The Two Faces of the Liquid Ordered Phase

. 2022 Feb 10 ; 13 (5) : 1307-1313. [epub] 20220201

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35104407

Coexisting liquid ordered (Lo) and liquid disordered (Ld) lipid phases in synthetic and plasma membrane-derived vesicles are commonly used to model the heterogeneity of biological membranes, including their putative ordered rafts. However, raft-associated proteins exclusively partition to the Ld and not the Lo phase in these model systems. We believe that the difference stems from the different microscopic structures of the lipid rafts at physiological temperature and the Lo phase studied at room temperature. To probe this structural diversity across temperatures, we performed atomistic molecular dynamics simulations, differential scanning calorimetry, and fluorescence spectroscopy on Lo phase membranes. Our results suggest that raft-associated proteins are excluded from the Lo phase at room temperature due to the presence of a stiff, hexagonally packed lipid structure. This structure melts upon heating, which could lead to the preferential solvation of proteins by order-preferring lipids. This structural transition is manifested as a subtle crossover in membrane properties; yet, both temperature regimes still fulfill the definition of the Lo phase. We postulate that in the compositionally complex plasma membrane and in vesicles derived therefrom, both molecular structures can be present depending on the local lipid composition. These structural differences must be taken into account when using synthetic or plasma membrane-derived vesicles as a model for cellular membrane heterogeneity below the physiological temperature.

Zobrazit více v PubMed

Ipsen J. H.; Karlström G.; Mourtisen O.; Wennerström H.; Zuckermann M. Phase Equilibria in the Phosphatidylcholine–Cholesterol System. BBA–Biomembranes 1987, 905, 162–172. 10.1016/0005-2736(87)90020-4. PubMed DOI

McMullen T. P.; Lewis R. N.; McElhaney R. N. Cholesterol–Phospholipid Interactions, The Liquid-Ordered Phase and Lipid Rafts in Model and Biological Membranes. Curr. Opin. Colloid Interface Sci. 2004, 8, 459–468. 10.1016/j.cocis.2004.01.007. DOI

Rubenstein J. L.; Smith B. A.; McConnell H. M. Lateral Diffusion in Binary Mixtures of Cholesterol and Phosphatidylcholines. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 15–18. 10.1073/pnas.76.1.15. PubMed DOI PMC

Mills T. T.; Huang J.; Feigenson G. W.; Nagle J. F. Effects of Cholesterol and Unsaturated DOPC Lipid on Chain Packing of Saturated Gel-phase DPPC Bilayers. Gen. Physiol. Biophys. 2009, 28, 126.10.4149/gpb_2009_02_126. PubMed DOI PMC

Gallová J.; Uhríková D.; Kučerka N.; Doktorovová S.; Funari S. S.; Teixeira J.; Balgavỳ P. The Effects of Cholesterol and β-sitosterol on the Structure of Saturated Diacylphosphatidylcholine Bilayers. Eur. Biophys. J. 2011, 40, 153–163. 10.1007/s00249-010-0635-6. PubMed DOI

Vega M.; Lurio L.; Lal J.; Karapetrova E. A.; Gaillard E. R. Structure of Supported DPPC/Cholesterol Bilayers Studied via X-ray Reflectivity. Phys. Chem. Chem. Phys. 2020, 22, 19089–19099. 10.1039/D0CP01834A. PubMed DOI

Melchior D. L.; Scavitto F. J.; Steim J. M. Dilatometry of Dipalmitoyllecithin–cholesterol Bilayers. Biochemistry 1980, 19, 4828–4834. 10.1021/bi00562a018. PubMed DOI

Vist M. R.; Davis J. H. Phase Equilibria of Cholesterol/Dipalmitoylphosphatidylcholine Mixtures: Deuterium Nuclear Magnetic Resonance and Differential Scanning Calorimetry. Biochemistry 1990, 29, 451–464. 10.1021/bi00454a021. PubMed DOI

Zhang Y.; Lervik A.; Seddon J.; Bresme F. A Coarse-grained Molecular Dynamics Investigation of the Phase Behavior of DPPC/cholesterol Mixtures. Chem. Phys. Lipids 2015, 185, 88–98. 10.1016/j.chemphyslip.2014.07.011. PubMed DOI

Arnarez C.; Webb A.; Rouvière E.; Lyman E. Hysteresis and the Cholesterol Dependent Phase Transition in Binary Lipid Mixtures with the Martini Model. J. Phys. Chem. B 2016, 120, 13086–13093. 10.1021/acs.jpcb.6b09728. PubMed DOI PMC

Waheed Q.; Tjörnhammar R.; Edholm O. Phase Transitions in Coarse-Grained Lipid Bilayers Containing Cholesterol by Molecular Dynamics Simulations. Biophys. J. 2012, 103, 2125–2133. 10.1016/j.bpj.2012.10.014. PubMed DOI PMC

Wang Y.; Gkeka P.; Fuchs J. E.; Liedl K. R.; Cournia Z. DPPC–cholesterol Phase Diagram Using Coarse-grained Molecular Dynamics Simulations. BBA–Biomembranes 2016, 1858, 2846–2857. 10.1016/j.bbamem.2016.08.005. PubMed DOI

McMullen T. P.; Lewis R. N.; McElhaney R. N. Differential Scanning Calorimetric Study of the Effect of Cholesterol on the Thermotropic Phase Behavior of a Homologous Series of Linear Saturated Phosphatidylcholines. Biochemistry 1993, 32, 516–522. 10.1021/bi00053a016. PubMed DOI

Huang T.; Lee C.; Das Gupta S.; Blume A.; Griffin R. A Carbon-13 and Deuterium Nuclear Magnetic Resonance Study of Phosphatidylcholine/Cholesterol Interactions: Characterization of Liquid–Gel Phases. Biochemistry 1993, 32, 13277–13287. 10.1021/bi00211a041. PubMed DOI

McMullen T. P.; McElhaney R. N. New Aspects of the Interaction of Cholesterol with Dipalmitoylphosphatidylcholine Bilayers as Revealed by High-sensitivity Differential Scanning Calorimetry. BBA–Biomembranes 1995, 1234, 90–98. 10.1016/0005-2736(94)00266-R. PubMed DOI

Clarke J. A.; Heron A. J.; Seddon J. M.; Law R. V. The Diversity of the Liquid Ordered (Lo) Phase of Phosphatidylcholine/cholesterol Membranes: A Variable Temperature Multinuclear Solid-state NMR and X-ray Diffraction Study. Biophys. J. 2006, 90, 2383–2393. 10.1529/biophysj.104.056499. PubMed DOI PMC

Reinl H.; Brumm T.; Bayerl T. M. Changes of the Physical Properties of the Liquid-Ordered Phase with Temperature in Binary Mixtures of DPPC with Cholesterol: a 2H-NMR, FT-IR, DSC, and Neutron Scattering Study. Biophys. J. 1992, 61, 1025–1035. 10.1016/S0006-3495(92)81910-0. PubMed DOI PMC

Marsh D. Cholesterol-induced Fluid Membrane Domains: A Compendium of Lipid-raft Ternary Phase Diagrams. BBA–Biomembranes 2009, 1788, 2114–2123. 10.1016/j.bbamem.2009.08.004. PubMed DOI

Simons K.; Ikonen E. Functional Rafts in Cell Membranes. Nature 1997, 387, 569–572. 10.1038/42408. PubMed DOI

Cebecauer M.; Amaro M.; Jurkiewicz P.; Sarmento M. J.; Sachl R.; Cwiklik L.; Hof M. Membrane Lipid Nanodomains. Chem. Rev. 2018, 118, 11259–11297. 10.1021/acs.chemrev.8b00322. PubMed DOI

Baumgart T.; Hammond A. T.; Sengupta P.; Hess S. T.; Holowka D. A.; Baird B. A.; Webb W. W. Large-Scale Fluid/Fluid Phase Separation of Proteins and Lipids in Giant Plasma Membrane Vesicles. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3165–3170. 10.1073/pnas.0611357104. PubMed DOI PMC

Sodt A. J.; Sandar M. L.; Gawrisch K.; Pastor R. W.; Lyman E. The Molecular Structure of the Liquid-Ordered Phase of Lipid Bilayers. J. Am. Chem. Soc. 2014, 136, 725–732. 10.1021/ja4105667. PubMed DOI PMC

Gu R.-X.; Baoukina S.; Tieleman D. P. Phase Separation in Atomistic Simulations of Model Membranes. J. Am. Chem. Soc. 2020, 142, 2844–2856. 10.1021/jacs.9b11057. PubMed DOI

Javanainen M.; Martinez-Seara H.; Vattulainen I. Nanoscale Membrane Domain Formation Driven by Cholesterol. Sci. Rep. 2017, 7, 1–10. 10.1038/s41598-017-01247-9. PubMed DOI PMC

Wang C.; Krause M. R.; Regen S. L. Push and Pull Forces in Lipid Raft Formation: The Push Can Be as Important as the Pull. J. Am. Chem. Soc. 2015, 137, 664–666. 10.1021/ja5115437. PubMed DOI

Löser L.; Saalwächter K.; Ferreira T. M. Liquid–liquid Phase Coexistence in Lipid Membranes Observed by Natural Abundance 1H–13C Solid-state NMR. Phys. Chem. Chem. Phys. 2018, 20, 9751–9754. 10.1039/C8CP01012A. PubMed DOI

Heftberger P.; Kollmitzer B.; Rieder A. A.; Amenitsch H.; Pabst G. In Situ Determination of Structure and Fluctuations of Coexisting Fluid Membrane Domains. Biophys. J. 2015, 108, 854–862. 10.1016/j.bpj.2014.11.3488. PubMed DOI PMC

Sych T.; Gurdap C. O.; Wedemann L.; Sezgin E. How Does Liquid-Liquid Phase Separation in Model Membranes Reflect Cell Membrane Heterogeneity?. Membranes 2021, 11, 323.10.3390/membranes11050323. PubMed DOI PMC

Schlebach J. P.; Barrett P. J.; Day C. A.; Kim J. H.; Kenworthy A. K.; Sanders C. R. Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles. Biochemistry 2016, 55, 985–988. 10.1021/acs.biochem.5b01154. PubMed DOI PMC

Marinko J. T.; Kenworthy A. K.; Sanders C. R. Peripheral Myelin Protein 22 Preferentially Partitions into Ordered Phase Membrane Domains. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 14168–14177. 10.1073/pnas.2000508117. PubMed DOI PMC

Sengupta P.; Hammond A.; Holowka D.; Baird B. Structural Determinants for Partitioning of Lipids and Proteins Between Coexisting Fluid Phases in Giant Plasma Membrane Vesicles. BBA–Biomembranes 2008, 1778, 20–32. 10.1016/j.bbamem.2007.08.028. PubMed DOI PMC

Kaiser H.-J.; Lingwood D.; Levental I.; Sampaio J. L.; Kalvodova L.; Rajendran L.; Simons K. Order of Lipid Phases in Model and Plasma Membranes. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 16645–16650. 10.1073/pnas.0908987106. PubMed DOI PMC

Lorent J. H.; Diaz-Rohrer B.; Lin X.; Spring K.; Gorfe A. A.; Levental K. R.; Levental I. Structural Determinants and Functional Consequences of Protein Affinity for Membrane Rafts. Nat. Commun. 2017, 8, 1–10. 10.1038/s41467-017-01328-3. PubMed DOI PMC

Sezgin E.; Levental I.; Grzybek M.; Schwarzmann G.; Mueller V.; Honigmann A.; Belov V. N.; Eggeling C.; Coskun U.; Simons K.; Schwille P. Partitioning, Diffusion, and Ligand Binding of Raft Lipid Analogs in Model and Cellular Plasma Membranes. BBA–Biomembranes 2012, 1818, 1777–1784. 10.1016/j.bbamem.2012.03.007. PubMed DOI

Sezgin E.; Gutmann T.; Buhl T.; Dirkx R.; Grzybek M.; Coskun Ü.; Solimena M.; Simons K.; Levental I.; Schwille P. Adaptive Lipid Packing and Bioactivity in Membrane Domains. PloS one 2015, 10, e012393010.1371/journal.pone.0123930. PubMed DOI PMC

Lingwood D.; Ries J.; Schwille P.; Simons K. Plasma Membranes are Poised for Activation of Raft Phase Coalescence at Physiological Temperature. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 10005–10010. 10.1073/pnas.0804374105. PubMed DOI PMC

Levental I.; Grzybek M.; Simons K. Raft Domains of Variable Properties and Compositions in Plasma Membrane Vesicles. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 11411–11416. 10.1073/pnas.1105996108. PubMed DOI PMC

McIntosh T. J.; Vidal A.; Simon S. A. Sorting of Lipids and Transmembrane Peptides Between Detergent-Soluble Bilayers and Detergent-Resistant Rafts. Biophys. J. 2003, 85, 1656–1666. 10.1016/S0006-3495(03)74595-0. PubMed DOI PMC

Veatch S. L.; Soubias O.; Keller S. L.; Gawrisch K. Critical Fluctuations in Domain-Forming Lipid Mixtures. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 17650–17655. 10.1073/pnas.0703513104. PubMed DOI PMC

Davis J. H.; Clair J. J.; Juhasz J. Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures. Biophys. J. 2009, 96, 521–539. 10.1016/j.bpj.2008.09.042. PubMed DOI PMC

Krivanek R.; Okoro L.; Winter R. Effect of Cholesterol and Ergosterol on the Compressibility and Volume Fluctuations of Phospholipid-Sterol Bilayers in the Critical Point Region: A Molecular Acoustic and Calorimetric Study. Biophys. J. 2008, 94, 3538–3548. 10.1529/biophysj.107.122549. PubMed DOI PMC

Marsh D. Molecular Motion in Phospholipid Bilayers in the Gel Phase: Long Axis Rotation. Biochemistry 1980, 19, 1632–1637. 10.1021/bi00549a017. PubMed DOI

Marsh D.; Watts A. Molecular Motion in Phospholipid Bilayers in the Gel Phase: Spin Label Saturation Transfer ESR Studies. Biochem. Biophys. Res. Commun. 1980, 94, 130–137. 10.1016/S0006-291X(80)80197-5. PubMed DOI

Lakowicz J. R.; Bevan D. R.; Maliwal B. P.; Cherek H.; Balter A. Synthesis and Characterization of a Fluorescence Probe of the Transition and Dynamic Properties of Membranes. Biochemistry 1983, 22, 5714–5722. 10.1021/bi00294a006. PubMed DOI PMC

Jurkiewicz P.; Cwiklik L.; Jungwirth P.; Hof M. Lipid Hydration and Mobility: An Interplay Between Fluorescence Solvent Relaxation Experiments and Molecular Dynamics Simulations. Biochimie 2012, 94, 26–32. 10.1016/j.biochi.2011.06.027. PubMed DOI

Scollo F.; Evci H.; Amaro M.; Jurkiewicz P.; Sykora J.; Hof M. What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report On?. Front. Chem. 2021, 10.3389/fchem.2021.738350. PubMed DOI PMC

Kaiser R. D.; London E. Location of Diphenylhexatriene (DPH) and Its Derivatives Within Membranes: Comparison of Different Fluorescence Quenching Analyses of Membrane Depth. Biochemistry 1998, 37, 8180–8190. 10.1021/bi980064a. PubMed DOI

Kulig W.; Jurkiewicz P.; Olżyńska A.; Tynkkynen J.; Javanainen M.; Manna M.; Rog T.; Hof M.; Vattulainen I.; Jungwirth P. Experimental Determination and Computational Interpretation of Biophysical Properties of Lipid Bilayers Enriched by Cholesteryl Hemisuccinate. BBA–Biomembranes 2015, 1848, 422–432. 10.1016/j.bbamem.2014.10.032. PubMed DOI

Kulig W.; Olżyńska A.; Jurkiewicz P.; Kantola A. M.; Komulainen S.; Manna M.; Pourmousa M.; Vazdar M.; Cwiklik L.; Rog T.; et al. Cholesterol Under Oxidative Stress—How Lipid Membranes Sense Oxidation as Cholesterol is being Replaced by Oxysterols. Free Radic. Biol. Med. 2015, 84, 30–41. 10.1016/j.freeradbiomed.2015.03.006. PubMed DOI

Poojari C.; Wilkosz N.; Lira R. B.; Dimova R.; Jurkiewicz P.; Petka R.; Kepczynski M.; Róg T. Behavior of the DPH Fluorescence Probe in Membranes Perturbed by Drugs. Chem. Phys. Lipids 2019, 223, 104784.10.1016/j.chemphyslip.2019.104784. PubMed DOI

Sodt A. J.; Pastor R. W.; Lyman E. Hexagonal Substructure and Hydrogen Bonding in Liquid-Ordered Phases Containing Palmitoyl Sphingomyelin. Biophys. J. 2015, 109, 948–955. 10.1016/j.bpj.2015.07.036. PubMed DOI PMC

Lorent J.; Levental K.; Ganesan L.; Rivera-Longsworth G.; Sezgin E.; Doktorova M.; Lyman E.; Levental I. Plasma Membranes are Asymmetric in Lipid Unsaturation, Packing and Protein Shape. Nat. Chem. Biol. 2020, 16, 644–652. 10.1038/s41589-020-0529-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace