Understanding the Functional Properties of Lipid Heterogeneity in Pulmonary Surfactant Monolayers at the Atomistic Level

. 2020 ; 8 () : 581016. [epub] 20201116

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33304898

Pulmonary surfactant is a complex mixture of lipids and proteins lining the interior of the alveoli, and constitutes the first barrier to both oxygen and pathogens as they progress toward blood circulation. Despite decades of study, the behavior of the pulmonary surfactant at the molecular scale is poorly understood, which hinders the development of effective surfactant replacement therapies, useful in the treatment of several lung-related diseases. In this work, we combined all-atom molecular dynamics simulations, Langmuir trough measurements, and AFM imaging to study synthetic four-component lipid monolayers designed to model protein-free pulmonary surfactant. We characterized the structural and dynamic properties of the monolayers with a special focus on lateral heterogeneity. Remarkably, simulations reproduce almost quantitatively the experimental data on pressure-area isotherms and the presence of lateral heterogeneities highlighted by AFM. Quite surprisingly, the pressure-area isotherms do not show a plateau region, despite the presence of liquid-condensed nanometer-sized domains at surface pressures larger than 20 mN/m. In the simulations, the liquid-condensed domains were small and transient, but they did not coalesce to yield a separate phase. They were only slightly enriched in DPPC and cholesterol, and their chemical composition remained very similar to the overall composition of the monolayer membrane. Instead, they differed from liquid-expanded regions in terms of membrane thickness (in agreement with AFM data), diffusion rates, as well as acyl chain packing and orientation. We hypothesize that such lateral heterogeneities are crucial for lung surfactant function, as they allow both efficient packing, to achieve low surface tension, and sufficient fluidity, critical for rapid adsorption to the air-liquid interface during the breathing cycle.

Zobrazit více v PubMed

Abraham M., Murtola T., Schulz R., Páll S., Smith J., Hess B., et al. (2015). GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25. 10.1016/j.softx.2015.06.001 DOI

Almeida P. F., Vaz W. L., Thompson T. (1992). Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31, 6739–6747. 10.1021/bi00144a013 PubMed DOI

Amigoni A., Pettenazzo A., Stritoni V., Circelli M. (2017). Surfactants in acute respiratory distress syndrome in infants and children: past, present and future. Clin. Drug Invest. 37, 729–736. 10.1007/s40261-017-0532-1 PubMed DOI PMC

Andreassen S., Steimle K. L., Mogensen M. L., Bernardino de la Serna J., Rees S., Karbing D. S. (2010). The effect of tissue elastic properties and surfactant on alveolar stability. J. Appl. Physiol. 109, 1369–1377. 10.1152/japplphysiol.00844.2009 PubMed DOI PMC

Baoukina S., Mendez-Villuendas E., Tieleman D. P. (2012). Molecular view of phase coexistence in lipid monolayers. J. Am. Chem. Soc. 134, 17543–17553. 10.1021/ja304792p PubMed DOI

Baoukina S., Monticelli L., Amrein M., Tieleman D. P. (2007a). The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations. Biophys. J. 93, 3775–3782. 10.1529/biophysj.107.113399 PubMed DOI PMC

Baoukina S., Monticelli L., Marrink S. J., Tieleman D. P. (2007b). Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations. Langmuir 23, 12617–12623. 10.1021/la702286h PubMed DOI

Baoukina S., Monticelli L., Risselada H. J., Marrink S. J., Tieleman D. P. (2008). The molecular mechanism of lipid monolayer collapse. Proc. Natl. Acad. Sci. U.S.A. 105, 10803–10808. 10.1073/pnas.0711563105 PubMed DOI PMC

Baoukina S., Rozmanov D., Mendez-Villuendas E., Tieleman D. P. (2014). The mechanism of collapse of heterogeneous lipid monolayers. Biophys. J. 107, 1136–1145. 10.1016/j.bpj.2014.05.053 PubMed DOI PMC

Baoukina S., Tieleman D. (2011). Lung surfactant protein SP-B promotes formation of bilayer reservoirs from monolayer and lipid transfer between the interface and subphase. Biophys. J. 100, 1678–1687. 10.1016/j.bpj.2011.02.019 PubMed DOI PMC

Bernardino de la Serna J., Hansen S., Berzina Z., Simonsen A. C., Hannibal-Bach H. K., Knudsen J., et al. . (2013a). Compositional and structural characterization of monolayers and bilayers composed of native pulmonary surfactant from wild type mice. BBA-Biomembranes 1828, 2450–2459. 10.1016/j.bbamem.2013.07.008 PubMed DOI

Bernardino de la Serna J., Oradd G., Bagatolli L. A., Simonsen A. C., Marsh D., Lindblom G., et al. . (2009). Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties. Biophys. J. 97, 1381–1389. 10.1016/j.bpj.2009.06.040 PubMed DOI PMC

Bernardino de la Serna J., Pérez-Gil J., Simonsen A. C., Bagatolli L. A. (2004). Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J. Biol. Chem. 279, 40715–40722. 10.1074/jbc.M404648200 PubMed DOI

Bernardino de la Serna J., Vargas R., Picardi V., Cruz A., Arranz R., Valpuesta J. M., et al. . (2013b). Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface. Faraday Discuss. 161, 535–548; discussion 563-589. 10.1039/C2FD20096A PubMed DOI

Brewer J., Bernardino de la Serna J., Wagner K., Bagatolli L. A. (2010). Multiphoton excitation fluorescence microscopy in planar membrane systems. BBA-Biomembranes 1798, 1301–1308. 10.1016/j.bbamem.2010.02.024 PubMed DOI

Brown N. J., Dohm M. T., Bernardino de la Serna J., Barron A. E. (2011). Biomimetic N-terminal alkylation of peptoid analogues of surfactant protein C. Biophys. J. 101, 1076–1085. 10.1016/j.bpj.2011.04.055 PubMed DOI PMC

Casals C., Ca nadas O. (2012). Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function. BBA-Biomembranes 1818, 2550–2562. 10.1016/j.bbamem.2012.05.024 PubMed DOI

Chen F., Smith P. E. (2007). Simulated surface tension of common water models. J. Chem. Phys. 126:221101. 10.1063/1.2745718 PubMed DOI

Crane J. M., Hall S. B. (2001). Rapid compression transforms interfacial monolayers of pulmonary surfactant. Biophys. J. 80, 1863–1872. 10.1016/S0006-3495(01)76156-5 PubMed DOI PMC

Crane J. M., Putz G., Hall S. B. (1999). Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures. Biophys. J. 77, 3134–3143. 10.1016/S0006-3495(99)77143-2 PubMed DOI PMC

Davis R. S., Sunil Kumar P., Sperotto M. M., Laradji M. (2013). Predictions of phase separation in three-component lipid membranes by the MARTINI force field. J. Phys. Chem. B 117, 4072–4080. 10.1021/jp4000686 PubMed DOI

Discher B. M., Schief W. R., Vogel V., Hall S. B. (1999). Phase separation in monolayers of pulmonary surfactant phospholipids at the air-water interface: composition and structure. Biophys. J. 77, 2051–2061. 10.1016/S0006-3495(99)77046-3 PubMed DOI PMC

Dohm M. T., Brown N. J., Seurynck-Servoss S. L., Bernardino de la Serna J., Barron A. E. (2010). Mimicking SP-C palmitoylation on a peptoid-based sp-b analogue markedly improves surface activity. BBA-Biomembranes 1798, 1663–1678. 10.1016/j.bbamem.2010.04.012 PubMed DOI

Domański J., Marrink S. J., Schäfer L. V. (2012). Transmembrane helices can induce domain formation in crowded model membranes. BBA-Biomembranes 1818, 984–994. 10.1016/j.bbamem.2011.08.021 PubMed DOI

Dushianthan A., Goss V., Cusack R., Grocott M. P., Postle A. D. (2014). Altered molecular specificity of surfactant phosphatidycholine synthesis in patients with acute respiratory distress syndrome. Respir. Res. 15:128. 10.1186/s12931-014-0128-8 PubMed DOI PMC

Echaide M., Autilio C., Arroyo R., Pérez-Gil J. (2017). Restoring pulmonary surfactant membranes and films at the respiratory surface. BBA-Biomembranes 1859, 1725–1739. 10.1016/j.bbamem.2017.03.015 PubMed DOI

Eid J., Razmazma H., Jraij A., Ebrahimi A., Monticelli L. (2020). On calculating the bending modulus of lipid bilayer membranes from buckling simulations. J. Phys. Chem. B. 29, 6299–6311. 10.1021/acs.jpcb.0c04253 PubMed DOI

Enkavi G., Javanainen M., Kulig W., Róg T., Vattulainen I. (2019). Multiscale simulations of biological membranes: the challenge to understand biological phenomena in a living substance. Chem. Rev. 119, 5607–5774. 10.1021/acs.chemrev.8b00538 PubMed DOI PMC

Ester M., Kriegel H.-P., Sander J., Xu X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, in KDD, Vol. 96, (Portland, OR: ), 226–231.

Goerke J. (1998). Pulmonary surfactant: functions and molecular composition. BBA-Mol. Basis. Dis. 1408, 79–89. 10.1016/S0925-4439(98)00060-X PubMed DOI

Grocott M. P. (2020). A Clinical Trial of Nebulized Surfactant for the Treatment of Moderate to Severe COVID-19 (COVSurf). ClinicalTrials.gov identifier NCT04362059.

Gunther A., Schmidt R., Harodt J., Schmehl T., Walmrath D., Ruppert C., et al. . (2002). Bronchoscopic administration of bovine natural surfactant in ARDS and septic shock: impact on biophysical and biochemical surfactant properties. Eur. Respir. J. 19, 797–804. 10.1183/09031936.02.00243302 PubMed DOI

Hook G., Spalding J., Ortner M., Tombropoulos E., Chignell C. (1984). Investigation of phospholipids of the pulmonary extracellular lining by electron paramagnetic resonance. The effects of phosphatidylglycerol and unsaturated phosphatidylcholines on the fluidity of dipalmitoyl phosphatidylcholine. Biochem. J. 223, 533–542. 10.1042/bj2230533 PubMed DOI PMC

Huynh L., Perrot N., Beswick V., Rosilio V., Curmi P. A., Sanson A., et al. . (2014). Structural properties of POPC monolayers under lateral compression: computer simulations analysis. Langmuir 30, 564–573. 10.1021/la4043809 PubMed DOI

Izadi S., Anandakrishnan R., Onufriev A. V. (2014). Building water models: a different approach. J. Phys. Chem. Lett. 5, 3863–3871. 10.1021/jz501780a PubMed DOI PMC

Izadi S., Onufriev A. V. (2016). Accuracy limit of rigid 3-point water models. J. Chem. Phys. 145:074501. 10.1063/1.4960175 PubMed DOI PMC

Javanainen M., Lamberg A., Cwiklik L., Vattulainen I., Ollila O. S. (2017a). Atomistic model for nearly quantitative simulations of Langmuir monolayers. Langmuir 34, 2565–2572. 10.1021/acs.langmuir.7b02855 PubMed DOI

Javanainen M., Martinez-Seara H., Vattulainen I. (2017b). Nanoscale membrane domain formation driven by cholesterol. Sci. Rep. 7, 1–10. 10.1038/s41598-017-01247-9 PubMed DOI PMC

Javanainen M., Monticelli L., Bernardino de la Serna J., Vattulainen I. (2010). Free volume theory applied to lateral diffusion in Langmuir monolayers: atomistic simulations for a protein-free model of lung surfactant. Langmuir 26, 15436–15444. 10.1021/la102454m PubMed DOI

Kaganer V. M., Möhwald H., Dutta P. (1999). Structure and phase transitions in langmuir monolayers. Rev. Mod. Phys. 71:779. 10.1103/RevModPhys.71.779 PubMed DOI

Klauda J. B., Venable R. M., Freites J. A., O'Connor J. W., Tobias D. J., Mondragon-Ramirez C., et al. . (2010). Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843. 10.1021/jp101759q PubMed DOI PMC

Klopfer K., Vanderlick T. (1996). Isotherms of dipalmitoylphosphatidylcholine (DPPC) monolayers: features revealed and features obscured. J. Colloid. Interface Sci. 182, 220–229. 10.1006/jcis.1996.0454 DOI

Lamberg A., Ollila O. S. (2015). Comment on “Structural properties of POPC monolayers under lateral compression: computer simulations analysis”. Langmuir 31, 886–887. 10.1021/la5025845 PubMed DOI

Lee J., Cheng X., Swails J. M., Yeom M. S., Eastman P. K., Lemkul J. A., et al. . (2015). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413. 10.1021/acs.jctc.5b00935 PubMed DOI PMC

Lee K. Y. C., Gopal A., von Nahmen A., Zasadzinski J. A., Majewski J., Smith G. S., et al. (2002). Influence of palmitic acid and hexadecanol on the phase transition temperature and molecular packing of dipalmitoylphosphatidylcholine monolayers at the air-water interface. J. Chem. Phys. 116, 774–783. 10.1063/1.1420730 DOI

Lee S., Kim D. H., Needham D. (2001). Equilibrium and dynamic interfacial tension measurements at microscopic interfaces using a micropipet technique. 2. Dynamics of phospholipid monolayer formation and equilibrium tensions at the water-air interface. Langmuir 17, 5544–5550. 10.1021/la0103261 DOI

Lewis J. (2020). London's Exogenous Surfactant Study for COVID19 (LESSCOVID). ClinicalTrials.gov identifier NCT04375735.

Liekkinen J., Enkavi G., Javanainen M., Olmeda B., Pérez-Gil J., Vattulainen I. (2020). Pulmonary surfactant lipid reorganization induced by the adsorption of the oligomeric surfactant protein B complex. J. Mol. Biol. 432, 3251–3268. 10.1016/j.jmb.2020.02.028 PubMed DOI

Lim J. B., Rogaski B., Klauda J. B. (2011). Update of the cholesterol force field parameters in CHARMM. J. Phys. Chem. B 116, 203–210. 10.1021/jp207925m PubMed DOI

Ma G., Allen H. C. (2007). Condensing effect of palmitic acid on DPPC in mixed Langmuir monolayers. Langmuir 23, 589–597. 10.1021/la061870i PubMed DOI

Mangiarotti A., Caruso B., Wilke N. (2014). Phase coexistence in films composed of DLPC and DPPC: a comparison between different model membrane systems. BBA-Biomembranes 1838, 1823–1831. 10.1016/j.bbamem.2014.02.012 PubMed DOI

Mansour H. M., Zografi G. (2007). Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface. Langmuir 23, 3809–3819. 10.1021/la063053o PubMed DOI

Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., De Vries A. H. (2007). The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824. 10.1021/jp071097f PubMed DOI

Moller J. C., Schaible T., Roll C., Schiffmann J. H., Bindl L., Schrod L., et al. . (2003). Treatment with bovine surfactant in severe acute respiratory distress syndrome in children: a randomized multicenter study. Intensive Care Med. 29, 437–446. 10.1007/s00134-003-1650-1 PubMed DOI PMC

Moy V. T., Keller D., Gaub H., McConnell H. (1986). Long-range molecular orientational order in monolayer solid domains of phospholipid. J. Phys. Chem. 90, 3198–3202. 10.1021/j100405a030 DOI

Nielsen L. K., Bjørnholm T., Mouritsen O. G. (2000). Critical phenomena: fluctuations caught in the act. Nature 404:352 10.1038/35006162 PubMed DOI

Olmeda B., Villén L., Cruz A., Orellana G., Pérez-Gil J. (2010). Pulmonary surfactant layers accelerate O2 diffusion through the air-water interface. BBA-Biomembranes 1798, 1281–1284. 10.1016/j.bbamem.2010.03.008 PubMed DOI

Olzyńska A., Delcroix P., Dolejšová T., Krzaczek K., Korchowiec B., Czogalla A., et al. . (2020). Properties of lipid models of lung surfactant containing cholesterol and oxidized lipids: a mixed experimental and computational study. Langmuir 36, 1023–1033. 10.1021/acs.langmuir.9b02469 PubMed DOI

Paananen R. O., Javanainen M., Holopainen J. M., Vattulainen I. (2019). Crystalline wax esters regulate the evaporation resistance of tear film lipid layers associated with dry eye syndrome. J. Phys. Chem. Lett. 10, 3893–3898. 10.1021/acs.jpclett.9b01187 PubMed DOI PMC

Parra E., Pérez-Gil J. (2015). Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem. Phys. Lipids 185, 153–175. 10.1016/j.chemphyslip.2014.09.002 PubMed DOI

Pérez-Gil J. (2008). Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. BBA-Biomembranes 1778, 1676–1695. 10.1016/j.bbamem.2008.05.003 PubMed DOI

Peters R., Beck K. (1983). Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis. Proc. Natl. Acad. Sci. U.S.A. 80, 7183–7187. 10.1073/pnas.80.23.7183 PubMed DOI PMC

Possmayer F., Hall S. B., Haller T., Petersen N. O., Zuo Y. Y., Bernardino de la Serna J., et al. . (2010). Recent advances in alveolar biology: some new looks at the alveolar interface. Respir. Physiol. Neurobiol. 173(Suppl.), S55–S64. 10.1016/j.resp.2010.02.014 PubMed DOI

Postle A. D., Mander A., Reid K. B., Wang J. Y., Wright S. M., Moustaki M., et al. . (1999). Deficient hydrophilic lung surfactant proteins A and D with normal surfactant phospholipid molecular species in cystic fibrosis. Am. J. Respir. Cell. Mol. Biol. 20, 90–98. 10.1165/ajrcmb.20.1.3253 PubMed DOI

Robichaud N. A., Khatami M. H., Saika-Voivod I., Booth V. (2019). All-atom molecular dynamics simulations of dimeric lung surfactant protein B in lipid multilayers. Int. J. Mol. Sci. 20:3863. 10.3390/ijms20163863 PubMed DOI PMC

Schurch S., Bachofen H., Goerke J., Possmayer F. (1989). A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J. Appl. Phys. 67, 2389–2396. 10.1152/jappl.1989.67.6.2389 PubMed DOI

Schürch S., Green F. H., Bachofen H. (1998). Formation and structure of surface films: captive bubble surfactometry. BBA-Mol. Basis Dis. 1408, 180–202. 10.1016/S0925-4439(98)00067-2 PubMed DOI

Sodt A. J., Sandar M. L., Gawrisch K., Pastor R. W., Lyman E. (2014). The molecular structure of the liquid-ordered phase of lipid bilayers. J. Am. Chem. Soc. 136, 725–732. 10.1021/ja4105667 PubMed DOI PMC

Steimle K. L., Mogensen M. L., Karbing D. S., Bernardino de la Serna J., Andreassen S. (2011). A model of ventilation of the healthy human lung. Comput. Methods Programs Biomed. 101, 144–155. 10.1016/j.cmpb.2010.06.017 PubMed DOI

Suri L. N., McCaig L., Picardi M. V., Ospina O. L., Veldhuizen R. A., Staples J. F., et al. . (2012). Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity. BBA-Biomembranes 1818, 1581–1589. 10.1016/j.bbamem.2012.02.021 PubMed DOI

Taeusch H. W., Bernardino de la Serna J., Pérez-Gil J., Alonso C., Zasadzinski J. A. (2005). Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental. Biophys. J. 89, 1769–1779. 10.1529/biophysj.105.062620 PubMed DOI PMC

Tribello G. A., Bonomi M., Branduardi D., Camilloni C., Bussi G. (2014). PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613. 10.1016/j.cpc.2013.09.018 DOI

Vega C., De Miguel E. (2007). Surface tension of the most popular models of water by using the test-area simulation method. J. Chem. Phys. 126:154707. 10.1063/1.2715577 PubMed DOI

Walmrath D., Grimminger F., Pappert D., Knothe C., Obertacke U., Benzing A., et al. . (2002). Bronchoscopic administration of bovine natural surfactant in ards and septic shock: impact on gas exchange and haemodynamics. Eur. Respir. J. 19, 805–810. 10.1183/09031936.02.00243402 PubMed DOI

Walmrath D., Gunther A., Ghofrani H. A., Schermuly R., Schneider T., Grimminger F., et al. . (1996). Bronchoscopic surfactant administration in patients with severe adult respiratory distress syndrome and sepsis. Am. J. Respir, Crit. Care Med. 154, 57–62. 10.1164/ajrccm.154.1.8680699 PubMed DOI

Walther F. J., Gordon L. M., Waring A. J. (2019). Advances in synthetic lung surfactant protein technology. Expert Rev. Respir. Med. 13, 499–501. 10.1080/17476348.2019.1589372 PubMed DOI

Ware L. B., Matthay M. A. (2000). The acute respiratory distress syndrome. N. Engl. J. Med. 342, 1334–1349. 10.1056/NEJM200005043421806 PubMed DOI

Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 10.1016/S2213-2600(20)30076-X PubMed DOI PMC

Zasadzinski J. A., Alig T., Alonso C., Bernardino de la Serna J., Perez-Gil J., Taeusch H. W. (2005). Inhibition of pulmonary surfactant adsorption by serum and the mechanisms of reversal by hydrophilic polymers: theory. Biophys. J. 89, 1621–1629. 10.1529/biophysj.105.062646 PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.12612317

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...