Accurate Simulations of Lipid Monolayers Require a Water Model with Correct Surface Tension
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35133839
PubMed Central
PMC8908734
DOI
10.1021/acs.jctc.1c00951
Knihovny.cz E-zdroje
- MeSH
- lipidy MeSH
- povrchové napětí MeSH
- simulace molekulární dynamiky * MeSH
- voda * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidy MeSH
- voda * MeSH
Lipid monolayers provide our lungs and eyes their functionality and serve as proxy systems in biomembrane research. Therefore, lipid monolayers have been studied intensively including using molecular dynamics simulations, which are able to probe their lateral structure and interactions with, e.g., pharmaceuticals or nanoparticles. However, such simulations have struggled in describing the forces at the air-water interface. Particularly, the surface tension of water and long-range van der Waals interactions have been considered critical, but their importance in monolayer simulations has been evaluated only separately. Here, we combine the recent C36/LJ-PME lipid force field that includes long-range van der Waals forces with water models that reproduce experimental surface tensions to elucidate the importance of these contributions in monolayer simulations. Our results suggest that a water model with correct surface tension is necessary to reproduce experimental surface pressure-area isotherms and monolayer phase behavior. The latter includes the liquid expanded and liquid condensed phases, their coexistence, and the opening of pores at the correct area per lipid upon expansion. Despite these improvements of the C36/LJ-PME with certain water models, the standard cutoff-based CHARMM36 lipid model with the 4-point OPC water model still provides the best agreement with experiments. Our results emphasize the importance of using high-quality water models in applications and parameter development in molecular dynamics simulations of biomolecules.
Zobrazit více v PubMed
Mohwald H. Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu. Rev. Phys. Chem. 1990, 41, 441–476. 10.1146/annurev.pc.41.100190.002301. PubMed DOI
Mouritsen O. G. Model answers to lipid membrane questions. Cold Spring Harbor Perspect. Biol. 2011, 3, a004622.10.1101/cshperspect.a004622. PubMed DOI PMC
Blume A.; Kerth A. Peptide and protein binding to lipid monolayers studied by FT-IRRA spectroscopy. Biochim. Biophys. Acta, Biomembr. 2013, 1828, 2294–2305. 10.1016/j.bbamem.2013.04.014. PubMed DOI
Roldán-Carmona C.; Giner-Casares J. J.; Pérez-Morales M.; Martín-Romero M. T.; Camacho L. Revisiting the Brewster Angle Microscopy: the relevance of the polar headgroup. Adv. Colloid Interface Sci. 2012, 173, 12–22. 10.1016/j.cis.2012.02.002. PubMed DOI
Rantamäki A. H.; Telenius J.; Koivuniemi A.; Vattulainen I.; Holopainen J. M. Lessons from the biophysics of interfaces: lung surfactant and tear fluid. Prog. Retinal Eye Res. 2011, 30, 204–215. 10.1016/j.preteyeres.2011.02.002. PubMed DOI
Crane J. M.; Putz G.; Hall S. B. Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures. Biophys. J. 1999, 77, 3134–3143. 10.1016/S0006-3495(99)77143-2. PubMed DOI PMC
Baoukina S.; Tieleman D. P. Computer simulations of lung surfactant. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 2431–2440. 10.1016/j.bbamem.2016.02.030. PubMed DOI
Cwiklik L. Tear film lipid layer: A molecular level view. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 2421–2430. 10.1016/j.bbamem.2016.02.020. PubMed DOI
Javanainen M.; Hua W.; Tichacek O.; Delcroix P.; Cwiklik L.; Allen H. C. Structural Effects of Cation Binding to DPPC Monolayers. Langmuir 2020, 36, 15258–15269. 10.1021/acs.langmuir.0c02555. PubMed DOI
Rugonyi S.; Biswas S. C.; Hall S. B. The biophysical function of pulmonary surfactant. Respir. Physiol. Neurobiol. 2008, 163, 244–255. 10.1016/j.resp.2008.05.018. PubMed DOI PMC
Parra E.; Pérez-Gil J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem. Phys. Lipids 2015, 185, 153–175. 10.1016/j.chemphyslip.2014.09.002. PubMed DOI
Duncan S. L.; Larson R. G. Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys. J. 2008, 94, 2965–2986. 10.1529/biophysj.107.114215. PubMed DOI PMC
Klauda J. B.; Venable R. M.; Freites J. A.; O’Connor J. W.; Tobias D. J.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. D. Jr; Pastor R. W. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 2010, 114, 7830–7843. 10.1021/jp101759q. PubMed DOI PMC
Lamberg A.; Ollila O. S. Comment on “Structural properties of POPC monolayers under lateral compression: computer simulations analysis. Langmuir 2015, 31, 886–887. 10.1021/la5025845. PubMed DOI
Javanainen M.; Lamberg A.; Cwiklik L.; Vattulainen I.; Ollila O. S. Atomistic model for nearly quantitative simulations of Langmuir monolayers. Langmuir 2018, 34, 2565–2572. 10.1021/acs.langmuir.7b02855. PubMed DOI
Yu Y.; Krämer A.; Venable R. M.; Brooks B. R.; Klauda J. B.; Pastor R. W. CHARMM36 Lipid Force Field with Explicit Treatment of Long-Range Dispersion: Parametrization and Validation for Phosphatidylethanolamine, Phosphatidylglycerol, and Ether Lipids. J. Chem. Theory Comput. 2021, 17, 1581–1595. 10.1021/acs.jctc.0c01327. PubMed DOI PMC
Yu Y.; Kramer A.; Venable R. M.; Simmonett A. C.; MacKerell A. D. Jr; Klauda J. B.; Pastor R. W.; Brooks B. R. Semi-automated optimization of the CHARMM36 lipid force field to include explicit treatment of long-range dispersion. J. Chem. Theory Comput. 2021, 17, 1562–1580. 10.1021/acs.jctc.0c01326. PubMed DOI PMC
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building water models: a different approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Liekkinen J.; de Santos Moreno B.; Paananen R. O.; Vattulainen I.; Monticelli L.; de La Serna J. B.; Javanainen M. Understanding the Functional Properties of Lipid Heterogeneity in Pulmonary Surfactant Monolayers at the Atomistic Level. Front. Cell Dev. Biol. 2020, 8, 581016.10.3389/fcell.2020.581016. PubMed DOI PMC
Jämbeck J. P.; Lyubartsev A. P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B 2012, 116, 3164–3179. 10.1021/jp212503e. PubMed DOI PMC
Leonard A. N.; Simmonett A. C.; Pickard IV F. C.; Huang J.; Venable R. M.; Klauda J. B.; Brooks B. R.; Pastor R. W. Comparison of additive and polarizable models with explicit treatment of long-range Lennard-Jones interactions using alkane simulations. J. Chem. Theory Comput. 2018, 14, 948–958. 10.1021/acs.jctc.7b00948. PubMed DOI PMC
Wennberg C. L.; Murtola T.; Hess B.; Lindahl E. Lennard-Jones lattice summation in bilayer simulations has critical effects on surface tension and lipid properties. J. Chem. Theory Comput. 2013, 9, 3527–3537. 10.1021/ct400140n. PubMed DOI
Wennberg C. L.; Murtola T.; Páll S.; Abraham M. J.; Hess B.; Lindahl E. Direct-space corrections enable fast and accurate Lorentz–Berthelot combination rule Lennard-Jones lattice summation. J. Chem. Theory Comput. 2015, 11, 5737–5746. 10.1021/acs.jctc.5b00726. PubMed DOI
Anézo C.; de Vries A. H.; Höltje H.-D.; Tieleman D. P.; Marrink S.-J. Methodological issues in lipid bilayer simulations. J. Phys. Chem. B 2003, 107, 9424–9433. 10.1021/jp0348981. DOI
Huang K.; García A. E. Effects of truncating van der Waals interactions in lipid bilayer simulations. J. Chem. Phys. 2014, 141, 105101.10.1063/1.4893965. PubMed DOI PMC
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI
Durell S. R.; Brooks B. R.; Ben-Naim A. Solvent-induced forces between two hydrophilic groups. J. Phys. Chem. 1994, 98, 2198–2202. 10.1021/j100059a038. DOI
Klauda J. B. Considerations of Recent All-Atom Lipid Force Field Development. J. Phys. Chem. B 2021, 125, 5676–5682. 10.1021/acs.jpcb.1c02417. PubMed DOI
Páll S.; Zhmurov A.; Bauer P.; Abraham M.; Lundborg M.; Gray A.; Hess B.; Lindahl E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 2020, 153, 134110.10.1063/5.0018516. PubMed DOI
Vermaas J.; Hardy D.; Stone J.; Tajkhorshid E.; Kohlmeyer A. TopoGromacs: Automated Topology Conversion from CHARMM to GROMACS within VMD. J. Chem. Inf. Model. 2016, 56, 1112–1116. 10.1021/acs.jcim.6b00103. PubMed DOI PMC
Eastman P.; Swails J.; Chodera J. D.; McGibbon R. T.; Zhao Y.; Beauchamp K. A.; Wang L.-P.; Simmonett A. C.; Harrigan M. P.; Stern C. D.; Wiewiora R. P.; Brooks B. R.; Pande V. S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13, e1005659.10.1371/journal.pcbi.1005659. PubMed DOI PMC
Izadi S.; Onufriev A. V. Accuracy limit of rigid 3-point water models. J. Chem. Phys. 2016, 145, 074501.10.1063/1.4960175. PubMed DOI PMC
Berendsen H. J.; Postma J. P.; van Gunsteren W. F.; Hermans J.. Intermolecular forces; Springer, 1981; pp 331–342.
Berendsen H.; Grigera J.; Straatsma T. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Abascal J. L.; Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.10.1063/1.2121687. PubMed DOI
Páll S.; Hess B. A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 2013, 184, 2641–2650. 10.1016/j.cpc.2013.06.003. DOI
Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N·log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Shirts M. R.; Mobley D. L.; Chodera J. D.; Pande V. S. Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J. Phys. Chem. B 2007, 111, 13052–13063. 10.1021/jp0735987. PubMed DOI
Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI
Miyamoto S.; Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI
Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. 10.1063/1.447334. DOI
Hoover W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695.10.1103/PhysRevA.31.1695. PubMed DOI
Hess B.; Bekker H.; Berendsen H. J.; Fraaije J. G. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Hess B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 2008, 4, 116–122. 10.1021/ct700200b. PubMed DOI
Ester M.; Kriegel H.-P.; Sander J.; Xu X. In A density-based algorithm for discovering clusters in large spatial databases with noise, KDD-96 Proceedings, 1996; pp 226–231.
Lee J.; Cheng X.; Swails J. M.; Yeom M. S.; Eastman P. K.; Lemkul J. A.; Wei S.; Buckner J.; Jeong J. C.; Qi Y.; et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. 10.1021/acs.jctc.5b00935. PubMed DOI PMC
Pluhackova K.; Kirsch S. A.; Han J.; Sun L.; Jiang Z.; Unruh T.; Böckmann R. A. A critical comparison of biomembrane force fields: structure and dynamics of model DMPC, POPC, and POPE bilayers. J. Phys. Chem. B 2016, 120, 3888–3903. 10.1021/acs.jpcb.6b01870. PubMed DOI
Mansour H. M.; Zografi G. Relationships between Equilibrium Spreading Pressure and Phase Equilibria of Phospholipid Bilayers and Monolayers at the Air- Water Interface. Langmuir 2007, 23, 3809–3819. 10.1021/la063053o. PubMed DOI
Roke S.; Schins J.; Müller M.; Bonn M. Vibrational spectroscopic investigation of the phase diagram of a biomimetic lipid monolayer. Phys. Rev. Lett. 2003, 90, 128101.10.1103/PhysRevLett.90.128101. PubMed DOI
Sega M.; Dellago C. Long-range dispersion effects on the water/vapor interface simulated using the most common models. J. Phys. Chem. B 2017, 121, 3798–3803. 10.1021/acs.jpcb.6b12437. PubMed DOI
in’t Veld P. J.; Ismail A. E.; Grest G. S. Application of Ewald summations to long-range dispersion forces. J. Chem. Phys. 2007, 127, 144711.10.1063/1.2770730. PubMed DOI
Smith E. C.; Crane J. M.; Laderas T. G.; Hall S. B. Metastability of a supercompressed fluid monolayer. Biophys. J. 2003, 85, 3048–3057. 10.1016/S0006-3495(03)74723-7. PubMed DOI PMC
Knecht V.; Müller M.; Bonn M.; Marrink S.-J.; Mark A. E. Simulation studies of pore and domain formation in a phospholipid monolayer. J. Chem. Phys. 2005, 122, 024704.10.1063/1.1825992. PubMed DOI
Ollila O. H. S.; Heikkinen H. A.; Iwai H. Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations. J. Phys. Chem. B 2018, 122, 6559–6569. 10.1021/acs.jpcb.8b02250. PubMed DOI PMC
Robustelli P.; Piana S.; Shaw D. E. Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E4758–E4766. 10.1073/pnas.1800690115. PubMed DOI PMC
Virtanen S. I.; Kiirikki A. M.; Mikula K. M.; Iwaï H.; Ollila O. H. S. Heterogeneous dynamics in partially disordered proteins. Phys. Chem. Chem. Phys. 2020, 22, 21185–21196. 10.1039/D0CP03473H. PubMed DOI
Kadaoluwa Pathirannahalage S. P.; Meftahi N.; Elbourne A.; Weiss A. C.; Mc-Conville C. F.; Padua A.; Winkler D. A.; Costa Gomes M.; Greaves T. L.; Le T. C.; et al. Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations. J. Chem. Inf. Model. 2021, 61, 4521–4536. 10.1021/acs.jcim.1c00794. PubMed DOI
Beauchamp K. A.; Lin Y.-S.; Das R.; Pande V. S. Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. J. Chem. Theory Comput. 2012, 8, 1409–1414. 10.1021/ct2007814. PubMed DOI PMC
Nutt D. R.; Smith J. C. Molecular dynamics simulations of proteins: Can the explicit water model be varied?. J. Chem. Theory Comput. 2007, 3, 1550–1560. 10.1021/ct700053u. PubMed DOI
Lemkul J. A.; Huang J.; Roux B.; MacKerell A. D. Jr An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. Chem. Rev. 2016, 116, 4983–5013. 10.1021/acs.chemrev.5b00505. PubMed DOI PMC
Chowdhary J.; Harder E.; Lopes P. E.; Huang L.; MacKerell A. D. Jr; Roux B. A polarizable force field of dipalmitoylphosphatidylcholine based on the classical drude model for molecular dynamics simulations of lipids. J. Phys. Chem. B 2013, 117, 9142–9160. 10.1021/jp402860e. PubMed DOI PMC
Li H.; Chowdhary J.; Huang L.; He X.; MacKerell A. D. Jr; Roux B. Drude polarizable force field for molecular dynamics simulations of saturated and unsaturated zwitterionic lipids. J. Chem. Theory Comput. 2017, 13, 4535–4552. 10.1021/acs.jctc.7b00262. PubMed DOI PMC
Lamoureux G.; Harder E.; Vorobyov I. V.; Roux B.; MacKerell A. D. Jr A polarizable model of water for molecular dynamics simulations of biomolecules. Chem. Phys. Lett. 2006, 418, 245–249. 10.1016/j.cplett.2005.10.135. DOI
Melcr J.; Martinez-Seara H.; Nencini R.; Kolafa J.; Jungwirth P.; Ollila O. H. S. Accurate Binding of Sodium and Calcium to a POPC Bilayer by Effective Inclusion of Electronic Polarization. J. Phys. Chem. B 2018, 122, 4546–4557. 10.1021/acs.jpcb.7b12510. PubMed DOI
Melcr J.; Ferreira T. M.; Jungwirth P.; Ollila O. H. S. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization. J. Chem. Theory Comput. 2020, 16, 738–748. 10.1021/acs.jctc.9b00824. PubMed DOI
Duboue-Dijon E.; Javanainen M.; Delcroix P.; Jungwirth P.; Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J. Chem. Phys. 2020, 153, 050901.10.1063/5.0017775. PubMed DOI
Building Water Models Compatible with Charge Scaling Molecular Dynamics
Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions