Accurate Simulations of Lipid Monolayers Require a Water Model with Correct Surface Tension

. 2022 Mar 08 ; 18 (3) : 1862-1869. [epub] 20220208

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35133839

Lipid monolayers provide our lungs and eyes their functionality and serve as proxy systems in biomembrane research. Therefore, lipid monolayers have been studied intensively including using molecular dynamics simulations, which are able to probe their lateral structure and interactions with, e.g., pharmaceuticals or nanoparticles. However, such simulations have struggled in describing the forces at the air-water interface. Particularly, the surface tension of water and long-range van der Waals interactions have been considered critical, but their importance in monolayer simulations has been evaluated only separately. Here, we combine the recent C36/LJ-PME lipid force field that includes long-range van der Waals forces with water models that reproduce experimental surface tensions to elucidate the importance of these contributions in monolayer simulations. Our results suggest that a water model with correct surface tension is necessary to reproduce experimental surface pressure-area isotherms and monolayer phase behavior. The latter includes the liquid expanded and liquid condensed phases, their coexistence, and the opening of pores at the correct area per lipid upon expansion. Despite these improvements of the C36/LJ-PME with certain water models, the standard cutoff-based CHARMM36 lipid model with the 4-point OPC water model still provides the best agreement with experiments. Our results emphasize the importance of using high-quality water models in applications and parameter development in molecular dynamics simulations of biomolecules.

Zobrazit více v PubMed

Mohwald H. Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu. Rev. Phys. Chem. 1990, 41, 441–476. 10.1146/annurev.pc.41.100190.002301. PubMed DOI

Mouritsen O. G. Model answers to lipid membrane questions. Cold Spring Harbor Perspect. Biol. 2011, 3, a004622.10.1101/cshperspect.a004622. PubMed DOI PMC

Blume A.; Kerth A. Peptide and protein binding to lipid monolayers studied by FT-IRRA spectroscopy. Biochim. Biophys. Acta, Biomembr. 2013, 1828, 2294–2305. 10.1016/j.bbamem.2013.04.014. PubMed DOI

Roldán-Carmona C.; Giner-Casares J. J.; Pérez-Morales M.; Martín-Romero M. T.; Camacho L. Revisiting the Brewster Angle Microscopy: the relevance of the polar headgroup. Adv. Colloid Interface Sci. 2012, 173, 12–22. 10.1016/j.cis.2012.02.002. PubMed DOI

Rantamäki A. H.; Telenius J.; Koivuniemi A.; Vattulainen I.; Holopainen J. M. Lessons from the biophysics of interfaces: lung surfactant and tear fluid. Prog. Retinal Eye Res. 2011, 30, 204–215. 10.1016/j.preteyeres.2011.02.002. PubMed DOI

Crane J. M.; Putz G.; Hall S. B. Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures. Biophys. J. 1999, 77, 3134–3143. 10.1016/S0006-3495(99)77143-2. PubMed DOI PMC

Baoukina S.; Tieleman D. P. Computer simulations of lung surfactant. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 2431–2440. 10.1016/j.bbamem.2016.02.030. PubMed DOI

Cwiklik L. Tear film lipid layer: A molecular level view. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 2421–2430. 10.1016/j.bbamem.2016.02.020. PubMed DOI

Javanainen M.; Hua W.; Tichacek O.; Delcroix P.; Cwiklik L.; Allen H. C. Structural Effects of Cation Binding to DPPC Monolayers. Langmuir 2020, 36, 15258–15269. 10.1021/acs.langmuir.0c02555. PubMed DOI

Rugonyi S.; Biswas S. C.; Hall S. B. The biophysical function of pulmonary surfactant. Respir. Physiol. Neurobiol. 2008, 163, 244–255. 10.1016/j.resp.2008.05.018. PubMed DOI PMC

Parra E.; Pérez-Gil J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem. Phys. Lipids 2015, 185, 153–175. 10.1016/j.chemphyslip.2014.09.002. PubMed DOI

Duncan S. L.; Larson R. G. Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys. J. 2008, 94, 2965–2986. 10.1529/biophysj.107.114215. PubMed DOI PMC

Klauda J. B.; Venable R. M.; Freites J. A.; O’Connor J. W.; Tobias D. J.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. D. Jr; Pastor R. W. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 2010, 114, 7830–7843. 10.1021/jp101759q. PubMed DOI PMC

Lamberg A.; Ollila O. S. Comment on “Structural properties of POPC monolayers under lateral compression: computer simulations analysis. Langmuir 2015, 31, 886–887. 10.1021/la5025845. PubMed DOI

Javanainen M.; Lamberg A.; Cwiklik L.; Vattulainen I.; Ollila O. S. Atomistic model for nearly quantitative simulations of Langmuir monolayers. Langmuir 2018, 34, 2565–2572. 10.1021/acs.langmuir.7b02855. PubMed DOI

Yu Y.; Krämer A.; Venable R. M.; Brooks B. R.; Klauda J. B.; Pastor R. W. CHARMM36 Lipid Force Field with Explicit Treatment of Long-Range Dispersion: Parametrization and Validation for Phosphatidylethanolamine, Phosphatidylglycerol, and Ether Lipids. J. Chem. Theory Comput. 2021, 17, 1581–1595. 10.1021/acs.jctc.0c01327. PubMed DOI PMC

Yu Y.; Kramer A.; Venable R. M.; Simmonett A. C.; MacKerell A. D. Jr; Klauda J. B.; Pastor R. W.; Brooks B. R. Semi-automated optimization of the CHARMM36 lipid force field to include explicit treatment of long-range dispersion. J. Chem. Theory Comput. 2021, 17, 1562–1580. 10.1021/acs.jctc.0c01326. PubMed DOI PMC

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building water models: a different approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Liekkinen J.; de Santos Moreno B.; Paananen R. O.; Vattulainen I.; Monticelli L.; de La Serna J. B.; Javanainen M. Understanding the Functional Properties of Lipid Heterogeneity in Pulmonary Surfactant Monolayers at the Atomistic Level. Front. Cell Dev. Biol. 2020, 8, 581016.10.3389/fcell.2020.581016. PubMed DOI PMC

Jämbeck J. P.; Lyubartsev A. P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B 2012, 116, 3164–3179. 10.1021/jp212503e. PubMed DOI PMC

Leonard A. N.; Simmonett A. C.; Pickard IV F. C.; Huang J.; Venable R. M.; Klauda J. B.; Brooks B. R.; Pastor R. W. Comparison of additive and polarizable models with explicit treatment of long-range Lennard-Jones interactions using alkane simulations. J. Chem. Theory Comput. 2018, 14, 948–958. 10.1021/acs.jctc.7b00948. PubMed DOI PMC

Wennberg C. L.; Murtola T.; Hess B.; Lindahl E. Lennard-Jones lattice summation in bilayer simulations has critical effects on surface tension and lipid properties. J. Chem. Theory Comput. 2013, 9, 3527–3537. 10.1021/ct400140n. PubMed DOI

Wennberg C. L.; Murtola T.; Páll S.; Abraham M. J.; Hess B.; Lindahl E. Direct-space corrections enable fast and accurate Lorentz–Berthelot combination rule Lennard-Jones lattice summation. J. Chem. Theory Comput. 2015, 11, 5737–5746. 10.1021/acs.jctc.5b00726. PubMed DOI

Anézo C.; de Vries A. H.; Höltje H.-D.; Tieleman D. P.; Marrink S.-J. Methodological issues in lipid bilayer simulations. J. Phys. Chem. B 2003, 107, 9424–9433. 10.1021/jp0348981. DOI

Huang K.; García A. E. Effects of truncating van der Waals interactions in lipid bilayer simulations. J. Chem. Phys. 2014, 141, 105101.10.1063/1.4893965. PubMed DOI PMC

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI

Durell S. R.; Brooks B. R.; Ben-Naim A. Solvent-induced forces between two hydrophilic groups. J. Phys. Chem. 1994, 98, 2198–2202. 10.1021/j100059a038. DOI

Klauda J. B. Considerations of Recent All-Atom Lipid Force Field Development. J. Phys. Chem. B 2021, 125, 5676–5682. 10.1021/acs.jpcb.1c02417. PubMed DOI

Páll S.; Zhmurov A.; Bauer P.; Abraham M.; Lundborg M.; Gray A.; Hess B.; Lindahl E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 2020, 153, 134110.10.1063/5.0018516. PubMed DOI

Vermaas J.; Hardy D.; Stone J.; Tajkhorshid E.; Kohlmeyer A. TopoGromacs: Automated Topology Conversion from CHARMM to GROMACS within VMD. J. Chem. Inf. Model. 2016, 56, 1112–1116. 10.1021/acs.jcim.6b00103. PubMed DOI PMC

Eastman P.; Swails J.; Chodera J. D.; McGibbon R. T.; Zhao Y.; Beauchamp K. A.; Wang L.-P.; Simmonett A. C.; Harrigan M. P.; Stern C. D.; Wiewiora R. P.; Brooks B. R.; Pande V. S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13, e1005659.10.1371/journal.pcbi.1005659. PubMed DOI PMC

Izadi S.; Onufriev A. V. Accuracy limit of rigid 3-point water models. J. Chem. Phys. 2016, 145, 074501.10.1063/1.4960175. PubMed DOI PMC

Berendsen H. J.; Postma J. P.; van Gunsteren W. F.; Hermans J.. Intermolecular forces; Springer, 1981; pp 331–342.

Berendsen H.; Grigera J.; Straatsma T. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI

Abascal J. L.; Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.10.1063/1.2121687. PubMed DOI

Páll S.; Hess B. A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 2013, 184, 2641–2650. 10.1016/j.cpc.2013.06.003. DOI

Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N·log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI

Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI

Shirts M. R.; Mobley D. L.; Chodera J. D.; Pande V. S. Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J. Phys. Chem. B 2007, 111, 13052–13063. 10.1021/jp0735987. PubMed DOI

Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI

Miyamoto S.; Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI

Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. 10.1063/1.447334. DOI

Hoover W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695.10.1103/PhysRevA.31.1695. PubMed DOI

Hess B.; Bekker H.; Berendsen H. J.; Fraaije J. G. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Hess B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 2008, 4, 116–122. 10.1021/ct700200b. PubMed DOI

Ester M.; Kriegel H.-P.; Sander J.; Xu X. In A density-based algorithm for discovering clusters in large spatial databases with noise, KDD-96 Proceedings, 1996; pp 226–231.

Lee J.; Cheng X.; Swails J. M.; Yeom M. S.; Eastman P. K.; Lemkul J. A.; Wei S.; Buckner J.; Jeong J. C.; Qi Y.; et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. 10.1021/acs.jctc.5b00935. PubMed DOI PMC

Pluhackova K.; Kirsch S. A.; Han J.; Sun L.; Jiang Z.; Unruh T.; Böckmann R. A. A critical comparison of biomembrane force fields: structure and dynamics of model DMPC, POPC, and POPE bilayers. J. Phys. Chem. B 2016, 120, 3888–3903. 10.1021/acs.jpcb.6b01870. PubMed DOI

Mansour H. M.; Zografi G. Relationships between Equilibrium Spreading Pressure and Phase Equilibria of Phospholipid Bilayers and Monolayers at the Air- Water Interface. Langmuir 2007, 23, 3809–3819. 10.1021/la063053o. PubMed DOI

Roke S.; Schins J.; Müller M.; Bonn M. Vibrational spectroscopic investigation of the phase diagram of a biomimetic lipid monolayer. Phys. Rev. Lett. 2003, 90, 128101.10.1103/PhysRevLett.90.128101. PubMed DOI

Sega M.; Dellago C. Long-range dispersion effects on the water/vapor interface simulated using the most common models. J. Phys. Chem. B 2017, 121, 3798–3803. 10.1021/acs.jpcb.6b12437. PubMed DOI

in’t Veld P. J.; Ismail A. E.; Grest G. S. Application of Ewald summations to long-range dispersion forces. J. Chem. Phys. 2007, 127, 144711.10.1063/1.2770730. PubMed DOI

Smith E. C.; Crane J. M.; Laderas T. G.; Hall S. B. Metastability of a supercompressed fluid monolayer. Biophys. J. 2003, 85, 3048–3057. 10.1016/S0006-3495(03)74723-7. PubMed DOI PMC

Knecht V.; Müller M.; Bonn M.; Marrink S.-J.; Mark A. E. Simulation studies of pore and domain formation in a phospholipid monolayer. J. Chem. Phys. 2005, 122, 024704.10.1063/1.1825992. PubMed DOI

Ollila O. H. S.; Heikkinen H. A.; Iwai H. Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations. J. Phys. Chem. B 2018, 122, 6559–6569. 10.1021/acs.jpcb.8b02250. PubMed DOI PMC

Robustelli P.; Piana S.; Shaw D. E. Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E4758–E4766. 10.1073/pnas.1800690115. PubMed DOI PMC

Virtanen S. I.; Kiirikki A. M.; Mikula K. M.; Iwaï H.; Ollila O. H. S. Heterogeneous dynamics in partially disordered proteins. Phys. Chem. Chem. Phys. 2020, 22, 21185–21196. 10.1039/D0CP03473H. PubMed DOI

Kadaoluwa Pathirannahalage S. P.; Meftahi N.; Elbourne A.; Weiss A. C.; Mc-Conville C. F.; Padua A.; Winkler D. A.; Costa Gomes M.; Greaves T. L.; Le T. C.; et al. Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations. J. Chem. Inf. Model. 2021, 61, 4521–4536. 10.1021/acs.jcim.1c00794. PubMed DOI

Beauchamp K. A.; Lin Y.-S.; Das R.; Pande V. S. Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. J. Chem. Theory Comput. 2012, 8, 1409–1414. 10.1021/ct2007814. PubMed DOI PMC

Nutt D. R.; Smith J. C. Molecular dynamics simulations of proteins: Can the explicit water model be varied?. J. Chem. Theory Comput. 2007, 3, 1550–1560. 10.1021/ct700053u. PubMed DOI

Lemkul J. A.; Huang J.; Roux B.; MacKerell A. D. Jr An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. Chem. Rev. 2016, 116, 4983–5013. 10.1021/acs.chemrev.5b00505. PubMed DOI PMC

Chowdhary J.; Harder E.; Lopes P. E.; Huang L.; MacKerell A. D. Jr; Roux B. A polarizable force field of dipalmitoylphosphatidylcholine based on the classical drude model for molecular dynamics simulations of lipids. J. Phys. Chem. B 2013, 117, 9142–9160. 10.1021/jp402860e. PubMed DOI PMC

Li H.; Chowdhary J.; Huang L.; He X.; MacKerell A. D. Jr; Roux B. Drude polarizable force field for molecular dynamics simulations of saturated and unsaturated zwitterionic lipids. J. Chem. Theory Comput. 2017, 13, 4535–4552. 10.1021/acs.jctc.7b00262. PubMed DOI PMC

Lamoureux G.; Harder E.; Vorobyov I. V.; Roux B.; MacKerell A. D. Jr A polarizable model of water for molecular dynamics simulations of biomolecules. Chem. Phys. Lett. 2006, 418, 245–249. 10.1016/j.cplett.2005.10.135. DOI

Melcr J.; Martinez-Seara H.; Nencini R.; Kolafa J.; Jungwirth P.; Ollila O. H. S. Accurate Binding of Sodium and Calcium to a POPC Bilayer by Effective Inclusion of Electronic Polarization. J. Phys. Chem. B 2018, 122, 4546–4557. 10.1021/acs.jpcb.7b12510. PubMed DOI

Melcr J.; Ferreira T. M.; Jungwirth P.; Ollila O. H. S. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization. J. Chem. Theory Comput. 2020, 16, 738–748. 10.1021/acs.jctc.9b00824. PubMed DOI

Duboue-Dijon E.; Javanainen M.; Delcroix P.; Jungwirth P.; Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J. Chem. Phys. 2020, 153, 050901.10.1063/5.0017775. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace