fahmy K. (2017). Dipolar Relaxation Dynamics at the Active Site of an ATPase Regulated by Membrane Lateral Pressure. Angew. Chem. Int. Ed. 56 (5), 1269–1272. 10.1002/anie.201611582 PubMed DOI

Fogarty A. C., Laage D. (2014). Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation. J. Phys. Chem. B. 118, 7715–7729. 10.1021/jp409805p PubMed DOI PMC

Foglia F., Lawrence M. J., Lorenz C. D., McLain S. E. (2010). On the Hydration of the Phosphocholine Headgroup in Aqueous Solution. J. Chem. Phys. 133 (14), 145103. 10.1063/1.3488998 PubMed DOI

Först G., Cwiklik L., Jurkiewicz P., Schubert R., Hof M. (2014). Interactions of Beta-Blockers with Model Lipid Membranes: Molecular View of the Interaction of Acebutolol, Oxprenolol, and Propranolol with Phosphatidylcholine Vesicles by Time-dependent Fluorescence Shift and Molecular Dynamics Simulations. Eur. J. Pharm. Biopharm. 87 (3), 559–569. 10.1016/j.ejpb.2014.03.013 PubMed DOI

Fruhwirth G. O., Loidl A., Hermetter A. (2007). Oxidized Phospholipids: From Molecular Properties to Disease. Biochim. Biophys. Acta. 1772 (7), 718–736. 10.1016/j.bbadis.2007.04.009 PubMed DOI

Gawrisch K., Parsegian A. V., Rand P. R. (1990). Membrane Hydration. Berlin: Springer;

Ge M., Freed J. H. (2003). Hydration, Structure, and Molecular Interactions in the Headgroup Region of Dioleoylphosphatidylcholine Bilayers: An Electron Spin Resonance Study. Biophys. J. 85 (6), 4023–4040. 10.1016/s0006-3495(03)74816-4 PubMed DOI PMC

Guha S., Sahu K., Roy D., Mondal S. K., Roy S., Bhattacharyya K. (2005). Slow Solvation Dynamics at the Active Site of an Enzyme: Implications for Catalysis. Biochemistry 44 (25), 8940–8947. 10.1021/bi0473915 PubMed DOI

Hamley I. W. (2000). Introduction to Soft Matter: Polymers, Colloids, Amphiphiles and Liquid Crystals. Chichester: Wiley;

Hishida M., Tanaka K. (2011). Long-range Hydration Effect of Lipid Membrane Studied by Terahertz Time-Domain Spectroscopy. Phys. Rev. Lett. 106 (15), 158102–158103. 10.1103/PhysRevLett.106.158102 PubMed DOI

Hof M. (1999). Solvent Relaxation in Biomembranes, in Applied Fluorescence in Chemistry, Biology and Medicine Berlin: Springer, 439–456. 10.1007/978-3-642-59903-3_18 DOI

Horng M. L., Gardecki J. A., Papazyan A., Maroncelli M. (1995). Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited. J. Phys. Chem. 99 (48), 17311–17337. 10.1021/j100048a004 DOI

Hutterer R., Parusel A. B. J., Hof M. (1998). Solvent Relaxation of Prodan and Patman: A Useful Tool for the Determination of Polarity and Rigidity Changes in Membranes. J. Fluoresc. 8, 389–393. 10.1023/a:1020532817530 DOI

Hutterer R., Schneider F. W., Lanig H., Hof M. (1997). Solvent Relaxation Behaviour of N-Anthroyloxy Fatty Acids in PC-Vesicles and Paraffin Oil: A Time-Resolved Emission Spectra Study. Biochim. Biophys. Acta. 1323 (2), 195–207. 10.1016/s0005-2736(96)00186-1 PubMed DOI

Ito N., Arzhantsev S., Heitz M., Maroncelli M. (2004). Solvation Dynamics and Rotation of Coumarin 153 in Alkylphosphonium Ionic Liquids. J. Phys. Chem. B. 108 (18), 5771–5777. 10.1021/jp0499575 DOI

Jesenská A., Sýkora J., Olżyńska A., Brezovský J., Zdráhal Z., Damborský J., et al. (2009). Nanosecond Time-dependent Stokes Shift at the Tunnel Mouth of Haloalkane Dehalogenases. J. Am. Chem. Soc. 131 (2), 494–501. 10.1021/ja804020q PubMed DOI

Jin L., Millard A. C., Wuskell J. P., Dong X., Wu D., Clark H. A., et al. (2006). Characterization and Application of a New Optical Probe for Membrane Lipid Domains. Biophys. J. 90 (7), 2563–2575. 10.1529/biophysj.105.072884 PubMed DOI PMC

Jurkiewicz P., Sýkora J., Olzyńska A., Humpolícková J., Hof M. (2005). Solvent Relaxation in Phospholipid Bilayers: Principles and Recent Applications. J. Fluoresc. 15 (6), 883–894. 10.1007/s10895-005-0013-4 PubMed DOI

Jurkiewicz P., Cwiklik L., Jungwirth P., Hof M. (2012a). Lipid Hydration and Mobility: An Interplay between Fluorescence Solvent Relaxation Experiments and Molecular Dynamics Simulations. Biochimie 94 (1), 26–32. 10.1016/j.biochi.2011.06.027 PubMed DOI

Jurkiewicz P., Cwiklik L., Vojtíšková A., Jungwirth P., Hof M. (2012b). Structure, Dynamics, and Hydration of POPC/POPS Bilayers Suspended in NaCl, KCl, and CsCl Solutions. Biochim. Biophys. Acta. 1818 (3), 609–616. 10.1016/j.bbamem.2011.11.033 PubMed DOI

Jurkiewicz P., Olżyńska A., Cwiklik L., Conte E., Jungwirth P., Megli F. M., et al. (2012c). Biophysics of Lipid Bilayers Containing Oxidatively Modified Phospholipids: Insights from Fluorescence and EPR Experiments and from MD Simulations. Biochim. Biophys. Acta. 1818 (10), 2388–2402. 10.1016/j.bbamem.2012.05.020 PubMed DOI

Jurkiewicz P., Olżyńska A., Langner M., Hof M. (2006). Headgroup Hydration and Mobility of DOTAP/DOPC Bilayers: a Fluorescence Solvent Relaxation Study. Langmuir 22 (21), 8741–8749. 10.1021/la061597k PubMed DOI

Khandelia H., Loubet B., Olżyńska A., Jurkiewicz P., Hof M. (2014). Pairing of Cholesterol with Oxidized Phospholipid Species in Lipid Bilayers. Soft Matter 10 (4), 639–647. 10.1039/c3sm52310a PubMed DOI

Khandelia H., Mouritsen O. G. (2009). Lipid Gymnastics: Evidence of Complete Acyl Chain Reversal in Oxidized Phospholipids from Molecular Simulations. Biophys. J. 96 (7), 2734–2743. 10.1016/j.bpj.2009.01.007 PubMed DOI PMC

Koch M. H. J., Vachette P., Svergun D. I. (2003). Small-angle Scattering: A View on the Properties, Structures and Structural Changes of Biological Macromolecules in Solution. Q. Rev. Biophys. 36, 147–227. 10.1017/s0033583503003871 PubMed DOI

Koehorst R. B. M., Laptenok S., van Oort B., van Hoek A., Spruijt R. B., van Stokkum I. H. M., et al. (2010). Profiling of Dynamics in Protein-Lipid-Water Systems: a Time-Resolved Fluorescence Study of a Model Membrane Protein with the Label BADAN at Specific Membrane Depths. Eur. Biophys. J. 39 (4), 647–656. 10.1007/s00249-009-0538-6 PubMed DOI PMC

König S., Sackmann E., Richter D., Zorn R., Carlile C., Bayerl T. M. (1994). Molecular Dynamics of Water in Oriented DPPC Multilayers Studied by Quasielastic Neutron Scattering and Deuterium‐nuclear Magnetic Resonance Relaxation. J. Chem. Phys. 100 (4), 3307–3316. 10.1063/1.466422 DOI

Kucerka N., Nagle J. F., Sachs J. N., Feller S. E., Pencer J., Jackson A., et al. (2008). Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-ray Scattering Data. Biophys. J. 95 (5), 2356–2367. 10.1529/biophysj.108.132662 PubMed DOI PMC

Kühne T. D., Khaliullin R. Z. (2013). Electronic Signature of the Instantaneous Asymmetry in the First Coordination Shell of Liquid Water. Nat. Commun. 4, 1450–1457. 10.1038/ncomms2459 PubMed DOI

Kulig W., Cwiklik L., Jurkiewicz P., Rog T., Vattulainen I. (2016). Cholesterol Oxidation Products and Their Biological Importance. Chem. Phys. Lipids. 199, 144–160. 10.1016/j.chemphyslip.2016.03.001 PubMed DOI

Kulig W., Jurkiewicz P., Olżyńska A., Tynkkynen J., Javanainen M., Manna M., et al. (2015a). Experimental Determination and Computational Interpretation of Biophysical Properties of Lipid Bilayers Enriched by Cholesteryl Hemisuccinate. Biochim. Biophys. Acta. 1848 (2), 422–432. 10.1016/j.bbamem.2014.10.032 PubMed DOI

Kulig W., Olżyńska A., Jurkiewicz P., Kantola A. M., Komulainen S., Manna M., et al. (2015b). Cholesterol under Oxidative Stress-How Lipid Membranes Sense Oxidation as Cholesterol Is Being Replaced by Oxysterols. Free Radic. Biol. Med. 84, 30–41. 10.1016/j.freeradbiomed.2015.03.006 PubMed DOI

Laage D., Elsaesser T., Hynes J. T. (2017). Water Dynamics in the Hydration Shells of Biomolecules. Chem. Rev. 117 (16), 10694–10725. 10.1021/acs.chemrev.6b00765 PubMed DOI PMC

Ladbrooke B. D., Williams R. M., Chapman D. (1968). Studies on Lecithin-Cholesterol-Water Interactions by Differential Scanning Calorimetry and X-ray Diffraction. Biochim. Biophys. Acta. 150 (3), 333–340. 10.1016/0005-2736(68)90132-6 PubMed DOI

Lakowicz J. R., Keating-Nakamoto S. (1984). Red-Edge Excitation of Fluorescence and Dynamic Properties of Proteins and Membranes. Biochemistry 23 (13), 3013–3021. 10.1021/bi00308a026 PubMed DOI PMC

Lakowicz J. R., Laczko G., Cherek H., Gratton E., Limkeman M. (1984). Analysis of Fluorescence Decay Kinetics from Variable-Frequency Phase Shift and Modulation Data. Biophys. J. 46 (4), 463–477. 10.1016/s0006-3495(84)84043-6 PubMed DOI PMC

Lemmetyinen H., Tkachenko N. V., Valeur B., Hotta J.-i., Ameloot M., Ernsting N. P., et al. (2014). Time-resolved Fluorescence Methods (IUPAC Technical Report). Pure Appl. Chem. 86 (12), 1969–1998. 10.1515/pac-2013-0912 DOI

Levy Y., Onuchic J. N. (2006). Water Mediation in Protein Folding and Molecular Recognition. Annu. Rev. Biophys. Biomol. Struct. 35 (1), 389–415. 10.1146/annurev.biophys.35.040405.102134 PubMed DOI

Li T., Hassanali A. A., Kao Y.-T., Zhong D., Singer S. J. (2007). Hydration Dynamics and Time Scales of Coupled Water−Protein Fluctuations. J. Am. Chem. Soc. 129 (11), 3376–3382. 10.1021/ja0685957 PubMed DOI

Liu L., Li Y., Sun L., Li H., Peng X., Qu J. (2014). Fluorescence Lifetime Imaging Microscopy Using a Streak Camera. Multiphot. Microsc. Biomed. Sci. XIV 8948, 89482L. 10.1117/12.2039056 DOI

Ma Y., Benda A., Kwiatek J., Owen D. M., Gaus K. (2018). Time-Resolved Laurdan Fluorescence Reveals Insights into Membrane Viscosity and Hydration Levels. Biophys. J. 115 (8), 1498–1508. 10.1016/j.bpj.2018.08.041 PubMed DOI PMC

Macháň R., Jurkiewicz P., Olżyńska A., Olsinova M., Cebecauer M., Marquette A., et al. (2014). Peripheral and Integral Membrane Binding of Peptides Characterized by Time-dependent Fluorescence Shifts: Focus on Antimicrobial Peptide LAH4. Langmuir 30 (21), 6171–6179. PubMed

Magarkar A., Jurkiewicz P., Allolio C., Hof M., Jungwirth P. (2017). Increased Binding of Calcium Ions at Positively Curved Phospholipid Membranes. J. Phys. Chem. Lett. 8, 518–523. 10.1021/acs.jpclett.6b02818 PubMed DOI

Martelli F., Crain J., Franzese G. (2020). Network Topology in Water Nanoconfined between Phospholipid Membranes. ACS Nano 14 (7), 8616–8623. 10.1021/acsnano.0c02984 PubMed DOI

Melcrová A., Pokorna S., Pullanchery S., Kohagen M., Jurkiewicz P., Hof M., et al. (2016). The Complex Nature of Calcium Cation Interactions with Phospholipid Bilayers. Sci. Rep. 6. 38035. 10.1038/srep38035 PubMed DOI PMC

Melcrová A., Pokorna S., Vošahlíková M., Sýkora J., Svoboda P., Hof M., et al. (2019). Concurrent Compression of Phospholipid Membranes by Calcium and Cholesterol. Langmuir 35 (35), 11358–11368. 10.1021/acs.langmuir.9b00477 PubMed DOI

Merzel F., Smith J. C. (2002). Is the First Hydration Shell of Lysozyme of Higher Density Than Bulk Water? Proc. Natl. Acad. Sci. 99 (8), 5378–5383. 10.1073/pnas.082335099 PubMed DOI PMC

Nagle J. F., Tristram-Nagle S. (2000). Structure of Lipid Bilayers. Biochim. Biophys. Acta. 1469 (3), 159–195. 10.1016/s0304-4157(00)00016-2 PubMed DOI PMC

Okur H. I., Tarun O. B., Roke S. (2019). Chemistry of Lipid Membranes from Models to Living Systems: A Perspective of Hydration, Surface Potential, Curvature, Confinement and Heterogeneity. J. Am. Chem. Soc. 141, 12168–12181. 10.1021/jacs.9b02820 PubMed DOI

Olšinová M., Jurkiewicz P., Kishko I., Sýkora J., Sabó J., Hof M., et al. (2018). Roughness of a Transmembrane Peptide Reduces Lipid Membrane Dynamics. Iscience 10, 87–97. PubMed PMC

Olżyńska A., Zań A., Jurkiewicz P., Sýkora J., Gröbner G., Langner M., et al. (2007). Molecular Interpretation of Fluorescence Solvent Relaxation of Patman and 2H NMR Experiments in Phosphatidylcholine Bilayers. Chem. Phys. Lipids 147 (2), 69–77. PubMed

Pal S. K., Peon J., Zewail A. H. (2002). Biological Water at the Protein Surface: Dynamical Solvation Probed Directly with Femtosecond Resolution. Proc. Natl. Acad. Sci. 99 (4), 1763–1768. 10.1073/pnas.042697899 PubMed DOI PMC

Pal S. K., Zewail A. H. (2004). Dynamics of Water in Biological Recognition. Chem. Rev. 104 (4), 2099–2124. 10.1021/cr020689l PubMed DOI

Parasassi T., Conti F., Gratton E. (1986). Time-resolved Fluorescence Emission Spectra of Laurdan in Phospholipid Vesicles by Multifrequency Phase and Modulation Fluorometry. Cell. Mol. Biol. 32 (1), 103–108. PubMed

Parasassi T., De Stasio G., d'Ubaldo A., Gratton E. (1990). Phase Fluctuation in Phospholipid Membranes Revealed by Laurdan Fluorescence. Biophys. J. 57 (6), 1179–1186. 10.1016/s0006-3495(90)82637-0 PubMed DOI PMC

Pokorna S., Jurkiewicz P., Cwiklik L., Vazdar M., Hof M. (2013). Interactions of Monovalent Salts with Cationic Lipid Bilayers. Faraday Discuss. 160, 341–358. 10.1039/c2fd20098h PubMed DOI

Rhys N. H., Duffy I. B., Sowden C. L., Lorenz C. D., McLain S. E. (2019). On the Hydration of DOPE in Solution. J. Chem. Phys. 150 (11), 115104. 10.1063/1.5085736 PubMed DOI

Rønne C., Åstrand P. O., Keiding S. R. (1999). THz Spectroscopy of Liquid H2O and D2O. Phys. Rev. Lett. 82 (14), 2888–2891.

Russo D., Hura G., Head-Gordon T. (2004). Hydration Dynamics Near a Model Protein Surface. Biophys. J. 86 (3), 1852–1862. 10.1016/s0006-3495(04)74252-6 PubMed DOI PMC

Sabatini K., Mattila J.-P., Megli F. M., Kinnunen P. K. J. (2006). Characterization of Two Oxidatively Modified Phospholipids in Mixed Monolayers with DPPC. Biophys. J. 90 (12), 4488–4499. 10.1529/biophysj.105.080176 PubMed DOI PMC

Sezgin E., Schneider F., Zilles V., Urbančič I., Garcia E., Waithe D., et al. (2017). Polarity-Sensitive Probes for Superresolution Stimulated Emission Depletion Microscopy. Biophys. J. 113 (6), 1321–1330. 10.1016/j.bpj.2017.06.050 PubMed DOI PMC

Shen J.-Y., Chao W.-C., Liu C., Pan H.-A., Yang H.-C., Chen C.-L., et al. (2013). Probing Water Micro-Solvation in Proteins by Water Catalysed Proton-Transfer Tautomerism. Nat. Commun. 4 (1), 2611. 10.1038/ncomms3611 PubMed DOI

Sonu S., Kumari S., Saha S. K. (2016). Solvation Dynamics and Rotational Relaxation of Coumarin 153 in Mixed Micelles of Triton X-100 and Cationic Gemini Surfactants: Effect of Composition and Spacer Chain Length of Gemini Surfactants. Phys. Chem. Chem. Phys. 18 (3), 1551–1563. 10.1039/c5cp03835a PubMed DOI

Sparr E., Wennerström H. (2001). Responding Phospholipid Membranes-Interplay between Hydration and Permeability. Biophysical J. 81 (2), 1014–1028. 10.1016/s0006-3495(01)75759-1 PubMed DOI PMC

Štefl M., Šachl R., Olzyńska A., Amaro M., Savchenko D., Deyneka A., et al. (2014). Comprehensive Portrait of Cholesterol Containing Oxidized Membrane. Biochim. Biophys. Acta - Biomembr. 1838 (7), 1769–1776. PubMed

Stepankova V., Khabiri M., Brezovsky J., Pavelka A., Sykora J., Amaro M., et al. (2013). Expansion of Access Tunnels and Active-Site Cavities Influence Activity of Haloalkane Dehalogenases in Organic Cosolvents. ChemBioChem 14 (7), 890–897. 10.1002/cbic.201200733 PubMed DOI

Stirnemann G., Wernersson E., Jungwirth P., Laage D. (2013). Mechanisms of Acceleration and Retardation of Water Dynamics by Ions. J. Am. Chem. Soc. 135 (32), 11824–11831. 10.1021/ja405201s PubMed DOI

Svergun D. I., Richard S., Koch M. H. J., Sayers Z., Kuprin S., Zaccai G. (1998). Protein Hydration in Solution: Experimental Observation by X-ray and Neutron Scattering. Proc. Natl. Acad. Sci. 95 (5), 2267–2272. 10.1073/pnas.95.5.2267 PubMed DOI PMC

Swenson J., Kargl F., Berntsen P., Svanberg C. (2008). Solvent and Lipid Dynamics of Hydrated Lipid Bilayers by Incoherent Quasielastic Neutron Scattering. J. Chem. Phys. 129 (4), 045101. 10.1063/1.2955753 PubMed DOI

Sykora J., Brezovsky J., Koudelakova T., Lahoda M., Fortova A., Chernovets T., et al. (2014). Dynamics and Hydration Explain Failed Functional Transformation in Dehalogenase Design. Nat. Chem. Biol. 10 (6), 428–430. 10.1038/nchembio.1502 PubMed DOI

Sýkora J., Jurkiewicz P., Epand R. M., Kraayenhof R., Langner M., Hof M. (2005). Influence of the Curvature on the Water Structure in the Headgroup Region of Phospholipid Bilayer Studied by the Solvent Relaxation Technique. Chem. Phys. Lipids 135 (2), 213–221. 10.1016/j.chemphyslip.2005.03.003 PubMed DOI

Sýkora J., Kapusta P., Fidler V., Hof M. (2002a). On what Time Scale Does Solvent Relaxation in Phospholipid Bilayers Happen? Langmuir 18 (3), 571–574. 10.1021/la011337x DOI

Sýkora J., Mudogo V., Hutterer R., Nepras M., Vaněrka J., Kapusta P., et al. (2002b). ABA-C15: A New Dye for Probing Solvent Relaxation in Phospholipid Bilayers. Langmuir 18 (24), 9276–9282. 10.1021/la026435c DOI

Tielrooij K. J., Paparo D., Piatkowski L., Bakker H. J., Bonn M. (2009). Dielectric Relaxation Dynamics of Water in Model Membranes Probed by Terahertz Spectroscopy. Biophys. J. 97 (9), 2484–2492. 10.1016/j.bpj.2009.08.024 PubMed DOI PMC

Tristram-Nagle S., Nagle J. F. (2004). Lipid Bilayers: Thermodynamics, Structure, Fluctuations, and Interactions. Chem. Phys. Lipids 127 (1), 3–14. 10.1016/j.chemphyslip.2003.09.002 PubMed DOI PMC

Tristram-Nagle S. (2015). Use of X-Ray and Neutron Scattering Methods with Volume Measurements to Determine Lipid Bilayer Structure and Number of Water Molecules/Lipid. Subcell Biochem. 71, 17–43. 10.1007/978-3-319-19060-0_2 PubMed DOI

Ulrich A. S., Watts A. (1994). Molecular Response of the Lipid Headgroup to Bilayer Hydration Monitored by 2H-NMR. Biophys. J. 66 (5), 1441–1449. 10.1016/s0006-3495(94)80934-8 PubMed DOI PMC

Vácha R., Jurkiewicz P., Petrov M., Berkowitz M. L., Böckmann R. A., Barucha-Kraszewska J., et al. (2010). Mechanism of Interaction of Monovalent Ions with Phosphatidylcholine Lipid Membranes. J. Phys. Chem. B 114 (29), 9504–9509. 10.1021/jp102389k PubMed DOI

Vazdar M., Jurkiewicz P., Hof M., Jungwirth P., Cwiklik L. (2012). Behavior of 4-hydroxynonenal in Phospholipid Membranes. J. Phys. Chem. B 116 (22), 6411–6415. 10.1021/jp3044219 PubMed DOI

Volinsky R., Cwiklik L., Jurkiewicz P., Hof M., Jungwirth P., Kinnunen P. K. J. (2011). Oxidized Phosphatidylcholines Facilitate Phospholipid Flip-Flop in Liposomes. Biophysical J. 101 (6), 1376–1384. 10.1016/j.bpj.2011.07.051 PubMed DOI PMC

Volke F., Eisenblätter S., Galle J., Klose G. (1994). Dynamic Properties of Water at Phosphatidylcholine Lipid-Bilayer Surfaces as Seen by Deuterium and Pulsed Field Gradient Proton NMR. Chem. Phys. Lipids 70 (2), 121–131. 10.1016/0009-3084(94)90080-9 PubMed DOI

Wassall S. R. (1996). Pulsed Field Gradient-Spin echo NMR Studies of Water Diffusion in a Phospholipid Model Membrane. Biophys. J. 71 (5), 2724–2732. 10.1016/s0006-3495(96)79463-8 PubMed DOI PMC

Yada H., Nagai M., Tanaka K. (2008). Origin of the Fast Relaxation Component of Water and Heavy Water Revealed by Terahertz Time-Domain Attenuated Total Reflection Spectroscopy. Chem. Phys. Lett. 464 (4–6), 166–170. 10.1016/j.cplett.2008.09.015 DOI

Yamada T., Seto H. (2020). Quasi-Elastic Neutron Scattering Studies on Hydration Water in Phospholipid Membranes. Front. Chem. 8, 8–5. 10.3389/fchem.2020.00008 PubMed DOI PMC

Yamada T., Takahashi N., Tominaga T., Takata S.-i., Seto H. (2017). Dynamical Behavior of Hydration Water Molecules between Phospholipid Membranes. J. Phys. Chem. B. 121 (35), 8322–8329. 10.1021/acs.jpcb.7b01276 PubMed DOI

Zhong D., Pal S. K., Zewail A. H. (2011). Biological Water: A Critique. Chem. Phys. Lett. Elsevier B.V. 503 (1–3), 1–11. 10.1016/j.cplett.2010.12.077 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...