Developing and Benchmarking Sulfate and Sulfamate Force Field Parameters via Ab Initio Molecular Dynamics Simulations To Accurately Model Glycosaminoglycan Electrostatic Interactions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39250601
PubMed Central
PMC11423409
DOI
10.1021/acs.jcim.4c00981
Knihovny.cz E-zdroje
- MeSH
- glykosaminoglykany * chemie MeSH
- kyseliny sulfonové chemie MeSH
- simulace molekulární dynamiky * MeSH
- sírany * chemie MeSH
- statická elektřina * MeSH
- vápník chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykosaminoglykany * MeSH
- kyseliny sulfonové MeSH
- sírany * MeSH
- sulfamic acid MeSH Prohlížeč
- vápník MeSH
Glycosaminoglycans (GAGs) are negatively charged polysaccharides found on cell surfaces, where they regulate transport pathways of foreign molecules toward the cell. The structural and functional diversity of GAGs is largely attributed to varied sulfation patterns along the polymer chains, which makes understanding their molecular recognition mechanisms crucial. Molecular dynamics (MD) simulations, thanks to their unmatched microscopic resolution, have the potential to be a reference tool for exploring the patterns responsible for biologically relevant interactions. However, the capability of molecular dynamics force fields used in biosimulations to accurately capture sulfation-specific interactions is not well established, partly due to the intrinsic properties of GAGs that pose challenges for most experimental techniques. In this work, we evaluate the performance of molecular dynamics force fields for sulfated GAGs by studying ion pairing of Ca2+ to sulfated moieties─N-methylsulfamate and methylsulfate─that resemble N- and O-sulfation found in GAGs, respectively. We tested available nonpolarizable (CHARMM36 and GLYCAM06) and explicitly polarizable (Drude and AMOEBA) force fields, and derived new implicitly polarizable models through charge scaling (prosECCo75 and GLYCAM-ECC75) that are consistent with our developed "charge-scaling" framework. The calcium-sulfamate/sulfate interaction free energy profiles obtained with the tested force fields were compared against reference ab initio molecular dynamics (AIMD) simulations, which serve as a robust alternative to experiments. AIMD simulations indicate that the preferential Ca2+ binding mode to sulfated GAG groups is solvent-shared pairing. Only our scaled-charge models agree satisfactorily with the AIMD data, while all other force fields exhibit poorer agreement, sometimes even qualitatively. Surprisingly, even explicitly polarizable force fields display a notable disagreement with the AIMD data, likely attributed to difficulties in their optimization and possible inherent limitations in depicting high-charge-density ion interactions accurately. Finally, the underperforming force fields lead to unrealistic aggregation of sulfated saccharides, which qualitatively disagrees with our understanding of the soft glycocalyx environment. Our results highlight the importance of accurately treating electronic polarization in MD simulations of sulfated GAGs and caution against over-reliance on currently available models without thorough validation and optimization.
Zobrazit více v PubMed
Zhang F.; Zhang Z.; Linhardt R. J.. Handbook of glycomics; Academic Press, 2010; pp. 59–80.
Tarbell J. M.; Cancel L. M. The glycocalyx and its significance in human medicine. J. Int. Med. 2016, 280, 97–113. 10.1111/joim.12465. PubMed DOI
Esko J. D.; Selleck S. B. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 2002, 71, 435–471. 10.1146/annurev.biochem.71.110601.135458. PubMed DOI
Soares Da Costa D.; Reis R. L.; Pashkuleva I. Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders. Annu. Rev. Biomed. Eng. 2017, 19, 1–26. 10.1146/annurev-bioeng-071516-044610. PubMed DOI
Vallet S. D.; Berthollier C.; Ricard-Blum S. The glycosaminoglycan interactome 2.0. Am. J. Physiol. - Cell Physiol. 2022, 322, C1271–C1278. 10.1152/ajpcell.00095.2022. PubMed DOI
Bishop J. R.; Schuksz M.; Esko J. D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007, 446, 1030–1037. 10.1038/nature05817. PubMed DOI
Shi D.; Sheng A.; Chi L. Glycosaminoglycan-Protein Interactions and Their Roles in Human Disease. Front. Mol. Biosci. 2021, 8, 64.10.3389/fmolb.2021.639666. PubMed DOI PMC
Linhardt R. J.; Toida T. Role of glycosaminoglycans in cellular communication. Acc. Chem. Res. 2004, 37, 431–438. 10.1021/ar030138x. PubMed DOI
Smock R. G.; Meijers R. Roles of glycosaminoglycans as regulators of ligand/receptor complexes. R. Soc. Open Biol. 2018, 8, 18002610.1098/rsob.180026. PubMed DOI PMC
Misevic G.; Garbarino E. Glycan-to-glycan binding: Molecular recognition through polyvalent interactions mediates specific cell adhesion. Molecules 2021, 26, 397.10.3390/molecules26020397. PubMed DOI PMC
Weinbaum S.; Cancel L. M.; Fu B. M.; Tarbell J. M. The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc. Eng. Technol. 2021, 12, 37–71. 10.1007/s13239-020-00485-9. PubMed DOI PMC
Möckl L. The Emerging Role of the Mammalian Glycocalyx in Functional Membrane Organization and Immune System Regulation. Front. Cell Dev. Biol. 2020, 8, 253.10.3389/fcell.2020.00253. PubMed DOI PMC
Reed M. J.; Damodarasamy M.; Banks W. A. The extracellular matrix of the blood–brain barrier: structural and functional roles in health, aging, and Alzheimer’s disease. Tissue Barriers 2019, 7, 165115710.1080/21688370.2019.1651157. PubMed DOI PMC
Hsieh P. H.; Thieker D. F.; Guerrini M.; Woods R. J.; Liu J. Uncovering the Relationship between Sulphation Patterns and Conformation of Iduronic Acid in Heparan Sulphate. Sci. Rep. 2016, 6, 29602.10.1038/srep29602. PubMed DOI PMC
Paiardi G.; Milanesi M.; Wade R. C.; D’ursi P.; Rusnati M. A bittersweet computational journey among glycosaminoglycans. Biomolecules 2021, 11, 739.10.3390/biom11050739. PubMed DOI PMC
Perez S.; et al. Glycosaminoglycans: What Remains To Be Deciphered?. JACS Au 2023, 3, 628–656. 10.1021/jacsau.2c00569. PubMed DOI PMC
Casalino L.; Gaieb Z.; Goldsmith J. A.; Hjorth C. K.; Dommer A. C.; Harbison A. M.; Fogarty C. A.; Barros E. P.; Taylor B. C.; Mclellan J. S.; Fadda E.; Amaro R. E. Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein. ACS Cent. Sci. 2020, 6, 1722–1734. 10.1021/acscentsci.0c01056. PubMed DOI PMC
Fadda E. Molecular simulations of complex carbohydrates and glycoconjugates. Curr. Opin. Chem. Biol. 2022, 69, 10217510.1016/j.cbpa.2022.102175. PubMed DOI
Plazinska A.; Plazinski W. Comparison of Carbohydrate Force Fields in Molecular Dynamics Simulations of Protein-Carbohydrate Complexes. J. Chem. Theory Comput. 2021, 17, 2575–2585. 10.1021/acs.jctc.1c00071. PubMed DOI
Martinek T.; Duboué-Dijon E.; Timr Š.; Mason P. E.; Baxová K.; Fischer H. E.; Schmidt B.; Pluhařová E.; Jungwirth P. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering. J. Chem. Phys. 2018, 148, 22281310.1063/1.5006779. PubMed DOI
De Oliveira D. M.; Zukowski S. R.; Palivec V.; Hénin J.; Martinez-Seara H.; Ben-Amotz D.; Jungwirth P.; Duboué-Dijon E. Binding of divalent cations to acetate: Molecular simulations guided by Raman spectroscopy. Phys. Chem. Chem. Phys. 2020, 22, 24014–24027. 10.1039/D0CP02987D. PubMed DOI
Puyo-Fourtine J.; Juillé M.; Hénin J.; Clavaguéra C.; Duboué-Dijon E. Consistent Picture of Phosphate-Divalent Cation Binding from Models with Implicit and Explicit Electronic Polarization. J. Phys. Chem. B 2022, 126, 4022–4034. 10.1021/acs.jpcb.2c01158. PubMed DOI
Riopedre-Fernandez M.; Biriukov D.; Dračínský M.; Martinez-Seara H. Hyaluronan-arginine enhanced and dynamic interaction emerges from distinctive molecular signature due to electrostatics and side-chain specificity. Carbohydr. Polym. 2024, 325, 12156810.1016/j.carbpol.2023.121568. PubMed DOI
Herman C. E.; Valiya Parambathu A.; Asthagiri D. N.; Lenhoff A. M. Polarizability Plays a Decisive Role in Modulating Association between Molecular Cations and Anions. J. Phys. Chem. Lett. 2023, 14, 7020–7026. 10.1021/acs.jpclett.3c01566. PubMed DOI
Faller C. E.; Guvench O. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides. J. Phys. Chem. B 2015, 119, 6063–6073. 10.1021/jp511431q. PubMed DOI PMC
Sterling J. D.; Jiang W.; Botello-Smith W. M.; Luo Y. L. Ion pairing and dielectric decrement in glycosaminoglycan brushes. J. Phys. Chem. B 2021, 125, 2771–2780. 10.1021/acs.jpcb.0c11571. PubMed DOI
Samantray S.; Olubiyi O. O.; Strodel B. The influences of sulphation, salt type, and salt concentration on the structural heterogeneity of glycosaminoglycans. Int. J. Mol. Sci. 2021, 22, 11529.10.3390/ijms222111529. PubMed DOI PMC
Kogut M. M.; Maszota-Zieleniak M.; Marcisz M.; Samsonov S. A. Computational insights into the role of calcium ions in protein-glycosaminoglycan systems. Phys. Chem. Chem. Phys. 2021, 23, 3519–3530. 10.1039/D0CP05438K. PubMed DOI
Guvench O.; Whitmore E. K. Sulfation and Calcium Favor Compact Conformations of Chondroitin in Aqueous Solutions. ACS Omega 2021, 6, 13204–13217. 10.1021/acsomega.1c01071. PubMed DOI PMC
Giubertoni G.; De Alba Pérez; Ortíz A.; Bano F.; Zhang X.; Linhardt R. J.; Green D. E.; Deangelis P. L.; Koenderink G. H.; Richter R. P.; Ensing B.; Bakker H. J. Strong Reduction of the Chain Rigidity of Hyaluronan by Selective Binding of Ca2+Ions. Macromolecules 2021, 54, 1137–1146. 10.1021/acs.macromol.0c02242. PubMed DOI PMC
Kogut M. M.; Danielsson A.; Ricard-Blum S.; Samsonov S. A. Impact of calcium ions on the structural and dynamic properties of heparin oligosaccharides by computational analysis. Comput. Biol. Chem. 2022, 99, 10772710.1016/j.compbiolchem.2022.107727. PubMed DOI
Kohagen M.; Mason P. E.; Jungwirth P. Accurate description of calcium solvation in concentrated aqueous solutions. J. Phys. Chem. B 2014, 118, 7902–7909. 10.1021/jp5005693. PubMed DOI
Duboué-Dijon E.; Javanainen M.; Delcroix P.; Jungwirth P.; Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J. Chem. Phys. 2020, 153, 05090110.1063/5.0017775. PubMed DOI
Biriukov D.; Wang H. W.; Rampal N.; Tempra C.; Kula P.; Neuefeind J. C.; Stack A. G.; Předota M. The “good,” the “bad,” and the “hidden” in neutron scattering and molecular dynamics of ionic aqueous solutions. J. Chem. Phys. 2022, 156, 19450510.1063/5.0093643. PubMed DOI
Pluhařová E.; Marsalek O.; Schmidt B.; Jungwirth P. Ab initio molecular dynamics approach to a quantitative description of ion pairing in water. J. Phys. Chem. Lett. 2013, 4, 4177–4181. 10.1021/jz402177q. DOI
Baer M. D.; Mundy C. J. Local Aqueous Solvation Structure Around Ca2+ during Ca2+···Cl- Pair Formation. J. Phys. Chem. B 2016, 120, 1885–1893. 10.1021/acs.jpcb.5b09579. PubMed DOI
Daily M. D.; Baer M. D.; Mundy C. J. Divalent Ion Parameterization Strongly Affects Conformation and Interactions of an Anionic Biomimetic Polymer. J. Phys. Chem. B 2016, 120, 2198–2208. 10.1021/acs.jpcb.5b12277. PubMed DOI
Byrne E. H.; Raiteri P.; Gale J. D. Computational Insight into Calcium-Sulfate Ion Pair Formation. J. Phys. Chem. C 2017, 121, 25956–25966. 10.1021/acs.jpcc.7b09820. DOI
Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; De Groot B. L.; Grubmüller H.; MacKerell A. D. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. 10.1038/nmeth.4067. PubMed DOI PMC
Kirschner K. N.; Yongye A. B.; Tschampel S. M.; González-Outeiriño J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: A generalizable biomolecular force field. carbohydrates. J. Comput. Chem. 2008, 29, 622–655. 10.1002/jcc.20820. PubMed DOI PMC
Nencini R.; Tempra C.; Biriukov D.; Riopedre-Fernandez M.; Chamorro V. C.; Polák J.; Mason P. E.; Ondo D.; Heyda J.; Ollila O. H. S.; Jungwirth P.; Javanainen M.; Martinez-Seara H.. Effective Inclusion of Electronic Polarization Improves the Description of Electrostatic Interactions: The prosECCo75 Biomolecular Force Field. J. Chem. Theory Comput. 2024, 10.1021/acs.jctc.4c00743 PubMed DOI PMC
Lemkul J. A.; Huang J.; Roux B.; Mackerell A. D. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications. Chem. Rev. 2016, 116, 4983–5013. 10.1021/acs.chemrev.5b00505. PubMed DOI PMC
Ponder J. W.; Wu C.; Ren P.; Pande V. S.; Chodera J. D.; Schnieders M. J.; Haque I.; Mobley D. L.; Lambrecht D. S.; Distasio R. A.; Head-Gordon M.; Clark G. N.; Johnson M. E.; Head-Gordon T. Current status of the AMOEBA polarizable force field. J. Phys. Chem. B 2010, 114, 2549–2564. 10.1021/jp910674d. PubMed DOI PMC
Vandevondele J.; Krack M.; Mohamed F.; Parrinello M.; Chassaing T.; Hutter J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128. 10.1016/j.cpc.2004.12.014. DOI
Kühne T. D.; et al. CP2K: An electronic structure and molecular dynamics software package -Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 19410310.1063/5.0007045. PubMed DOI
Ricci A.; Ciccotti G. Algorithms for Brownian dynamics. Mol. Phys. 2003, 101, 1927–1931. 10.1080/0026897031000108113. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 01410110.1063/1.2408420. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Zhang Y.; Yang W. Comment on “generalized gradient approximation made simple”. Phys. Rev. Lett. 1998, 80, 890.10.1103/PhysRevLett.80.890. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. 10.1002/jcc.20495. PubMed DOI
Kostal V.; Mason P. E.; Martinez-Seara H.; Jungwirth P. Common Cations Are Not Polarizable: Effects of Dispersion Correction on Hydration Structures from Ab Initio Molecular Dynamics. J. Phys. Chem. Lett. 2023, 14, 4403–4408. 10.1021/acs.jpclett.3c00856. PubMed DOI PMC
VandeVondele J.; Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 11410510.1063/1.2770708. PubMed DOI
Goedecker S.; Teter M. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B - Condens. Matter Mater. Phys. 1996, 54, 1703–1710. 10.1103/PhysRevB.54.1703. PubMed DOI
Lippert G.; Hutter J.; Parrinello M. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 1997, 92, 477–488. 10.1080/00268979709482119. DOI
Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268. 10.1080/00268978400101201. DOI
Hoover W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. 10.1103/PhysRevA.31.1695. PubMed DOI
Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Hess B.; Bekker H.; Berendsen H. J.; Fraaije J. G. LINCS: A Linear Constraint Solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Hess B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 2008, 4, 116–122. 10.1021/ct700200b. PubMed DOI
Miyamoto S.; Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI
Leontyev I. V.; Stuchebrukhov A. A. Electronic continuum model for molecular dynamics simulations. J. Chem. Phys. 2009, 130, 08510210.1063/1.3060164. PubMed DOI PMC
Leontyev I. V.; Stuchebrukhov A. A. Electronic continuum model for molecular dynamics simulations of biological molecules. J. Chem. Theory Comput. 2010, 6, 1498–1508. 10.1021/ct9005807. PubMed DOI PMC
Leontyev I.; Stuchebrukhov A. Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 2011, 13, 2613–2626. 10.1039/c0cp01971b. PubMed DOI
Kostal V.; Jungwirth P.; Martinez-Seara H. Nonaqueous Ion Pairing Exemplifies the Case for Including Electronic Polarization in Molecular Dynamics Simulations. J. Phys. Chem. Lett. 2023, 14, 8691–8696. 10.1021/acs.jpclett.3c02231. PubMed DOI PMC
Předota M.; Biriukov D. Electronic continuum correction without scaled charges. J. Mol. Liq. 2020, 314, 11357110.1016/j.molliq.2020.113571. DOI
Blazquez S.; Conde M. M.; Vega C. Scaled charges for ions: An improvement but not the final word for modeling electrolytes in water. J. Chem. Phys. 2023, 158, 05450510.1063/5.0136498. PubMed DOI
Zeron I. M.; Abascal J. L.; Vega C. A force field of Li+, Na+, K+, Mg2+, Ca2+, Cl-, and S O 4 2 - In aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions. J. Chem. Phys. 2019, 151, 10450110.1063/1.5121392. PubMed DOI
Biriukov D.; Kroutil O.; Kabeláč M.; Ridley M. K.; MacHesky M. L.; Předota M. Oxalic Acid Adsorption on Rutile: Molecular Dynamics and ab Initio Calculations. Langmuir 2019, 35, 7617–7630. 10.1021/acs.langmuir.8b03984. PubMed DOI
Nguyen M. T. H.; Biriukov D.; Tempra C.; Baxova K.; Martinez-Seara H.; Evci H.; Singh V.; Šachl R.; Hof M.; Jungwirth P.; Javanainen M.; Vazdar M. Ionic Strength and Solution Composition Dictate the Adsorption of Cell-Penetrating Peptides onto Phosphatidylcholine Membranes. Langmuir 2022, 38, 11284–11295. 10.1021/acs.langmuir.2c01435. PubMed DOI PMC
Biriukov D.; Kroutil O.; Předota M. Modeling of solid-liquid interfaces using scaled charges: rutile (110) surfaces. Phys. Chem. Chem. Phys. 2018, 20, 23954–23966. 10.1039/C8CP04535F. PubMed DOI
Yoo J.; Aksimentiev A. New tricks for old dogs: Improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 2018, 20, 8432–8449. 10.1039/C7CP08185E. PubMed DOI PMC
Melcr J.; Ferreira T. M.; Jungwirth P.; Ollila O. H. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization. J. Chem. Theory Comput. 2020, 16, 738–748. 10.1021/acs.jctc.9b00824. PubMed DOI
Tolmachev D. A.; Boyko O. S.; Lukasheva N. V.; Martinez-Seara H.; Karttunen M. Overbinding and Qualitative and Quantitative Changes Caused by Simple Na+ and K+ Ions in Polyelectrolyte Simulations: Comparison of Force Fields with and without NBFIX and ECC Corrections. J. Chem. Theory Comput. 2020, 16, 677–687. 10.1021/acs.jctc.9b00813. PubMed DOI
Lee J.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. 10.1021/acs.jctc.5b00935. PubMed DOI PMC
Park S. J.; Lee J. J.; Qi Y.; Kern N. R.; Lee H. S.; Jo S.; Joung I.; Joo K.; Lee J. J.; Im W. CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 2019, 29, 320–331. 10.1093/glycob/cwz003. PubMed DOI PMC
Singh A.; Montgomery D.; Xue X.; Foley B. L.; Woods R. J. GAG builder: A web-tool for modeling 3D structures of glycosaminoglycans. Glycobiology 2019, 29, 515–518. 10.1093/glycob/cwz027. PubMed DOI PMC
Bernardi A.; Faller R.; Reith D.; Kirschner K. N. ACPYPE update for nonuniform 1–4 scale factors: Conversion of the GLYCAM06 force field from AMBER to GROMACS. SoftwareX 2019, 10, 10024110.1016/j.softx.2019.100241. DOI
Hub J. S.; De Groot B. L.; Van Der Spoel D. G-whams-a free Weighted Histogram Analysis implementation including robust error and autocorrelation estimates. J. Chem. Theory Comput. 2010, 6, 3713–3720. 10.1021/ct100494z. DOI
Timko J.; Bucher D.; Kuyucak S. Dissociation of NaCl in water from ab initio molecular dynamics simulations. J. Chem. Phys. 2010, 132, 11451010.1063/1.3360310. PubMed DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Lindahl V.; Lidmar J.; Hess B. Accelerated weight histogram method for exploring free energy landscapes. J. Chem. Phys. 2014, 141, 04411010.1063/1.4890371. PubMed DOI
Hunter G. K.; Wong K. S.; Kim J. J. Binding of calcium to glycosaminoglycans: An equilibrium dialysis study. Arch. Biochem. Biophys. 1988, 260, 161–167. 10.1016/0003-9861(88)90437-7. PubMed DOI
Guvench O.; Hatcher E.; Venable R. M.; Pastor R. W.; MacKerell A. D. CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J. Chem. Theory Comput. 2009, 5, 2353–2370. 10.1021/ct900242e. PubMed DOI PMC
MacKerell A. D.; Raman E. P.; Guvench O. CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. J. Phys. Chem. B 2010, 114, 12981–12994. 10.1021/jp105758h. PubMed DOI PMC
Guvench O.; Mallajosyula S. S.; Raman E. P.; Hatcher E.; Vanommeslaeghe K.; Foster T. J.; Jamison F. W.; MacKerell A. D. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J. Chem. Theory Comput. 2011, 7, 3162–3180. 10.1021/ct200328p. PubMed DOI PMC
Mallajosyula S. S.; Guvench O.; Hatcher E.; MacKerell A. D. CHARMM additive all-atom force field for phosphate and sulfate linked to carbohydrates. J. Chem. Theory Comput. 2012, 8, 759–776. 10.1021/ct200792v. PubMed DOI PMC
Singh A.; Tessier M. B.; Pederson K.; Wang X.; Venot A. P.; Boons G. J.; Prestegard J. H.; Woods R. J. Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans. Can. J. Chem. 2016, 94, 927–935. 10.1139/cjc-2015-0606. PubMed DOI PMC
Tian C.; Kasavajhala K.; Belfon K. A.; Raguette L.; Huang H.; Migues A. N.; Bickel J.; Wang Y.; Pincay J.; Wu Q.; Simmerling C. Ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. 10.1021/acs.jctc.9b00591. PubMed DOI
Dickson C. J.; Walker R. C.; Gould I. R. Lipid21: Complex Lipid Membrane Simulations with AMBER. J. Chem. Theory Comput. 2022, 18, 1726–1736. 10.1021/acs.jctc.1c01217. PubMed DOI PMC
Liao J.; Marinelli F.; Lee C.; Huang Y.; Faraldo-Gómez J. D.; Jiang Y. Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger. Nat. Struct. Mol. Biol. 2016, 23, 590–599. 10.1038/nsmb.3230. PubMed DOI PMC
Han K.; Venable R. M.; Bryant A. M.; Legacy C. J.; Shen R.; Li H.; Roux B.; Gericke A.; Pastor R. W. Graph-Theoretic Analysis of Monomethyl Phosphate Clustering in Ionic Solutions. J. Phys. Chem. B 2018, 122, 1484–1494. 10.1021/acs.jpcb.7b10730. PubMed DOI PMC
Aytenfisu A. H.; Yang M.; Mackerell A. D. CHARMM Drude Polarizable Force Field for Glycosidic Linkages Involving Pyranoses and Furanoses. J. Chem. Theory Comput. 2018, 14, 3132–3143. 10.1021/acs.jctc.8b00175. PubMed DOI PMC
Pandey P.; Aytenfisu A. H.; Mackerell A. D.; Mallajosyula S. S. Drude Polarizable Force Field Parametrization of Carboxylate and N-Acetyl Amine Carbohydrate Derivatives. J. Chem. Theory Comput. 2019, 15, 4982–5000. 10.1021/acs.jctc.9b00327. PubMed DOI PMC
Kognole A. A.; Aytenfisu A. H.; MacKerell A. D. Balanced polarizable Drude force field parameters for molecular anions: phosphates, sulfates, sulfamates, and oxides. J. Mol. Model. 2020, 26, 152.10.1007/s00894-020-04399-0. PubMed DOI PMC
Li H.; Ngo V.; Da Silva M. C.; Salahub D. R.; Callahan K.; Roux B.; Noskov S. Y. Representation of Ion-Protein Interactions Using the Drude Polarizable Force-Field. J. Phys. Chem. B 2015, 119, 9401–9416. 10.1021/jp510560k. PubMed DOI PMC
Lemkul J. A.; Mackerell A. D. Balancing the interactions of Mg2+ in aqueous solution and with nucleic acid moieties for a polarizable force field based on the classical drude oscillator model. J. Phys. Chem. B 2016, 120, 11436–11448. 10.1021/acs.jpcb.6b09262. PubMed DOI PMC
Tan Q.; Ding Y.; Qiu Z.; Huang J. Binding Energy and Free Energy of Calcium Ion to Calmodulin EF-Hands with the Drude Polarizable Force Field. ACS Phys. Chem. Au 2022, 2, 143–155. 10.1021/acsphyschemau.1c00039. PubMed DOI PMC
Nan Y.; MacKerell A. D. Balancing Group I Monatomic Ion-Polar Compound Interactions for Condensed Phase Simulation in the Polarizable Drude Force Field. J. Chem. Theory Comput. 2024, 20, 3242–3257. 10.1021/acs.jctc.3c01380. PubMed DOI PMC
Liu C.; Piquemal J. P.; Ren P. AMOEBA+ Classical Potential for Modeling Molecular Interactions. J. Chem. Theory Comput. 2019, 15, 4122–4139. 10.1021/acs.jctc.9b00261. PubMed DOI PMC
Lay W. K.; Miller M. S.; Elcock A. H. Optimizing Solute-Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements. J. Chem. Theory Comput. 2016, 12, 1401–1407. 10.1021/acs.jctc.5b01136. PubMed DOI PMC
Lay W. K.; Miller M. S.; Elcock A. H. Reparameterization of Solute-Solute Interactions for Amino Acid-Sugar Systems Using Isopiestic Osmotic Pressure Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017, 13, 1874–1882. 10.1021/acs.jctc.7b00194. PubMed DOI PMC
Nachtmann F.; Atzl G.; Roth W.. Analytical Profiles of Drug Substances, v. 12, Florey K., Ed.; Academic Press, 1983; pp. 215–276.
World Health Organization . Department of Essential Medicines and Pharmaceutical Policies. In The International Pharmacopoeia; 12th ed.; World Health Organization: Geneva, 2022.
Cruces Chamorro V.; Jungwirth P.; Martinez-Seara H. Building Water Models Compatible with Charge Scaling Molecular Dynamics. J. Phys. Chem. Lett. 2024, 15, 2922–2928. 10.1021/acs.jpclett.4c00344. PubMed DOI PMC
Marcisz M.; Samsonov S. A. Solvent Model Benchmark for Molecular Dynamics of Glycosaminoglycans. J. Chem. Inf. Model. 2023, 63, 2147–2157. 10.1021/acs.jcim.2c01472. PubMed DOI PMC