Nanoscale Membrane Domain Formation Driven by Cholesterol
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28442766
PubMed Central
PMC5430823
DOI
10.1038/s41598-017-01247-9
PII: 10.1038/s41598-017-01247-9
Knihovny.cz E-zdroje
- MeSH
- 1,2-dipalmitoylfosfatidylcholin metabolismus MeSH
- biologické modely MeSH
- cholesterol metabolismus MeSH
- membránové mikrodomény metabolismus MeSH
- molekulární modely MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2-dipalmitoylfosfatidylcholin MeSH
- cholesterol MeSH
Biological membranes generate specific functions through compartmentalized regions such as cholesterol-enriched membrane nanodomains that host selected proteins. Despite the biological significance of nanodomains, details on their structure remain elusive. They cannot be observed via microscopic experimental techniques due to their small size, yet there is also a lack of atomistic simulation models able to describe spontaneous nanodomain formation in sufficiently simple but biologically relevant complex membranes. Here we use atomistic simulations to consider a binary mixture of saturated dipalmitoylphosphatidylcholine and cholesterol - the "minimal standard" for nanodomain formation. The simulations reveal how cholesterol drives the formation of fluid cholesterol-rich nanodomains hosting hexagonally packed cholesterol-poor lipid nanoclusters, both of which show registration between the membrane leaflets. The complex nanodomain substructure forms when cholesterol positions itself in the domain boundary region. Here cholesterol can also readily flip-flop across the membrane. Most importantly, replacing cholesterol with a sterol characterized by a less asymmetric ring region impairs the emergence of nanodomains. The model considered explains a plethora of controversial experimental results and provides an excellent basis for further computational studies on nanodomains. Furthermore, the results highlight the role of cholesterol as a key player in the modulation of nanodomains for membrane protein function.
Department of Physics University of Helsinki Helsinki Finland
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Laboratory of Physics Tampere University of Technology Tampere Finland
MEMPHYS Centre for Biomembrane Physics University of Southern Denmark Odense Denmark
Zobrazit více v PubMed
Simons K, Ikonen E. Functional Rafts in Cell Membranes. Nature. 1997;387:569–572. doi: 10.1038/42408. PubMed DOI
Simons K, Gerl MJ. Revitalizing Membrane Rafts: New Tools and Insights. Nat. Rev. Mol. Cell Bio. 2010;11:688–699. doi: 10.1038/nrm2977. PubMed DOI
Simons K, Toomre D. Lipid Rafts and Signal Transduction. Nat. Rev. Mol. Cell Bio. 2000;1:31–39. doi: 10.1038/35036052. PubMed DOI
Lingwood D, Simons K. Lipid Rafts as a Membrane-Organizing Principle. Science. 2010;327:46–50. doi: 10.1126/science.1174621. PubMed DOI
Sevcsik E, Schütz GJ. With or Without Rafts? Alternative Views on Cell Membranes. BioEssays. 2015;38:129–139. doi: 10.1002/bies.201500150. PubMed DOI PMC
Honerkamp-Smith AR, Veatch SL, Keller SL. An Introduction to Critical Points for Biophysicists; Observations of Compositional Heterogeneity in Lipid Membranes. BBA-Biomembranes. 2009;1788:53–63. doi: 10.1016/j.bbamem.2008.09.010. PubMed DOI PMC
Eggeling C, et al. Direct Observation of the Nanoscale Dynamics of Membrane Lipids in a Living Cell. Nature. 2009;457:1159–1162. doi: 10.1038/nature07596. PubMed DOI
Marsh D. Liquid-Ordered Phases Induced by Cholesterol: A Compendium of Binary Phase Diagrams. BBA-Biomembranes. 2010;1798:688–699. doi: 10.1016/j.bbamem.2009.12.027. PubMed DOI
Schmid F. Physical mechanisms of micro-and nanodomain formation in multicomponent lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2017;1859:509–528. doi: 10.1016/j.bbamem.2016.10.021. PubMed DOI
Ohvo-Rekilä H, Ramstedt B, Leppimäki P, Peter Slotte J. Cholesterol Interactions With Phospholipids in Membranes. Prog. Lipid Res. 2002;41:66–97. doi: 10.1016/S0163-7827(01)00020-0. PubMed DOI
Pan J, Mills TT, Tristram-Nagle S, Nagle JF. Cholesterol Perturbs Lipid Bilayers Nonuniversally. Phys. Rev. Lett. 2008;100:198103. doi: 10.1103/PhysRevLett.100.198103. PubMed DOI PMC
Ipsen HJ, Karlström G, Mourtisen O, Wennerström H, Zuckermann M. Phase Equilibria in the Phosphatidylcholine-Cholesterol System. BBA-Biomembranes. 1987;905:162–172. doi: 10.1016/0005-2736(87)90020-4. PubMed DOI
Vist MR, Davis JH. Phase Equilibria of Cholesterol/Dipalmitoylphosphatidylcholine Mixtures: Deuterium Nuclear Magnetic Resonance and Differential Scanning Calorimetry. Biochemistry. 1990;29:451–464. doi: 10.1021/bi00454a021. PubMed DOI
Veatch SL, Keller SL. Seeing Spots: Complex Phase Behavior in Simple Membranes. BBA-Mol. Cell. Res. 2005;1746:172–185. PubMed
Almeida PF, Pokorny A, Hinderliter A. Thermodynamics of Membrane Domains. BBA-Biomembranes. 2005;1720:1–13. doi: 10.1016/j.bbamem.2005.12.004. PubMed DOI
Karmakar S, Sarangi B, Raghunathan V. Phase Behaviour of Lipid-Cholesterol Membranes. Solid State Commun. 2006;139:630–634. doi: 10.1016/j.ssc.2006.05.045. DOI
McConnell HM, Radhakrishnan A. Condensed Complexes of Cholesterol and Phospholipids. BBA-Biomembranes. 2003;1610:159–173. doi: 10.1016/S0005-2736(03)00015-4. PubMed DOI
Chong P. Evidence for Regular Distribution of Sterols in Liquid Crystalline Phosphatidylcholine Bilayers. Proc. Natl. Acad. Sci. USA. 1994;91:10069–10073. doi: 10.1073/pnas.91.21.10069. PubMed DOI PMC
Huang J, Feigenson GW. A Microscopic Interaction Model of Maximum Solubility of Cholesterol in Lipid Bilayers. Biophys. J. 1999;76:2142–2157. doi: 10.1016/S0006-3495(99)77369-8. PubMed DOI PMC
Karmakar S, Raghunathan V. Cholesterol-Induced Modulated Phase in Phospholipid Membranes. Phys. Rev. Lett. 2003;91:098102. doi: 10.1103/PhysRevLett.91.098102. PubMed DOI
Shlomovitz R, Maibaum L, Schick M. Macroscopic Phase Separation, Modulated Phases, and Microemulsions: A Unified Picture of Rafts. Biophys. J. 2014;106:1979–1985. doi: 10.1016/j.bpj.2014.03.017. PubMed DOI PMC
Veatch SL, Soubias O, Keller SL, Gawrisch K. Critical Fluctuations in Domain-Forming Lipid Mixtures. Proc. Natl. Acad. Sci. USA. 2007;104:17650–17655. doi: 10.1073/pnas.0703513104. PubMed DOI PMC
Sugar IP, Chong PL-G. A Statistical Mechanical Model of Cholesterol/Phospholipid Mixtures: Linking Condensed Complexes, Superlattices, and the Phase Diagram. J. Am. Chem. Soc. 2011;134:1164–1171. doi: 10.1021/ja2092322. PubMed DOI PMC
Ali MR, Cheng KH, Huang J. Assess the Nature of Cholesterol-Lipid Interactions Through the Chemical Potential of Cholesterol in Phosphatidylcholine Bilayers. Proc. Natl. Acad. Sci. USA. 2007;104:5372–5377. doi: 10.1073/pnas.0611450104. PubMed DOI PMC
Davis JH, Clair JJ, Juhasz J. Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures. Biophys. J. 2009;96:521–539. doi: 10.1016/j.bpj.2008.09.042. PubMed DOI PMC
Sankaram MB, Thompson TE. Cholesterol-Induced Fluid-Phase Immiscibility in Membranes. Proc. Natl. Acad. Sci. USA. 1991;88:8686–8690. doi: 10.1073/pnas.88.19.8686. PubMed DOI PMC
Miyoshi T, Lönnfors M, Slotte JP, Kato S. A Detailed Analysis of Partial Molecular Volumes in DPPC/Cholesterol Binary Bilayers. BBA-Biomembranes. 2014;1838:3069–3077. doi: 10.1016/j.bbamem.2014.07.004. PubMed DOI
de Lange MJ, Bonn M, Müller M. Direct Measurement of Phase Coexistence in DPPC/Cholesterol Vesicles Using Raman Spectroscopy. Chem. Phys. Lipids. 2007;146:76–84. doi: 10.1016/j.chemphyslip.2006.12.007. PubMed DOI
Losada-Pérez P, Khorshid M, Yongabi D, Wagner PH. Effect of Cholesterol on the Phase Behavior of Solid-Supported Lipid Vesicle Layers. J. Phys. Chem. B. 2015;119:4985–4992. doi: 10.1021/acs.jpcb.5b00712. PubMed DOI
Rheinstädter MC, Mouritsen OG. Small-Scale Structure in Fluid Cholesterol-Lipid Bilayers. Curr. Opin. Colloid In. 2013;18:440–447. doi: 10.1016/j.cocis.2013.07.001. DOI
Heberle FA, et al. Bilayer Thickness Mismatch Controls Domain Size in Model Membranes. J. Am. Chem. Soc. 2013;135:6853–6859. doi: 10.1021/ja3113615. PubMed DOI
Loura L, Fedorov A, Prieto M. Fluid-Fluid Membrane Microheterogeneity: A Fluorescence Resonance Energy Transfer Study. Biophys. J. 2001;80:776–788. doi: 10.1016/S0006-3495(01)76057-2. PubMed DOI PMC
Krivanek R, Okoro L, Winter R. Effect of Cholesterol and Ergosterol on the Compressibility and Volume Fluctuations of Phospholipid-Sterol Bilayers in the Critical Point Region: A Molecular Acoustic and Calorimetric Study. Biophys. J. 2008;94:3538–3548. doi: 10.1529/biophysj.107.122549. PubMed DOI PMC
Armstrong CL, et al. The Observation of Highly Ordered Domains in Membranes With Cholesterol. PloS One. 2013;8:e66162. doi: 10.1371/journal.pone.0066162. PubMed DOI PMC
Toppozini L, et al. Structure of Cholesterol in Lipid Rafts. Phys. Rev. Lett. 2014;113:228101. doi: 10.1103/PhysRevLett.113.228101. PubMed DOI
Ivankin A, Kuzmenko I, Gidalevitz D. Cholesterol-Phospholipid Interactions: New Insights From Surface X-Ray Scattering Data. Phys. Rev. Lett. 2010;104:108101. doi: 10.1103/PhysRevLett.104.108101. PubMed DOI PMC
Ege C, Ratajczak MK, Majewski J, Kjaer K, Lee KYC. Evidence for Lipid/Cholesterol Ordering in Model Lipid Membranes. Biophys. J. 2006;91:L01–L03. doi: 10.1529/biophysj.106.085134. PubMed DOI PMC
Berkowitz ML. Detailed Molecular Dynamics Simulations of Model Biological Membranes Containing Cholesterol. BBA-Biomembranes. 2009;1788:86–96. doi: 10.1016/j.bbamem.2008.09.009. PubMed DOI
Róg T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M. Ordering Effects of Cholesterol and Its Analogues. BBA-Biomembranes. 2009;1788:97–121. doi: 10.1016/j.bbamem.2008.08.022. PubMed DOI
Waheed Q, Tjörnhammar R, Edholm O. Phase Transitions in Coarse-Grained Lipid Bilayers Containing Cholesterol by Molecular Dynamics Simulations. Biophys. J. 2012;103:2125–2133. doi: 10.1016/j.bpj.2012.10.014. PubMed DOI PMC
Zhang, Y., Lervik, A., Seddon, J. & Bresme, F. A Coarse-Grained Molecular Dynamics Investigation of the Phase Behavior of DPPC/Cholesterol Mixtures. Chem. Phys. Lipids185, 88–98, doi:10.1016/j.chemphyslip.2014.07.011 (2015). PubMed
Wang Y, Gkeka P, Fuchs JE, Liedl KR, Cournia Z. DPPC-Cholesterol Phase Diagram Using Coarse-Grained Molecular Dynamics Simulations. BBA-Biomembranes. 2016;1858:2846–2857. doi: 10.1016/j.bbamem.2016.08.005. PubMed DOI
Ipsen JH, Mouritsen OG, Zuckermann MJ. Theory of Thermal Anomalies in the Specific Heat of Lipid Bilayers Containing Cholesterol. Biophys. J. 1989;56:661–667. doi: 10.1016/S0006-3495(89)82713-4. PubMed DOI PMC
Nielsen M, Miao L, Ipsen JH, Zuckermann MJ, Mouritsen OG. Off-Lattice Model for the Phase Behavior of Lipid-Cholesterol Bilayers. Phys. Rev. E. 1999;59:5790–803. doi: 10.1103/PhysRevE.59.5790. PubMed DOI
Almeida PF. A Simple Thermodynamic Model of the Liquid-Ordered State and the Interactions Between Phospholipids and Cholesterol. Biophys. J. 2011;100:420–429. doi: 10.1016/j.bpj.2010.12.3694. PubMed DOI PMC
Pandit SA, Khelashvili G, Jakobsson E, Grama A, Scott H. Lateral Organization in Lipid-Cholesterol Mixed Bilayers. Biophys. J. 2007;92:440–447. doi: 10.1529/biophysj.106.093864. PubMed DOI PMC
Meinhardt S, Vink RL, Schmid F. Monolayer Curvature Stabilizes Nanoscale Raft Domains in Mixed Lipid Bilayers. Proc. Natl. Acad. Sci. USA. 2013;110:4476–4481. doi: 10.1073/pnas.1221075110. PubMed DOI PMC
Jämbeck JP, Lyubartsev AP. Another Piece of the Membrane Puzzle: Extending Slipids Further. J. Chem. Theory Comput. 2012;9:774–784. doi: 10.1021/ct300777p. PubMed DOI
Jämbeck JP, Lyubartsev AP. Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids. J. Phys. Chem. B. 2012;116:3164–3179. doi: 10.1021/jp212503e. PubMed DOI PMC
Klump HH, Gaber BP, Peticolas WL, Yager P. Thermodynamic Properties of Mixtures of Deuterated and Undeuterated Dipalmitoyl Phosphatidylcholines (Differential Scanning Calorimetry/Lipid Bilayers/Membranes) Thermochim. Acta. 1981;48:361–366. doi: 10.1016/0040-6031(81)80257-2. DOI
Clarke JA, Heron AJ, Seddon JM, Law RV. The Diversity of the Liquid Ordered (Lo) Phase of Phosphatidylcholine/Cholesterol Membranes: A Variable Temperature Multinuclear Solid-State NMR and X-Ray Diffraction Study. Biophys. J. 2006;90:2383–2393. doi: 10.1529/biophysj.104.056499. PubMed DOI PMC
Douliez J-P, Leonard A, Dufourc EJ. Restatement of Order Parameters in Biomembranes: Calculation of CC Bond Order Parameters From CD Quadrupolar Splittings. Biophys. J. 1995;68:1727–1739. doi: 10.1016/S0006-3495(95)80350-4. PubMed DOI PMC
Lafleur M, Fine B, Sternin E, Cullis PR, Bloom M. Smoothed Orientational Order Profile of Lipid Bilayers by 2H-Nuclear Magnetic Resonance. Biophys. J. 1989;56:1037–41. doi: 10.1016/S0006-3495(89)82749-3. PubMed DOI PMC
Vermeer LS, De Groot BL, Réat V, Milon A, Czaplicki J. Acyl Chain Order Parameter Profiles in Phospholipid Bilayers: Computation From Molecular Dynamics Simulations and Comparison With 2H NMR Experiments. Eur. Biophys. J. 2007;36:919–931. doi: 10.1007/s00249-007-0192-9. PubMed DOI
Urbina JA, et al. Molecular Order and Dynamics of Phosphatidylcholine Bilayer Membranes in the Presence of Cholesterol, Ergosterol and Lanosterol: A Comparative Study Using 2H-, 13C- and 31P-NMR Spectroscopy. BBA-Biomembranes. 1995;1238:163–176. doi: 10.1016/0005-2736(95)00117-L. PubMed DOI
Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E. The Molecular Structure of the Liquid-Ordered Phase of Lipid Bilayers. J. Am. Chem. Soc. 2014;136:725–732. doi: 10.1021/ja4105667. PubMed DOI PMC
Kim K, Choi SQ, Zell ZA, Squires TM, Zasadzinski JA. Effect of Cholesterol Nanodomains on Monolayer Morphology and Dynamics. Proc. Natl. Acad. Sci. USA. 2013;110:E3054–E3060. doi: 10.1073/pnas.1303304110. PubMed DOI PMC
Pöyry S, Róg T, Karttunen M, Vattulainen I. Significance of Cholesterol Methyl Groups. J. Phys. Chem. B. 2008;112:2922–2929. doi: 10.1021/jp7100495. PubMed DOI
Martinez-Seara H, Róg T, Karttunen M, Vattulainen I, Reigada R. Cholesterol Induces Specific Spatial and Orientational Order in Cholesterol/Phospholipid Membranes. PLoS One. 2010;5:e11162. doi: 10.1371/journal.pone.0011162. PubMed DOI PMC
Krause, M. R. et al. Eliminating the Roughness in Cholesterol’s β-Face: Does It Matter? Langmuir 30, 12114–12118, doi:10.1021/la503075e (2014). PubMed PMC
Martinez-Seara H, Róg T, Karttunen M, Vattulainen I, Reigada R. Why Is the sn-2 Chain of Monounsaturated Glycerophospholipids Usually Unsaturated Whereas the sn-1 Chain Is Saturated? Studies of 1-Stearoyl-2-Oleoyl-sn-Glycero-3-Phosphatidylcholine (SOPC) and 1-Oleoyl-2-Stearoyl-sn-Glycero-3-Phosphatidylcholine (OSPC) Membranes With and Without Cholesterol. J. Phys. Chem. B. 2009;113:8347–8356. doi: 10.1021/jp902131b. PubMed DOI
Mydock-McGrane L, Rath NP, Covey DF. Synthesis of a Smoothened Cholesterol: 18, 19-Di-Nor-Cholesterol. J. Org. Chem. 2014;79:5636–5643. doi: 10.1021/jo500813n. PubMed DOI PMC
Bernsdorff C, Winter R. Differential Properties of the Sterols Cholesterol, Ergosterol, β-Sitosterol, Trans-7-Dehydrocholesterol, Stigmasterol and Lanosterol on DPPC Bilayer Order. J. Phys. Chem. B. 2003;107:10658–10664. doi: 10.1021/jp034922a. DOI
Miao L, et al. From Lanosterol to Cholesterol: Structural Evolution and Differential Effects on Lipid Bilayers. Biophys. J. 2002;82:1429–1444. doi: 10.1016/S0006-3495(02)75497-0. PubMed DOI PMC
Goerke J. Lung Surfactant. BBA-Rev. Biomembranes. 1974;344:241–261. PubMed
Pérez-Gil J. Structure of Pulmonary Surfactant Membranes and Films: The Role of Proteins and Lipid-Protein Interactions. BBA-Biomembranes. 2008;1778:1676–1695. doi: 10.1016/j.bbamem.2008.05.003. PubMed DOI
de la Serna JB, Perez-Gil J, Simonsen AC, Bagatolli LA. Cholesterol Rules: Direct Observation of the Coexistence of Two Fluid Phases in Native Pulmonary Surfactant Membranes at Physiological Temperatures. J. Biol. Chem. 2004;279:40715–40722. doi: 10.1074/jbc.M404648200. PubMed DOI
Paila YD, Chattopadhyay A. The Function of G-Protein Coupled Receptors and Membrane Cholesterol: Specific or General Interaction? Glycoconjugate J. 2009;26:711–720. doi: 10.1007/s10719-008-9218-5. PubMed DOI
Muth S, Fries A, Gimpl G. Cholesterol-Induced Conformational Changes in the Oxytocin Receptor. Biochem. J. 2011;437:541–553. doi: 10.1042/BJ20101795. PubMed DOI
Grouleff J, Irudayam SJ, Skeby KK, Schiott B. The Influence of Cholesterol on Membrane Protein Structure, Function, and Dynamics Studied by Molecular Dynamics Simulations. BBA-Biomembranes. 2015;1848:1783–1795. doi: 10.1016/j.bbamem.2015.03.029. PubMed DOI
Sengupta D, Chattopadhyay A. Molecular Dynamics Simulations of GPCR-Cholesterol Interaction: An Emerging Paradigm. BBA-Biomembranes. 2015;1848:1775–1782. doi: 10.1016/j.bbamem.2015.03.018. PubMed DOI
Manna M, et al. Mechanism of Allosteric Regulation of β 2-Adrenergic Receptor by Cholesterol. eLife. 2016;5:e18432. doi: 10.7554/eLife.18432. PubMed DOI PMC
The Two Faces of the Liquid Ordered Phase
Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems