Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization

. 2020 Jan 14 ; 16 (1) : 738-748. [epub] 20191216

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31762275

Phosphatidylserine (PS) lipids are important signaling molecules and the most common negatively charged lipids in eukaryotic membranes. The signaling can be often regulated by calcium, but its interactions with PS headgroups are not fully understood. Classical molecular dynamics (MD) simulations can potentially give detailed description of lipid-ion interactions, but the results strongly depend on the used force field. Here, we apply the electronic continuum correction (ECC) to the Amber Lipid17 parameters of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipid to improve its interactions with K+, Na+, and Ca2+ ions. The partial charges of the headgroup, glycerol backbone, and carbonyls of POPS, bearing a unit negative charge, were scaled with a factor of 0.75, derived for monovalent ions, and the Lennard-Jones σ parameters of the same segments were scaled with a factor of 0.89. The resulting ECC-POPS model gives more realistic interactions with Na+ and Ca2+ cations than the original Amber Lipid17 parameters when validated using headgroup order parameters and the "electrometer concept". In ECC-lipids simulations, populations of complexes of Ca2+ cations with more than two PS lipids are negligible, and interactions of Ca2+ cations with only carboxylate groups are twice more likely than with only phosphate groups, while interactions with carbonyls almost entirely involve other groups as well. Our results pave the way for more realistic MD simulations of biomolecular systems with anionic membranes, allowing signaling processes involving PS and Ca2+ to be elucidated.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Developing and Benchmarking Sulfate and Sulfamate Force Field Parameters via Ab Initio Molecular Dynamics Simulations To Accurately Model Glycosaminoglycan Electrostatic Interactions

. 2024 Sep 23 ; 64 (18) : 7122-7134. [epub] 20240909

Effective Inclusion of Electronic Polarization Improves the Description of Electrostatic Interactions: The prosECCo75 Biomolecular Force Field

. 2024 Sep 10 ; 20 (17) : 7546-7559. [epub] 20240826

Overlay databank unlocks data-driven analyses of biomolecules for all

. 2024 Feb 07 ; 15 (1) : 1136. [epub] 20240207

Quantitative Comparison against Experiments Reveals Imperfections in Force Fields' Descriptions of POPC-Cholesterol Interactions

. 2023 Sep 26 ; 19 (18) : 6342-6352. [epub] 20230824

Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions

. 2022 Dec 17 ; 12 (12) : . [epub] 20221217

Ionic Strength and Solution Composition Dictate the Adsorption of Cell-Penetrating Peptides onto Phosphatidylcholine Membranes

. 2022 Sep 20 ; 38 (37) : 11284-11295. [epub] 20220909

Accurate Simulations of Lipid Monolayers Require a Water Model with Correct Surface Tension

. 2022 Mar 08 ; 18 (3) : 1862-1869. [epub] 20220208

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace