Developing and Benchmarking Sulfate and Sulfamate Force Field Parameters via Ab Initio Molecular Dynamics Simulations To Accurately Model Glycosaminoglycan Electrostatic Interactions

. 2024 Sep 23 ; 64 (18) : 7122-7134. [epub] 20240909

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39250601

Glycosaminoglycans (GAGs) are negatively charged polysaccharides found on cell surfaces, where they regulate transport pathways of foreign molecules toward the cell. The structural and functional diversity of GAGs is largely attributed to varied sulfation patterns along the polymer chains, which makes understanding their molecular recognition mechanisms crucial. Molecular dynamics (MD) simulations, thanks to their unmatched microscopic resolution, have the potential to be a reference tool for exploring the patterns responsible for biologically relevant interactions. However, the capability of molecular dynamics force fields used in biosimulations to accurately capture sulfation-specific interactions is not well established, partly due to the intrinsic properties of GAGs that pose challenges for most experimental techniques. In this work, we evaluate the performance of molecular dynamics force fields for sulfated GAGs by studying ion pairing of Ca2+ to sulfated moieties─N-methylsulfamate and methylsulfate─that resemble N- and O-sulfation found in GAGs, respectively. We tested available nonpolarizable (CHARMM36 and GLYCAM06) and explicitly polarizable (Drude and AMOEBA) force fields, and derived new implicitly polarizable models through charge scaling (prosECCo75 and GLYCAM-ECC75) that are consistent with our developed "charge-scaling" framework. The calcium-sulfamate/sulfate interaction free energy profiles obtained with the tested force fields were compared against reference ab initio molecular dynamics (AIMD) simulations, which serve as a robust alternative to experiments. AIMD simulations indicate that the preferential Ca2+ binding mode to sulfated GAG groups is solvent-shared pairing. Only our scaled-charge models agree satisfactorily with the AIMD data, while all other force fields exhibit poorer agreement, sometimes even qualitatively. Surprisingly, even explicitly polarizable force fields display a notable disagreement with the AIMD data, likely attributed to difficulties in their optimization and possible inherent limitations in depicting high-charge-density ion interactions accurately. Finally, the underperforming force fields lead to unrealistic aggregation of sulfated saccharides, which qualitatively disagrees with our understanding of the soft glycocalyx environment. Our results highlight the importance of accurately treating electronic polarization in MD simulations of sulfated GAGs and caution against over-reliance on currently available models without thorough validation and optimization.

Zobrazit více v PubMed

Zhang F.; Zhang Z.; Linhardt R. J.. Handbook of glycomics; Academic Press, 2010; pp. 59–80.

Tarbell J. M.; Cancel L. M. The glycocalyx and its significance in human medicine. J. Int. Med. 2016, 280, 97–113. 10.1111/joim.12465. PubMed DOI

Esko J. D.; Selleck S. B. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 2002, 71, 435–471. 10.1146/annurev.biochem.71.110601.135458. PubMed DOI

Soares Da Costa D.; Reis R. L.; Pashkuleva I. Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders. Annu. Rev. Biomed. Eng. 2017, 19, 1–26. 10.1146/annurev-bioeng-071516-044610. PubMed DOI

Vallet S. D.; Berthollier C.; Ricard-Blum S. The glycosaminoglycan interactome 2.0. Am. J. Physiol. - Cell Physiol. 2022, 322, C1271–C1278. 10.1152/ajpcell.00095.2022. PubMed DOI

Bishop J. R.; Schuksz M.; Esko J. D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007, 446, 1030–1037. 10.1038/nature05817. PubMed DOI

Shi D.; Sheng A.; Chi L. Glycosaminoglycan-Protein Interactions and Their Roles in Human Disease. Front. Mol. Biosci. 2021, 8, 64.10.3389/fmolb.2021.639666. PubMed DOI PMC

Linhardt R. J.; Toida T. Role of glycosaminoglycans in cellular communication. Acc. Chem. Res. 2004, 37, 431–438. 10.1021/ar030138x. PubMed DOI

Smock R. G.; Meijers R. Roles of glycosaminoglycans as regulators of ligand/receptor complexes. R. Soc. Open Biol. 2018, 8, 18002610.1098/rsob.180026. PubMed DOI PMC

Misevic G.; Garbarino E. Glycan-to-glycan binding: Molecular recognition through polyvalent interactions mediates specific cell adhesion. Molecules 2021, 26, 397.10.3390/molecules26020397. PubMed DOI PMC

Weinbaum S.; Cancel L. M.; Fu B. M.; Tarbell J. M. The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc. Eng. Technol. 2021, 12, 37–71. 10.1007/s13239-020-00485-9. PubMed DOI PMC

Möckl L. The Emerging Role of the Mammalian Glycocalyx in Functional Membrane Organization and Immune System Regulation. Front. Cell Dev. Biol. 2020, 8, 253.10.3389/fcell.2020.00253. PubMed DOI PMC

Reed M. J.; Damodarasamy M.; Banks W. A. The extracellular matrix of the blood–brain barrier: structural and functional roles in health, aging, and Alzheimer’s disease. Tissue Barriers 2019, 7, 165115710.1080/21688370.2019.1651157. PubMed DOI PMC

Hsieh P. H.; Thieker D. F.; Guerrini M.; Woods R. J.; Liu J. Uncovering the Relationship between Sulphation Patterns and Conformation of Iduronic Acid in Heparan Sulphate. Sci. Rep. 2016, 6, 29602.10.1038/srep29602. PubMed DOI PMC

Paiardi G.; Milanesi M.; Wade R. C.; D’ursi P.; Rusnati M. A bittersweet computational journey among glycosaminoglycans. Biomolecules 2021, 11, 739.10.3390/biom11050739. PubMed DOI PMC

Perez S.; et al. Glycosaminoglycans: What Remains To Be Deciphered?. JACS Au 2023, 3, 628–656. 10.1021/jacsau.2c00569. PubMed DOI PMC

Casalino L.; Gaieb Z.; Goldsmith J. A.; Hjorth C. K.; Dommer A. C.; Harbison A. M.; Fogarty C. A.; Barros E. P.; Taylor B. C.; Mclellan J. S.; Fadda E.; Amaro R. E. Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein. ACS Cent. Sci. 2020, 6, 1722–1734. 10.1021/acscentsci.0c01056. PubMed DOI PMC

Fadda E. Molecular simulations of complex carbohydrates and glycoconjugates. Curr. Opin. Chem. Biol. 2022, 69, 10217510.1016/j.cbpa.2022.102175. PubMed DOI

Plazinska A.; Plazinski W. Comparison of Carbohydrate Force Fields in Molecular Dynamics Simulations of Protein-Carbohydrate Complexes. J. Chem. Theory Comput. 2021, 17, 2575–2585. 10.1021/acs.jctc.1c00071. PubMed DOI

Martinek T.; Duboué-Dijon E.; Timr Š.; Mason P. E.; Baxová K.; Fischer H. E.; Schmidt B.; Pluhařová E.; Jungwirth P. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering. J. Chem. Phys. 2018, 148, 22281310.1063/1.5006779. PubMed DOI

De Oliveira D. M.; Zukowski S. R.; Palivec V.; Hénin J.; Martinez-Seara H.; Ben-Amotz D.; Jungwirth P.; Duboué-Dijon E. Binding of divalent cations to acetate: Molecular simulations guided by Raman spectroscopy. Phys. Chem. Chem. Phys. 2020, 22, 24014–24027. 10.1039/D0CP02987D. PubMed DOI

Puyo-Fourtine J.; Juillé M.; Hénin J.; Clavaguéra C.; Duboué-Dijon E. Consistent Picture of Phosphate-Divalent Cation Binding from Models with Implicit and Explicit Electronic Polarization. J. Phys. Chem. B 2022, 126, 4022–4034. 10.1021/acs.jpcb.2c01158. PubMed DOI

Riopedre-Fernandez M.; Biriukov D.; Dračínský M.; Martinez-Seara H. Hyaluronan-arginine enhanced and dynamic interaction emerges from distinctive molecular signature due to electrostatics and side-chain specificity. Carbohydr. Polym. 2024, 325, 12156810.1016/j.carbpol.2023.121568. PubMed DOI

Herman C. E.; Valiya Parambathu A.; Asthagiri D. N.; Lenhoff A. M. Polarizability Plays a Decisive Role in Modulating Association between Molecular Cations and Anions. J. Phys. Chem. Lett. 2023, 14, 7020–7026. 10.1021/acs.jpclett.3c01566. PubMed DOI

Faller C. E.; Guvench O. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides. J. Phys. Chem. B 2015, 119, 6063–6073. 10.1021/jp511431q. PubMed DOI PMC

Sterling J. D.; Jiang W.; Botello-Smith W. M.; Luo Y. L. Ion pairing and dielectric decrement in glycosaminoglycan brushes. J. Phys. Chem. B 2021, 125, 2771–2780. 10.1021/acs.jpcb.0c11571. PubMed DOI

Samantray S.; Olubiyi O. O.; Strodel B. The influences of sulphation, salt type, and salt concentration on the structural heterogeneity of glycosaminoglycans. Int. J. Mol. Sci. 2021, 22, 11529.10.3390/ijms222111529. PubMed DOI PMC

Kogut M. M.; Maszota-Zieleniak M.; Marcisz M.; Samsonov S. A. Computational insights into the role of calcium ions in protein-glycosaminoglycan systems. Phys. Chem. Chem. Phys. 2021, 23, 3519–3530. 10.1039/D0CP05438K. PubMed DOI

Guvench O.; Whitmore E. K. Sulfation and Calcium Favor Compact Conformations of Chondroitin in Aqueous Solutions. ACS Omega 2021, 6, 13204–13217. 10.1021/acsomega.1c01071. PubMed DOI PMC

Giubertoni G.; De Alba Pérez; Ortíz A.; Bano F.; Zhang X.; Linhardt R. J.; Green D. E.; Deangelis P. L.; Koenderink G. H.; Richter R. P.; Ensing B.; Bakker H. J. Strong Reduction of the Chain Rigidity of Hyaluronan by Selective Binding of Ca2+Ions. Macromolecules 2021, 54, 1137–1146. 10.1021/acs.macromol.0c02242. PubMed DOI PMC

Kogut M. M.; Danielsson A.; Ricard-Blum S.; Samsonov S. A. Impact of calcium ions on the structural and dynamic properties of heparin oligosaccharides by computational analysis. Comput. Biol. Chem. 2022, 99, 10772710.1016/j.compbiolchem.2022.107727. PubMed DOI

Kohagen M.; Mason P. E.; Jungwirth P. Accurate description of calcium solvation in concentrated aqueous solutions. J. Phys. Chem. B 2014, 118, 7902–7909. 10.1021/jp5005693. PubMed DOI

Duboué-Dijon E.; Javanainen M.; Delcroix P.; Jungwirth P.; Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J. Chem. Phys. 2020, 153, 05090110.1063/5.0017775. PubMed DOI

Biriukov D.; Wang H. W.; Rampal N.; Tempra C.; Kula P.; Neuefeind J. C.; Stack A. G.; Předota M. The “good,” the “bad,” and the “hidden” in neutron scattering and molecular dynamics of ionic aqueous solutions. J. Chem. Phys. 2022, 156, 19450510.1063/5.0093643. PubMed DOI

Pluhařová E.; Marsalek O.; Schmidt B.; Jungwirth P. Ab initio molecular dynamics approach to a quantitative description of ion pairing in water. J. Phys. Chem. Lett. 2013, 4, 4177–4181. 10.1021/jz402177q. DOI

Baer M. D.; Mundy C. J. Local Aqueous Solvation Structure Around Ca2+ during Ca2+···Cl- Pair Formation. J. Phys. Chem. B 2016, 120, 1885–1893. 10.1021/acs.jpcb.5b09579. PubMed DOI

Daily M. D.; Baer M. D.; Mundy C. J. Divalent Ion Parameterization Strongly Affects Conformation and Interactions of an Anionic Biomimetic Polymer. J. Phys. Chem. B 2016, 120, 2198–2208. 10.1021/acs.jpcb.5b12277. PubMed DOI

Byrne E. H.; Raiteri P.; Gale J. D. Computational Insight into Calcium-Sulfate Ion Pair Formation. J. Phys. Chem. C 2017, 121, 25956–25966. 10.1021/acs.jpcc.7b09820. DOI

Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; De Groot B. L.; Grubmüller H.; MacKerell A. D. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. 10.1038/nmeth.4067. PubMed DOI PMC

Kirschner K. N.; Yongye A. B.; Tschampel S. M.; González-Outeiriño J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: A generalizable biomolecular force field. carbohydrates. J. Comput. Chem. 2008, 29, 622–655. 10.1002/jcc.20820. PubMed DOI PMC

Nencini R.; Tempra C.; Biriukov D.; Riopedre-Fernandez M.; Chamorro V. C.; Polák J.; Mason P. E.; Ondo D.; Heyda J.; Ollila O. H. S.; Jungwirth P.; Javanainen M.; Martinez-Seara H.. Effective Inclusion of Electronic Polarization Improves the Description of Electrostatic Interactions: The prosECCo75 Biomolecular Force Field. J. Chem. Theory Comput. 2024, 10.1021/acs.jctc.4c00743 PubMed DOI PMC

Lemkul J. A.; Huang J.; Roux B.; Mackerell A. D. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications. Chem. Rev. 2016, 116, 4983–5013. 10.1021/acs.chemrev.5b00505. PubMed DOI PMC

Ponder J. W.; Wu C.; Ren P.; Pande V. S.; Chodera J. D.; Schnieders M. J.; Haque I.; Mobley D. L.; Lambrecht D. S.; Distasio R. A.; Head-Gordon M.; Clark G. N.; Johnson M. E.; Head-Gordon T. Current status of the AMOEBA polarizable force field. J. Phys. Chem. B 2010, 114, 2549–2564. 10.1021/jp910674d. PubMed DOI PMC

Vandevondele J.; Krack M.; Mohamed F.; Parrinello M.; Chassaing T.; Hutter J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128. 10.1016/j.cpc.2004.12.014. DOI

Kühne T. D.; et al. CP2K: An electronic structure and molecular dynamics software package -Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 19410310.1063/5.0007045. PubMed DOI

Ricci A.; Ciccotti G. Algorithms for Brownian dynamics. Mol. Phys. 2003, 101, 1927–1931. 10.1080/0026897031000108113. DOI

Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 01410110.1063/1.2408420. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Zhang Y.; Yang W. Comment on “generalized gradient approximation made simple”. Phys. Rev. Lett. 1998, 80, 890.10.1103/PhysRevLett.80.890. DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. 10.1002/jcc.20495. PubMed DOI

Kostal V.; Mason P. E.; Martinez-Seara H.; Jungwirth P. Common Cations Are Not Polarizable: Effects of Dispersion Correction on Hydration Structures from Ab Initio Molecular Dynamics. J. Phys. Chem. Lett. 2023, 14, 4403–4408. 10.1021/acs.jpclett.3c00856. PubMed DOI PMC

VandeVondele J.; Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 11410510.1063/1.2770708. PubMed DOI

Goedecker S.; Teter M. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B - Condens. Matter Mater. Phys. 1996, 54, 1703–1710. 10.1103/PhysRevB.54.1703. PubMed DOI

Lippert G.; Hutter J.; Parrinello M. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 1997, 92, 477–488. 10.1080/00268979709482119. DOI

Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268. 10.1080/00268978400101201. DOI

Hoover W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. 10.1103/PhysRevA.31.1695. PubMed DOI

Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI

Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI

Hess B.; Bekker H.; Berendsen H. J.; Fraaije J. G. LINCS: A Linear Constraint Solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Hess B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 2008, 4, 116–122. 10.1021/ct700200b. PubMed DOI

Miyamoto S.; Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI

Leontyev I. V.; Stuchebrukhov A. A. Electronic continuum model for molecular dynamics simulations. J. Chem. Phys. 2009, 130, 08510210.1063/1.3060164. PubMed DOI PMC

Leontyev I. V.; Stuchebrukhov A. A. Electronic continuum model for molecular dynamics simulations of biological molecules. J. Chem. Theory Comput. 2010, 6, 1498–1508. 10.1021/ct9005807. PubMed DOI PMC

Leontyev I.; Stuchebrukhov A. Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 2011, 13, 2613–2626. 10.1039/c0cp01971b. PubMed DOI

Kostal V.; Jungwirth P.; Martinez-Seara H. Nonaqueous Ion Pairing Exemplifies the Case for Including Electronic Polarization in Molecular Dynamics Simulations. J. Phys. Chem. Lett. 2023, 14, 8691–8696. 10.1021/acs.jpclett.3c02231. PubMed DOI PMC

Předota M.; Biriukov D. Electronic continuum correction without scaled charges. J. Mol. Liq. 2020, 314, 11357110.1016/j.molliq.2020.113571. DOI

Blazquez S.; Conde M. M.; Vega C. Scaled charges for ions: An improvement but not the final word for modeling electrolytes in water. J. Chem. Phys. 2023, 158, 05450510.1063/5.0136498. PubMed DOI

Zeron I. M.; Abascal J. L.; Vega C. A force field of Li+, Na+, K+, Mg2+, Ca2+, Cl-, and S O 4 2 - In aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions. J. Chem. Phys. 2019, 151, 10450110.1063/1.5121392. PubMed DOI

Biriukov D.; Kroutil O.; Kabeláč M.; Ridley M. K.; MacHesky M. L.; Předota M. Oxalic Acid Adsorption on Rutile: Molecular Dynamics and ab Initio Calculations. Langmuir 2019, 35, 7617–7630. 10.1021/acs.langmuir.8b03984. PubMed DOI

Nguyen M. T. H.; Biriukov D.; Tempra C.; Baxova K.; Martinez-Seara H.; Evci H.; Singh V.; Šachl R.; Hof M.; Jungwirth P.; Javanainen M.; Vazdar M. Ionic Strength and Solution Composition Dictate the Adsorption of Cell-Penetrating Peptides onto Phosphatidylcholine Membranes. Langmuir 2022, 38, 11284–11295. 10.1021/acs.langmuir.2c01435. PubMed DOI PMC

Biriukov D.; Kroutil O.; Předota M. Modeling of solid-liquid interfaces using scaled charges: rutile (110) surfaces. Phys. Chem. Chem. Phys. 2018, 20, 23954–23966. 10.1039/C8CP04535F. PubMed DOI

Yoo J.; Aksimentiev A. New tricks for old dogs: Improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 2018, 20, 8432–8449. 10.1039/C7CP08185E. PubMed DOI PMC

Melcr J.; Ferreira T. M.; Jungwirth P.; Ollila O. H. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization. J. Chem. Theory Comput. 2020, 16, 738–748. 10.1021/acs.jctc.9b00824. PubMed DOI

Tolmachev D. A.; Boyko O. S.; Lukasheva N. V.; Martinez-Seara H.; Karttunen M. Overbinding and Qualitative and Quantitative Changes Caused by Simple Na+ and K+ Ions in Polyelectrolyte Simulations: Comparison of Force Fields with and without NBFIX and ECC Corrections. J. Chem. Theory Comput. 2020, 16, 677–687. 10.1021/acs.jctc.9b00813. PubMed DOI

Lee J.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. 10.1021/acs.jctc.5b00935. PubMed DOI PMC

Park S. J.; Lee J. J.; Qi Y.; Kern N. R.; Lee H. S.; Jo S.; Joung I.; Joo K.; Lee J. J.; Im W. CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 2019, 29, 320–331. 10.1093/glycob/cwz003. PubMed DOI PMC

Singh A.; Montgomery D.; Xue X.; Foley B. L.; Woods R. J. GAG builder: A web-tool for modeling 3D structures of glycosaminoglycans. Glycobiology 2019, 29, 515–518. 10.1093/glycob/cwz027. PubMed DOI PMC

Bernardi A.; Faller R.; Reith D.; Kirschner K. N. ACPYPE update for nonuniform 1–4 scale factors: Conversion of the GLYCAM06 force field from AMBER to GROMACS. SoftwareX 2019, 10, 10024110.1016/j.softx.2019.100241. DOI

Hub J. S.; De Groot B. L.; Van Der Spoel D. G-whams-a free Weighted Histogram Analysis implementation including robust error and autocorrelation estimates. J. Chem. Theory Comput. 2010, 6, 3713–3720. 10.1021/ct100494z. DOI

Timko J.; Bucher D.; Kuyucak S. Dissociation of NaCl in water from ab initio molecular dynamics simulations. J. Chem. Phys. 2010, 132, 11451010.1063/1.3360310. PubMed DOI

Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI

Lindahl V.; Lidmar J.; Hess B. Accelerated weight histogram method for exploring free energy landscapes. J. Chem. Phys. 2014, 141, 04411010.1063/1.4890371. PubMed DOI

Hunter G. K.; Wong K. S.; Kim J. J. Binding of calcium to glycosaminoglycans: An equilibrium dialysis study. Arch. Biochem. Biophys. 1988, 260, 161–167. 10.1016/0003-9861(88)90437-7. PubMed DOI

Guvench O.; Hatcher E.; Venable R. M.; Pastor R. W.; MacKerell A. D. CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J. Chem. Theory Comput. 2009, 5, 2353–2370. 10.1021/ct900242e. PubMed DOI PMC

MacKerell A. D.; Raman E. P.; Guvench O. CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. J. Phys. Chem. B 2010, 114, 12981–12994. 10.1021/jp105758h. PubMed DOI PMC

Guvench O.; Mallajosyula S. S.; Raman E. P.; Hatcher E.; Vanommeslaeghe K.; Foster T. J.; Jamison F. W.; MacKerell A. D. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J. Chem. Theory Comput. 2011, 7, 3162–3180. 10.1021/ct200328p. PubMed DOI PMC

Mallajosyula S. S.; Guvench O.; Hatcher E.; MacKerell A. D. CHARMM additive all-atom force field for phosphate and sulfate linked to carbohydrates. J. Chem. Theory Comput. 2012, 8, 759–776. 10.1021/ct200792v. PubMed DOI PMC

Singh A.; Tessier M. B.; Pederson K.; Wang X.; Venot A. P.; Boons G. J.; Prestegard J. H.; Woods R. J. Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans. Can. J. Chem. 2016, 94, 927–935. 10.1139/cjc-2015-0606. PubMed DOI PMC

Tian C.; Kasavajhala K.; Belfon K. A.; Raguette L.; Huang H.; Migues A. N.; Bickel J.; Wang Y.; Pincay J.; Wu Q.; Simmerling C. Ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. 10.1021/acs.jctc.9b00591. PubMed DOI

Dickson C. J.; Walker R. C.; Gould I. R. Lipid21: Complex Lipid Membrane Simulations with AMBER. J. Chem. Theory Comput. 2022, 18, 1726–1736. 10.1021/acs.jctc.1c01217. PubMed DOI PMC

Liao J.; Marinelli F.; Lee C.; Huang Y.; Faraldo-Gómez J. D.; Jiang Y. Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger. Nat. Struct. Mol. Biol. 2016, 23, 590–599. 10.1038/nsmb.3230. PubMed DOI PMC

Han K.; Venable R. M.; Bryant A. M.; Legacy C. J.; Shen R.; Li H.; Roux B.; Gericke A.; Pastor R. W. Graph-Theoretic Analysis of Monomethyl Phosphate Clustering in Ionic Solutions. J. Phys. Chem. B 2018, 122, 1484–1494. 10.1021/acs.jpcb.7b10730. PubMed DOI PMC

Aytenfisu A. H.; Yang M.; Mackerell A. D. CHARMM Drude Polarizable Force Field for Glycosidic Linkages Involving Pyranoses and Furanoses. J. Chem. Theory Comput. 2018, 14, 3132–3143. 10.1021/acs.jctc.8b00175. PubMed DOI PMC

Pandey P.; Aytenfisu A. H.; Mackerell A. D.; Mallajosyula S. S. Drude Polarizable Force Field Parametrization of Carboxylate and N-Acetyl Amine Carbohydrate Derivatives. J. Chem. Theory Comput. 2019, 15, 4982–5000. 10.1021/acs.jctc.9b00327. PubMed DOI PMC

Kognole A. A.; Aytenfisu A. H.; MacKerell A. D. Balanced polarizable Drude force field parameters for molecular anions: phosphates, sulfates, sulfamates, and oxides. J. Mol. Model. 2020, 26, 152.10.1007/s00894-020-04399-0. PubMed DOI PMC

Li H.; Ngo V.; Da Silva M. C.; Salahub D. R.; Callahan K.; Roux B.; Noskov S. Y. Representation of Ion-Protein Interactions Using the Drude Polarizable Force-Field. J. Phys. Chem. B 2015, 119, 9401–9416. 10.1021/jp510560k. PubMed DOI PMC

Lemkul J. A.; Mackerell A. D. Balancing the interactions of Mg2+ in aqueous solution and with nucleic acid moieties for a polarizable force field based on the classical drude oscillator model. J. Phys. Chem. B 2016, 120, 11436–11448. 10.1021/acs.jpcb.6b09262. PubMed DOI PMC

Tan Q.; Ding Y.; Qiu Z.; Huang J. Binding Energy and Free Energy of Calcium Ion to Calmodulin EF-Hands with the Drude Polarizable Force Field. ACS Phys. Chem. Au 2022, 2, 143–155. 10.1021/acsphyschemau.1c00039. PubMed DOI PMC

Nan Y.; MacKerell A. D. Balancing Group I Monatomic Ion-Polar Compound Interactions for Condensed Phase Simulation in the Polarizable Drude Force Field. J. Chem. Theory Comput. 2024, 20, 3242–3257. 10.1021/acs.jctc.3c01380. PubMed DOI PMC

Liu C.; Piquemal J. P.; Ren P. AMOEBA+ Classical Potential for Modeling Molecular Interactions. J. Chem. Theory Comput. 2019, 15, 4122–4139. 10.1021/acs.jctc.9b00261. PubMed DOI PMC

Lay W. K.; Miller M. S.; Elcock A. H. Optimizing Solute-Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements. J. Chem. Theory Comput. 2016, 12, 1401–1407. 10.1021/acs.jctc.5b01136. PubMed DOI PMC

Lay W. K.; Miller M. S.; Elcock A. H. Reparameterization of Solute-Solute Interactions for Amino Acid-Sugar Systems Using Isopiestic Osmotic Pressure Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017, 13, 1874–1882. 10.1021/acs.jctc.7b00194. PubMed DOI PMC

Nachtmann F.; Atzl G.; Roth W.. Analytical Profiles of Drug Substances, v. 12, Florey K., Ed.; Academic Press, 1983; pp. 215–276.

World Health Organization . Department of Essential Medicines and Pharmaceutical Policies. In The International Pharmacopoeia; 12th ed.; World Health Organization: Geneva, 2022.

Cruces Chamorro V.; Jungwirth P.; Martinez-Seara H. Building Water Models Compatible with Charge Scaling Molecular Dynamics. J. Phys. Chem. Lett. 2024, 15, 2922–2928. 10.1021/acs.jpclett.4c00344. PubMed DOI PMC

Marcisz M.; Samsonov S. A. Solvent Model Benchmark for Molecular Dynamics of Glycosaminoglycans. J. Chem. Inf. Model. 2023, 63, 2147–2157. 10.1021/acs.jcim.2c01472. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...