The Two Faces of the Liquid Ordered Phase
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35104407
PubMed Central
PMC8842317
DOI
10.1021/acs.jpclett.1c03712
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Coexisting liquid ordered (Lo) and liquid disordered (Ld) lipid phases in synthetic and plasma membrane-derived vesicles are commonly used to model the heterogeneity of biological membranes, including their putative ordered rafts. However, raft-associated proteins exclusively partition to the Ld and not the Lo phase in these model systems. We believe that the difference stems from the different microscopic structures of the lipid rafts at physiological temperature and the Lo phase studied at room temperature. To probe this structural diversity across temperatures, we performed atomistic molecular dynamics simulations, differential scanning calorimetry, and fluorescence spectroscopy on Lo phase membranes. Our results suggest that raft-associated proteins are excluded from the Lo phase at room temperature due to the presence of a stiff, hexagonally packed lipid structure. This structure melts upon heating, which could lead to the preferential solvation of proteins by order-preferring lipids. This structural transition is manifested as a subtle crossover in membrane properties; yet, both temperature regimes still fulfill the definition of the Lo phase. We postulate that in the compositionally complex plasma membrane and in vesicles derived therefrom, both molecular structures can be present depending on the local lipid composition. These structural differences must be taken into account when using synthetic or plasma membrane-derived vesicles as a model for cellular membrane heterogeneity below the physiological temperature.
Department of Chemistry FI 00014 University of Helsinki Helsinki Finland
Institute of Biotechnology FI 00014 University of Helsinki Helsinki Finland
Zobrazit více v PubMed
Ipsen J. H.; Karlström G.; Mourtisen O.; Wennerström H.; Zuckermann M. Phase Equilibria in the Phosphatidylcholine–Cholesterol System. BBA–Biomembranes 1987, 905, 162–172. 10.1016/0005-2736(87)90020-4. PubMed DOI
McMullen T. P.; Lewis R. N.; McElhaney R. N. Cholesterol–Phospholipid Interactions, The Liquid-Ordered Phase and Lipid Rafts in Model and Biological Membranes. Curr. Opin. Colloid Interface Sci. 2004, 8, 459–468. 10.1016/j.cocis.2004.01.007. DOI
Rubenstein J. L.; Smith B. A.; McConnell H. M. Lateral Diffusion in Binary Mixtures of Cholesterol and Phosphatidylcholines. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 15–18. 10.1073/pnas.76.1.15. PubMed DOI PMC
Mills T. T.; Huang J.; Feigenson G. W.; Nagle J. F. Effects of Cholesterol and Unsaturated DOPC Lipid on Chain Packing of Saturated Gel-phase DPPC Bilayers. Gen. Physiol. Biophys. 2009, 28, 126.10.4149/gpb_2009_02_126. PubMed DOI PMC
Gallová J.; Uhríková D.; Kučerka N.; Doktorovová S.; Funari S. S.; Teixeira J.; Balgavỳ P. The Effects of Cholesterol and β-sitosterol on the Structure of Saturated Diacylphosphatidylcholine Bilayers. Eur. Biophys. J. 2011, 40, 153–163. 10.1007/s00249-010-0635-6. PubMed DOI
Vega M.; Lurio L.; Lal J.; Karapetrova E. A.; Gaillard E. R. Structure of Supported DPPC/Cholesterol Bilayers Studied via X-ray Reflectivity. Phys. Chem. Chem. Phys. 2020, 22, 19089–19099. 10.1039/D0CP01834A. PubMed DOI
Melchior D. L.; Scavitto F. J.; Steim J. M. Dilatometry of Dipalmitoyllecithin–cholesterol Bilayers. Biochemistry 1980, 19, 4828–4834. 10.1021/bi00562a018. PubMed DOI
Vist M. R.; Davis J. H. Phase Equilibria of Cholesterol/Dipalmitoylphosphatidylcholine Mixtures: Deuterium Nuclear Magnetic Resonance and Differential Scanning Calorimetry. Biochemistry 1990, 29, 451–464. 10.1021/bi00454a021. PubMed DOI
Zhang Y.; Lervik A.; Seddon J.; Bresme F. A Coarse-grained Molecular Dynamics Investigation of the Phase Behavior of DPPC/cholesterol Mixtures. Chem. Phys. Lipids 2015, 185, 88–98. 10.1016/j.chemphyslip.2014.07.011. PubMed DOI
Arnarez C.; Webb A.; Rouvière E.; Lyman E. Hysteresis and the Cholesterol Dependent Phase Transition in Binary Lipid Mixtures with the Martini Model. J. Phys. Chem. B 2016, 120, 13086–13093. 10.1021/acs.jpcb.6b09728. PubMed DOI PMC
Waheed Q.; Tjörnhammar R.; Edholm O. Phase Transitions in Coarse-Grained Lipid Bilayers Containing Cholesterol by Molecular Dynamics Simulations. Biophys. J. 2012, 103, 2125–2133. 10.1016/j.bpj.2012.10.014. PubMed DOI PMC
Wang Y.; Gkeka P.; Fuchs J. E.; Liedl K. R.; Cournia Z. DPPC–cholesterol Phase Diagram Using Coarse-grained Molecular Dynamics Simulations. BBA–Biomembranes 2016, 1858, 2846–2857. 10.1016/j.bbamem.2016.08.005. PubMed DOI
McMullen T. P.; Lewis R. N.; McElhaney R. N. Differential Scanning Calorimetric Study of the Effect of Cholesterol on the Thermotropic Phase Behavior of a Homologous Series of Linear Saturated Phosphatidylcholines. Biochemistry 1993, 32, 516–522. 10.1021/bi00053a016. PubMed DOI
Huang T.; Lee C.; Das Gupta S.; Blume A.; Griffin R. A Carbon-13 and Deuterium Nuclear Magnetic Resonance Study of Phosphatidylcholine/Cholesterol Interactions: Characterization of Liquid–Gel Phases. Biochemistry 1993, 32, 13277–13287. 10.1021/bi00211a041. PubMed DOI
McMullen T. P.; McElhaney R. N. New Aspects of the Interaction of Cholesterol with Dipalmitoylphosphatidylcholine Bilayers as Revealed by High-sensitivity Differential Scanning Calorimetry. BBA–Biomembranes 1995, 1234, 90–98. 10.1016/0005-2736(94)00266-R. PubMed DOI
Clarke J. A.; Heron A. J.; Seddon J. M.; Law R. V. The Diversity of the Liquid Ordered (Lo) Phase of Phosphatidylcholine/cholesterol Membranes: A Variable Temperature Multinuclear Solid-state NMR and X-ray Diffraction Study. Biophys. J. 2006, 90, 2383–2393. 10.1529/biophysj.104.056499. PubMed DOI PMC
Reinl H.; Brumm T.; Bayerl T. M. Changes of the Physical Properties of the Liquid-Ordered Phase with Temperature in Binary Mixtures of DPPC with Cholesterol: a 2H-NMR, FT-IR, DSC, and Neutron Scattering Study. Biophys. J. 1992, 61, 1025–1035. 10.1016/S0006-3495(92)81910-0. PubMed DOI PMC
Marsh D. Cholesterol-induced Fluid Membrane Domains: A Compendium of Lipid-raft Ternary Phase Diagrams. BBA–Biomembranes 2009, 1788, 2114–2123. 10.1016/j.bbamem.2009.08.004. PubMed DOI
Simons K.; Ikonen E. Functional Rafts in Cell Membranes. Nature 1997, 387, 569–572. 10.1038/42408. PubMed DOI
Cebecauer M.; Amaro M.; Jurkiewicz P.; Sarmento M. J.; Sachl R.; Cwiklik L.; Hof M. Membrane Lipid Nanodomains. Chem. Rev. 2018, 118, 11259–11297. 10.1021/acs.chemrev.8b00322. PubMed DOI
Baumgart T.; Hammond A. T.; Sengupta P.; Hess S. T.; Holowka D. A.; Baird B. A.; Webb W. W. Large-Scale Fluid/Fluid Phase Separation of Proteins and Lipids in Giant Plasma Membrane Vesicles. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3165–3170. 10.1073/pnas.0611357104. PubMed DOI PMC
Sodt A. J.; Sandar M. L.; Gawrisch K.; Pastor R. W.; Lyman E. The Molecular Structure of the Liquid-Ordered Phase of Lipid Bilayers. J. Am. Chem. Soc. 2014, 136, 725–732. 10.1021/ja4105667. PubMed DOI PMC
Gu R.-X.; Baoukina S.; Tieleman D. P. Phase Separation in Atomistic Simulations of Model Membranes. J. Am. Chem. Soc. 2020, 142, 2844–2856. 10.1021/jacs.9b11057. PubMed DOI
Javanainen M.; Martinez-Seara H.; Vattulainen I. Nanoscale Membrane Domain Formation Driven by Cholesterol. Sci. Rep. 2017, 7, 1–10. 10.1038/s41598-017-01247-9. PubMed DOI PMC
Wang C.; Krause M. R.; Regen S. L. Push and Pull Forces in Lipid Raft Formation: The Push Can Be as Important as the Pull. J. Am. Chem. Soc. 2015, 137, 664–666. 10.1021/ja5115437. PubMed DOI
Löser L.; Saalwächter K.; Ferreira T. M. Liquid–liquid Phase Coexistence in Lipid Membranes Observed by Natural Abundance 1H–13C Solid-state NMR. Phys. Chem. Chem. Phys. 2018, 20, 9751–9754. 10.1039/C8CP01012A. PubMed DOI
Heftberger P.; Kollmitzer B.; Rieder A. A.; Amenitsch H.; Pabst G. In Situ Determination of Structure and Fluctuations of Coexisting Fluid Membrane Domains. Biophys. J. 2015, 108, 854–862. 10.1016/j.bpj.2014.11.3488. PubMed DOI PMC
Sych T.; Gurdap C. O.; Wedemann L.; Sezgin E. How Does Liquid-Liquid Phase Separation in Model Membranes Reflect Cell Membrane Heterogeneity?. Membranes 2021, 11, 323.10.3390/membranes11050323. PubMed DOI PMC
Schlebach J. P.; Barrett P. J.; Day C. A.; Kim J. H.; Kenworthy A. K.; Sanders C. R. Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles. Biochemistry 2016, 55, 985–988. 10.1021/acs.biochem.5b01154. PubMed DOI PMC
Marinko J. T.; Kenworthy A. K.; Sanders C. R. Peripheral Myelin Protein 22 Preferentially Partitions into Ordered Phase Membrane Domains. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 14168–14177. 10.1073/pnas.2000508117. PubMed DOI PMC
Sengupta P.; Hammond A.; Holowka D.; Baird B. Structural Determinants for Partitioning of Lipids and Proteins Between Coexisting Fluid Phases in Giant Plasma Membrane Vesicles. BBA–Biomembranes 2008, 1778, 20–32. 10.1016/j.bbamem.2007.08.028. PubMed DOI PMC
Kaiser H.-J.; Lingwood D.; Levental I.; Sampaio J. L.; Kalvodova L.; Rajendran L.; Simons K. Order of Lipid Phases in Model and Plasma Membranes. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 16645–16650. 10.1073/pnas.0908987106. PubMed DOI PMC
Lorent J. H.; Diaz-Rohrer B.; Lin X.; Spring K.; Gorfe A. A.; Levental K. R.; Levental I. Structural Determinants and Functional Consequences of Protein Affinity for Membrane Rafts. Nat. Commun. 2017, 8, 1–10. 10.1038/s41467-017-01328-3. PubMed DOI PMC
Sezgin E.; Levental I.; Grzybek M.; Schwarzmann G.; Mueller V.; Honigmann A.; Belov V. N.; Eggeling C.; Coskun U.; Simons K.; Schwille P. Partitioning, Diffusion, and Ligand Binding of Raft Lipid Analogs in Model and Cellular Plasma Membranes. BBA–Biomembranes 2012, 1818, 1777–1784. 10.1016/j.bbamem.2012.03.007. PubMed DOI
Sezgin E.; Gutmann T.; Buhl T.; Dirkx R.; Grzybek M.; Coskun Ü.; Solimena M.; Simons K.; Levental I.; Schwille P. Adaptive Lipid Packing and Bioactivity in Membrane Domains. PloS one 2015, 10, e012393010.1371/journal.pone.0123930. PubMed DOI PMC
Lingwood D.; Ries J.; Schwille P.; Simons K. Plasma Membranes are Poised for Activation of Raft Phase Coalescence at Physiological Temperature. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 10005–10010. 10.1073/pnas.0804374105. PubMed DOI PMC
Levental I.; Grzybek M.; Simons K. Raft Domains of Variable Properties and Compositions in Plasma Membrane Vesicles. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 11411–11416. 10.1073/pnas.1105996108. PubMed DOI PMC
McIntosh T. J.; Vidal A.; Simon S. A. Sorting of Lipids and Transmembrane Peptides Between Detergent-Soluble Bilayers and Detergent-Resistant Rafts. Biophys. J. 2003, 85, 1656–1666. 10.1016/S0006-3495(03)74595-0. PubMed DOI PMC
Veatch S. L.; Soubias O.; Keller S. L.; Gawrisch K. Critical Fluctuations in Domain-Forming Lipid Mixtures. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 17650–17655. 10.1073/pnas.0703513104. PubMed DOI PMC
Davis J. H.; Clair J. J.; Juhasz J. Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures. Biophys. J. 2009, 96, 521–539. 10.1016/j.bpj.2008.09.042. PubMed DOI PMC
Krivanek R.; Okoro L.; Winter R. Effect of Cholesterol and Ergosterol on the Compressibility and Volume Fluctuations of Phospholipid-Sterol Bilayers in the Critical Point Region: A Molecular Acoustic and Calorimetric Study. Biophys. J. 2008, 94, 3538–3548. 10.1529/biophysj.107.122549. PubMed DOI PMC
Marsh D. Molecular Motion in Phospholipid Bilayers in the Gel Phase: Long Axis Rotation. Biochemistry 1980, 19, 1632–1637. 10.1021/bi00549a017. PubMed DOI
Marsh D.; Watts A. Molecular Motion in Phospholipid Bilayers in the Gel Phase: Spin Label Saturation Transfer ESR Studies. Biochem. Biophys. Res. Commun. 1980, 94, 130–137. 10.1016/S0006-291X(80)80197-5. PubMed DOI
Lakowicz J. R.; Bevan D. R.; Maliwal B. P.; Cherek H.; Balter A. Synthesis and Characterization of a Fluorescence Probe of the Transition and Dynamic Properties of Membranes. Biochemistry 1983, 22, 5714–5722. 10.1021/bi00294a006. PubMed DOI PMC
Jurkiewicz P.; Cwiklik L.; Jungwirth P.; Hof M. Lipid Hydration and Mobility: An Interplay Between Fluorescence Solvent Relaxation Experiments and Molecular Dynamics Simulations. Biochimie 2012, 94, 26–32. 10.1016/j.biochi.2011.06.027. PubMed DOI
Scollo F.; Evci H.; Amaro M.; Jurkiewicz P.; Sykora J.; Hof M. What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report On?. Front. Chem. 2021, 10.3389/fchem.2021.738350. PubMed DOI PMC
Kaiser R. D.; London E. Location of Diphenylhexatriene (DPH) and Its Derivatives Within Membranes: Comparison of Different Fluorescence Quenching Analyses of Membrane Depth. Biochemistry 1998, 37, 8180–8190. 10.1021/bi980064a. PubMed DOI
Kulig W.; Jurkiewicz P.; Olżyńska A.; Tynkkynen J.; Javanainen M.; Manna M.; Rog T.; Hof M.; Vattulainen I.; Jungwirth P. Experimental Determination and Computational Interpretation of Biophysical Properties of Lipid Bilayers Enriched by Cholesteryl Hemisuccinate. BBA–Biomembranes 2015, 1848, 422–432. 10.1016/j.bbamem.2014.10.032. PubMed DOI
Kulig W.; Olżyńska A.; Jurkiewicz P.; Kantola A. M.; Komulainen S.; Manna M.; Pourmousa M.; Vazdar M.; Cwiklik L.; Rog T.; et al. Cholesterol Under Oxidative Stress—How Lipid Membranes Sense Oxidation as Cholesterol is being Replaced by Oxysterols. Free Radic. Biol. Med. 2015, 84, 30–41. 10.1016/j.freeradbiomed.2015.03.006. PubMed DOI
Poojari C.; Wilkosz N.; Lira R. B.; Dimova R.; Jurkiewicz P.; Petka R.; Kepczynski M.; Róg T. Behavior of the DPH Fluorescence Probe in Membranes Perturbed by Drugs. Chem. Phys. Lipids 2019, 223, 104784.10.1016/j.chemphyslip.2019.104784. PubMed DOI
Sodt A. J.; Pastor R. W.; Lyman E. Hexagonal Substructure and Hydrogen Bonding in Liquid-Ordered Phases Containing Palmitoyl Sphingomyelin. Biophys. J. 2015, 109, 948–955. 10.1016/j.bpj.2015.07.036. PubMed DOI PMC
Lorent J.; Levental K.; Ganesan L.; Rivera-Longsworth G.; Sezgin E.; Doktorova M.; Lyman E.; Levental I. Plasma Membranes are Asymmetric in Lipid Unsaturation, Packing and Protein Shape. Nat. Chem. Biol. 2020, 16, 644–652. 10.1038/s41589-020-0529-6. PubMed DOI PMC
"Head-to-Toe" Lipid Properties Govern the Binding and Cargo Transfer of High-Density Lipoprotein
Protein Crowding and Cholesterol Increase Cell Membrane Viscosity in a Temperature Dependent Manner