Understanding the Functional Properties of Lipid Heterogeneity in Pulmonary Surfactant Monolayers at the Atomistic Level
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33304898
PubMed Central
PMC7701215
DOI
10.3389/fcell.2020.581016
Knihovny.cz E-zdroje
- Klíčová slova
- atomic force microscopy, heterogeneity, lipid monolayer, membrane domain, molecular dynamics simulation, pressure-area isotherm, pulmonary surfactant,
- Publikační typ
- časopisecké články MeSH
Pulmonary surfactant is a complex mixture of lipids and proteins lining the interior of the alveoli, and constitutes the first barrier to both oxygen and pathogens as they progress toward blood circulation. Despite decades of study, the behavior of the pulmonary surfactant at the molecular scale is poorly understood, which hinders the development of effective surfactant replacement therapies, useful in the treatment of several lung-related diseases. In this work, we combined all-atom molecular dynamics simulations, Langmuir trough measurements, and AFM imaging to study synthetic four-component lipid monolayers designed to model protein-free pulmonary surfactant. We characterized the structural and dynamic properties of the monolayers with a special focus on lateral heterogeneity. Remarkably, simulations reproduce almost quantitatively the experimental data on pressure-area isotherms and the presence of lateral heterogeneities highlighted by AFM. Quite surprisingly, the pressure-area isotherms do not show a plateau region, despite the presence of liquid-condensed nanometer-sized domains at surface pressures larger than 20 mN/m. In the simulations, the liquid-condensed domains were small and transient, but they did not coalesce to yield a separate phase. They were only slightly enriched in DPPC and cholesterol, and their chemical composition remained very similar to the overall composition of the monolayer membrane. Instead, they differed from liquid-expanded regions in terms of membrane thickness (in agreement with AFM data), diffusion rates, as well as acyl chain packing and orientation. We hypothesize that such lateral heterogeneities are crucial for lung surfactant function, as they allow both efficient packing, to achieve low surface tension, and sufficient fluidity, critical for rapid adsorption to the air-liquid interface during the breathing cycle.
Computational Physics Laboratory Tampere University Tampere Finland
Department of Physics University of Helsinki Helsinki Finland
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czechia
MEMPHYS Centre for Biomembrane Physics Odense Denmark
Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS and University of Lyon Lyon France
National Heart and Lung Institute Faculty of Medicine Imperial College London London United Kingdom
Zobrazit více v PubMed
Abraham M., Murtola T., Schulz R., Páll S., Smith J., Hess B., et al. (2015). GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25. 10.1016/j.softx.2015.06.001 DOI
Almeida P. F., Vaz W. L., Thompson T. (1992). Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31, 6739–6747. 10.1021/bi00144a013 PubMed DOI
Amigoni A., Pettenazzo A., Stritoni V., Circelli M. (2017). Surfactants in acute respiratory distress syndrome in infants and children: past, present and future. Clin. Drug Invest. 37, 729–736. 10.1007/s40261-017-0532-1 PubMed DOI PMC
Andreassen S., Steimle K. L., Mogensen M. L., Bernardino de la Serna J., Rees S., Karbing D. S. (2010). The effect of tissue elastic properties and surfactant on alveolar stability. J. Appl. Physiol. 109, 1369–1377. 10.1152/japplphysiol.00844.2009 PubMed DOI PMC
Baoukina S., Mendez-Villuendas E., Tieleman D. P. (2012). Molecular view of phase coexistence in lipid monolayers. J. Am. Chem. Soc. 134, 17543–17553. 10.1021/ja304792p PubMed DOI
Baoukina S., Monticelli L., Amrein M., Tieleman D. P. (2007a). The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations. Biophys. J. 93, 3775–3782. 10.1529/biophysj.107.113399 PubMed DOI PMC
Baoukina S., Monticelli L., Marrink S. J., Tieleman D. P. (2007b). Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations. Langmuir 23, 12617–12623. 10.1021/la702286h PubMed DOI
Baoukina S., Monticelli L., Risselada H. J., Marrink S. J., Tieleman D. P. (2008). The molecular mechanism of lipid monolayer collapse. Proc. Natl. Acad. Sci. U.S.A. 105, 10803–10808. 10.1073/pnas.0711563105 PubMed DOI PMC
Baoukina S., Rozmanov D., Mendez-Villuendas E., Tieleman D. P. (2014). The mechanism of collapse of heterogeneous lipid monolayers. Biophys. J. 107, 1136–1145. 10.1016/j.bpj.2014.05.053 PubMed DOI PMC
Baoukina S., Tieleman D. (2011). Lung surfactant protein SP-B promotes formation of bilayer reservoirs from monolayer and lipid transfer between the interface and subphase. Biophys. J. 100, 1678–1687. 10.1016/j.bpj.2011.02.019 PubMed DOI PMC
Bernardino de la Serna J., Hansen S., Berzina Z., Simonsen A. C., Hannibal-Bach H. K., Knudsen J., et al. . (2013a). Compositional and structural characterization of monolayers and bilayers composed of native pulmonary surfactant from wild type mice. BBA-Biomembranes 1828, 2450–2459. 10.1016/j.bbamem.2013.07.008 PubMed DOI
Bernardino de la Serna J., Oradd G., Bagatolli L. A., Simonsen A. C., Marsh D., Lindblom G., et al. . (2009). Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties. Biophys. J. 97, 1381–1389. 10.1016/j.bpj.2009.06.040 PubMed DOI PMC
Bernardino de la Serna J., Pérez-Gil J., Simonsen A. C., Bagatolli L. A. (2004). Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J. Biol. Chem. 279, 40715–40722. 10.1074/jbc.M404648200 PubMed DOI
Bernardino de la Serna J., Vargas R., Picardi V., Cruz A., Arranz R., Valpuesta J. M., et al. . (2013b). Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface. Faraday Discuss. 161, 535–548; discussion 563-589. 10.1039/C2FD20096A PubMed DOI
Brewer J., Bernardino de la Serna J., Wagner K., Bagatolli L. A. (2010). Multiphoton excitation fluorescence microscopy in planar membrane systems. BBA-Biomembranes 1798, 1301–1308. 10.1016/j.bbamem.2010.02.024 PubMed DOI
Brown N. J., Dohm M. T., Bernardino de la Serna J., Barron A. E. (2011). Biomimetic N-terminal alkylation of peptoid analogues of surfactant protein C. Biophys. J. 101, 1076–1085. 10.1016/j.bpj.2011.04.055 PubMed DOI PMC
Casals C., Ca nadas O. (2012). Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function. BBA-Biomembranes 1818, 2550–2562. 10.1016/j.bbamem.2012.05.024 PubMed DOI
Chen F., Smith P. E. (2007). Simulated surface tension of common water models. J. Chem. Phys. 126:221101. 10.1063/1.2745718 PubMed DOI
Crane J. M., Hall S. B. (2001). Rapid compression transforms interfacial monolayers of pulmonary surfactant. Biophys. J. 80, 1863–1872. 10.1016/S0006-3495(01)76156-5 PubMed DOI PMC
Crane J. M., Putz G., Hall S. B. (1999). Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures. Biophys. J. 77, 3134–3143. 10.1016/S0006-3495(99)77143-2 PubMed DOI PMC
Davis R. S., Sunil Kumar P., Sperotto M. M., Laradji M. (2013). Predictions of phase separation in three-component lipid membranes by the MARTINI force field. J. Phys. Chem. B 117, 4072–4080. 10.1021/jp4000686 PubMed DOI
Discher B. M., Schief W. R., Vogel V., Hall S. B. (1999). Phase separation in monolayers of pulmonary surfactant phospholipids at the air-water interface: composition and structure. Biophys. J. 77, 2051–2061. 10.1016/S0006-3495(99)77046-3 PubMed DOI PMC
Dohm M. T., Brown N. J., Seurynck-Servoss S. L., Bernardino de la Serna J., Barron A. E. (2010). Mimicking SP-C palmitoylation on a peptoid-based sp-b analogue markedly improves surface activity. BBA-Biomembranes 1798, 1663–1678. 10.1016/j.bbamem.2010.04.012 PubMed DOI
Domański J., Marrink S. J., Schäfer L. V. (2012). Transmembrane helices can induce domain formation in crowded model membranes. BBA-Biomembranes 1818, 984–994. 10.1016/j.bbamem.2011.08.021 PubMed DOI
Dushianthan A., Goss V., Cusack R., Grocott M. P., Postle A. D. (2014). Altered molecular specificity of surfactant phosphatidycholine synthesis in patients with acute respiratory distress syndrome. Respir. Res. 15:128. 10.1186/s12931-014-0128-8 PubMed DOI PMC
Echaide M., Autilio C., Arroyo R., Pérez-Gil J. (2017). Restoring pulmonary surfactant membranes and films at the respiratory surface. BBA-Biomembranes 1859, 1725–1739. 10.1016/j.bbamem.2017.03.015 PubMed DOI
Eid J., Razmazma H., Jraij A., Ebrahimi A., Monticelli L. (2020). On calculating the bending modulus of lipid bilayer membranes from buckling simulations. J. Phys. Chem. B. 29, 6299–6311. 10.1021/acs.jpcb.0c04253 PubMed DOI
Enkavi G., Javanainen M., Kulig W., Róg T., Vattulainen I. (2019). Multiscale simulations of biological membranes: the challenge to understand biological phenomena in a living substance. Chem. Rev. 119, 5607–5774. 10.1021/acs.chemrev.8b00538 PubMed DOI PMC
Ester M., Kriegel H.-P., Sander J., Xu X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, in KDD, Vol. 96, (Portland, OR: ), 226–231.
Goerke J. (1998). Pulmonary surfactant: functions and molecular composition. BBA-Mol. Basis. Dis. 1408, 79–89. 10.1016/S0925-4439(98)00060-X PubMed DOI
Grocott M. P. (2020). A Clinical Trial of Nebulized Surfactant for the Treatment of Moderate to Severe COVID-19 (COVSurf). ClinicalTrials.gov identifier NCT04362059.
Gunther A., Schmidt R., Harodt J., Schmehl T., Walmrath D., Ruppert C., et al. . (2002). Bronchoscopic administration of bovine natural surfactant in ARDS and septic shock: impact on biophysical and biochemical surfactant properties. Eur. Respir. J. 19, 797–804. 10.1183/09031936.02.00243302 PubMed DOI
Hook G., Spalding J., Ortner M., Tombropoulos E., Chignell C. (1984). Investigation of phospholipids of the pulmonary extracellular lining by electron paramagnetic resonance. The effects of phosphatidylglycerol and unsaturated phosphatidylcholines on the fluidity of dipalmitoyl phosphatidylcholine. Biochem. J. 223, 533–542. 10.1042/bj2230533 PubMed DOI PMC
Huynh L., Perrot N., Beswick V., Rosilio V., Curmi P. A., Sanson A., et al. . (2014). Structural properties of POPC monolayers under lateral compression: computer simulations analysis. Langmuir 30, 564–573. 10.1021/la4043809 PubMed DOI
Izadi S., Anandakrishnan R., Onufriev A. V. (2014). Building water models: a different approach. J. Phys. Chem. Lett. 5, 3863–3871. 10.1021/jz501780a PubMed DOI PMC
Izadi S., Onufriev A. V. (2016). Accuracy limit of rigid 3-point water models. J. Chem. Phys. 145:074501. 10.1063/1.4960175 PubMed DOI PMC
Javanainen M., Lamberg A., Cwiklik L., Vattulainen I., Ollila O. S. (2017a). Atomistic model for nearly quantitative simulations of Langmuir monolayers. Langmuir 34, 2565–2572. 10.1021/acs.langmuir.7b02855 PubMed DOI
Javanainen M., Martinez-Seara H., Vattulainen I. (2017b). Nanoscale membrane domain formation driven by cholesterol. Sci. Rep. 7, 1–10. 10.1038/s41598-017-01247-9 PubMed DOI PMC
Javanainen M., Monticelli L., Bernardino de la Serna J., Vattulainen I. (2010). Free volume theory applied to lateral diffusion in Langmuir monolayers: atomistic simulations for a protein-free model of lung surfactant. Langmuir 26, 15436–15444. 10.1021/la102454m PubMed DOI
Kaganer V. M., Möhwald H., Dutta P. (1999). Structure and phase transitions in langmuir monolayers. Rev. Mod. Phys. 71:779. 10.1103/RevModPhys.71.779 PubMed DOI
Klauda J. B., Venable R. M., Freites J. A., O'Connor J. W., Tobias D. J., Mondragon-Ramirez C., et al. . (2010). Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843. 10.1021/jp101759q PubMed DOI PMC
Klopfer K., Vanderlick T. (1996). Isotherms of dipalmitoylphosphatidylcholine (DPPC) monolayers: features revealed and features obscured. J. Colloid. Interface Sci. 182, 220–229. 10.1006/jcis.1996.0454 DOI
Lamberg A., Ollila O. S. (2015). Comment on “Structural properties of POPC monolayers under lateral compression: computer simulations analysis”. Langmuir 31, 886–887. 10.1021/la5025845 PubMed DOI
Lee J., Cheng X., Swails J. M., Yeom M. S., Eastman P. K., Lemkul J. A., et al. . (2015). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413. 10.1021/acs.jctc.5b00935 PubMed DOI PMC
Lee K. Y. C., Gopal A., von Nahmen A., Zasadzinski J. A., Majewski J., Smith G. S., et al. (2002). Influence of palmitic acid and hexadecanol on the phase transition temperature and molecular packing of dipalmitoylphosphatidylcholine monolayers at the air-water interface. J. Chem. Phys. 116, 774–783. 10.1063/1.1420730 DOI
Lee S., Kim D. H., Needham D. (2001). Equilibrium and dynamic interfacial tension measurements at microscopic interfaces using a micropipet technique. 2. Dynamics of phospholipid monolayer formation and equilibrium tensions at the water-air interface. Langmuir 17, 5544–5550. 10.1021/la0103261 DOI
Lewis J. (2020). London's Exogenous Surfactant Study for COVID19 (LESSCOVID). ClinicalTrials.gov identifier NCT04375735.
Liekkinen J., Enkavi G., Javanainen M., Olmeda B., Pérez-Gil J., Vattulainen I. (2020). Pulmonary surfactant lipid reorganization induced by the adsorption of the oligomeric surfactant protein B complex. J. Mol. Biol. 432, 3251–3268. 10.1016/j.jmb.2020.02.028 PubMed DOI
Lim J. B., Rogaski B., Klauda J. B. (2011). Update of the cholesterol force field parameters in CHARMM. J. Phys. Chem. B 116, 203–210. 10.1021/jp207925m PubMed DOI
Ma G., Allen H. C. (2007). Condensing effect of palmitic acid on DPPC in mixed Langmuir monolayers. Langmuir 23, 589–597. 10.1021/la061870i PubMed DOI
Mangiarotti A., Caruso B., Wilke N. (2014). Phase coexistence in films composed of DLPC and DPPC: a comparison between different model membrane systems. BBA-Biomembranes 1838, 1823–1831. 10.1016/j.bbamem.2014.02.012 PubMed DOI
Mansour H. M., Zografi G. (2007). Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface. Langmuir 23, 3809–3819. 10.1021/la063053o PubMed DOI
Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., De Vries A. H. (2007). The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824. 10.1021/jp071097f PubMed DOI
Moller J. C., Schaible T., Roll C., Schiffmann J. H., Bindl L., Schrod L., et al. . (2003). Treatment with bovine surfactant in severe acute respiratory distress syndrome in children: a randomized multicenter study. Intensive Care Med. 29, 437–446. 10.1007/s00134-003-1650-1 PubMed DOI PMC
Moy V. T., Keller D., Gaub H., McConnell H. (1986). Long-range molecular orientational order in monolayer solid domains of phospholipid. J. Phys. Chem. 90, 3198–3202. 10.1021/j100405a030 DOI
Nielsen L. K., Bjørnholm T., Mouritsen O. G. (2000). Critical phenomena: fluctuations caught in the act. Nature 404:352 10.1038/35006162 PubMed DOI
Olmeda B., Villén L., Cruz A., Orellana G., Pérez-Gil J. (2010). Pulmonary surfactant layers accelerate O2 diffusion through the air-water interface. BBA-Biomembranes 1798, 1281–1284. 10.1016/j.bbamem.2010.03.008 PubMed DOI
Olzyńska A., Delcroix P., Dolejšová T., Krzaczek K., Korchowiec B., Czogalla A., et al. . (2020). Properties of lipid models of lung surfactant containing cholesterol and oxidized lipids: a mixed experimental and computational study. Langmuir 36, 1023–1033. 10.1021/acs.langmuir.9b02469 PubMed DOI
Paananen R. O., Javanainen M., Holopainen J. M., Vattulainen I. (2019). Crystalline wax esters regulate the evaporation resistance of tear film lipid layers associated with dry eye syndrome. J. Phys. Chem. Lett. 10, 3893–3898. 10.1021/acs.jpclett.9b01187 PubMed DOI PMC
Parra E., Pérez-Gil J. (2015). Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem. Phys. Lipids 185, 153–175. 10.1016/j.chemphyslip.2014.09.002 PubMed DOI
Pérez-Gil J. (2008). Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. BBA-Biomembranes 1778, 1676–1695. 10.1016/j.bbamem.2008.05.003 PubMed DOI
Peters R., Beck K. (1983). Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis. Proc. Natl. Acad. Sci. U.S.A. 80, 7183–7187. 10.1073/pnas.80.23.7183 PubMed DOI PMC
Possmayer F., Hall S. B., Haller T., Petersen N. O., Zuo Y. Y., Bernardino de la Serna J., et al. . (2010). Recent advances in alveolar biology: some new looks at the alveolar interface. Respir. Physiol. Neurobiol. 173(Suppl.), S55–S64. 10.1016/j.resp.2010.02.014 PubMed DOI
Postle A. D., Mander A., Reid K. B., Wang J. Y., Wright S. M., Moustaki M., et al. . (1999). Deficient hydrophilic lung surfactant proteins A and D with normal surfactant phospholipid molecular species in cystic fibrosis. Am. J. Respir. Cell. Mol. Biol. 20, 90–98. 10.1165/ajrcmb.20.1.3253 PubMed DOI
Robichaud N. A., Khatami M. H., Saika-Voivod I., Booth V. (2019). All-atom molecular dynamics simulations of dimeric lung surfactant protein B in lipid multilayers. Int. J. Mol. Sci. 20:3863. 10.3390/ijms20163863 PubMed DOI PMC
Schurch S., Bachofen H., Goerke J., Possmayer F. (1989). A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J. Appl. Phys. 67, 2389–2396. 10.1152/jappl.1989.67.6.2389 PubMed DOI
Schürch S., Green F. H., Bachofen H. (1998). Formation and structure of surface films: captive bubble surfactometry. BBA-Mol. Basis Dis. 1408, 180–202. 10.1016/S0925-4439(98)00067-2 PubMed DOI
Sodt A. J., Sandar M. L., Gawrisch K., Pastor R. W., Lyman E. (2014). The molecular structure of the liquid-ordered phase of lipid bilayers. J. Am. Chem. Soc. 136, 725–732. 10.1021/ja4105667 PubMed DOI PMC
Steimle K. L., Mogensen M. L., Karbing D. S., Bernardino de la Serna J., Andreassen S. (2011). A model of ventilation of the healthy human lung. Comput. Methods Programs Biomed. 101, 144–155. 10.1016/j.cmpb.2010.06.017 PubMed DOI
Suri L. N., McCaig L., Picardi M. V., Ospina O. L., Veldhuizen R. A., Staples J. F., et al. . (2012). Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity. BBA-Biomembranes 1818, 1581–1589. 10.1016/j.bbamem.2012.02.021 PubMed DOI
Taeusch H. W., Bernardino de la Serna J., Pérez-Gil J., Alonso C., Zasadzinski J. A. (2005). Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental. Biophys. J. 89, 1769–1779. 10.1529/biophysj.105.062620 PubMed DOI PMC
Tribello G. A., Bonomi M., Branduardi D., Camilloni C., Bussi G. (2014). PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613. 10.1016/j.cpc.2013.09.018 DOI
Vega C., De Miguel E. (2007). Surface tension of the most popular models of water by using the test-area simulation method. J. Chem. Phys. 126:154707. 10.1063/1.2715577 PubMed DOI
Walmrath D., Grimminger F., Pappert D., Knothe C., Obertacke U., Benzing A., et al. . (2002). Bronchoscopic administration of bovine natural surfactant in ards and septic shock: impact on gas exchange and haemodynamics. Eur. Respir. J. 19, 805–810. 10.1183/09031936.02.00243402 PubMed DOI
Walmrath D., Gunther A., Ghofrani H. A., Schermuly R., Schneider T., Grimminger F., et al. . (1996). Bronchoscopic surfactant administration in patients with severe adult respiratory distress syndrome and sepsis. Am. J. Respir, Crit. Care Med. 154, 57–62. 10.1164/ajrccm.154.1.8680699 PubMed DOI
Walther F. J., Gordon L. M., Waring A. J. (2019). Advances in synthetic lung surfactant protein technology. Expert Rev. Respir. Med. 13, 499–501. 10.1080/17476348.2019.1589372 PubMed DOI
Ware L. B., Matthay M. A. (2000). The acute respiratory distress syndrome. N. Engl. J. Med. 342, 1334–1349. 10.1056/NEJM200005043421806 PubMed DOI
Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 10.1016/S2213-2600(20)30076-X PubMed DOI PMC
Zasadzinski J. A., Alig T., Alonso C., Bernardino de la Serna J., Perez-Gil J., Taeusch H. W. (2005). Inhibition of pulmonary surfactant adsorption by serum and the mechanisms of reversal by hydrophilic polymers: theory. Biophys. J. 89, 1621–1629. 10.1529/biophysj.105.062646 PubMed DOI PMC
Accurate Simulations of Lipid Monolayers Require a Water Model with Correct Surface Tension
figshare
10.6084/m9.figshare.12612317