Ionic Strength and Solution Composition Dictate the Adsorption of Cell-Penetrating Peptides onto Phosphatidylcholine Membranes

. 2022 Sep 20 ; 38 (37) : 11284-11295. [epub] 20220909

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36083171

Adsorption of arginine-rich positively charged peptides onto neutral zwitterionic phosphocholine (PC) bilayers is a key step in the translocation of those potent cell-penetrating peptides into the cell interior. In the past, we have shown both theoretically and experimentally that polyarginines adsorb to the neutral PC-supported lipid bilayers in contrast to polylysines. However, comparing our results with previous studies showed that the results often do not match even at the qualitative level. The adsorption of arginine-rich peptides onto 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) may qualitatively depend on the actual experimental conditions where binding experiments have been performed. In this work, we systematically studied the adsorption of R9 and K9 peptides onto the POPC bilayer, aided by molecular dynamics (MD) simulations and fluorescence cross-correlation spectroscopy (FCCS) experiments. Using MD simulations, we tested a series of increasing peptide concentrations, in parallel with increasing Na+ and Ca2+ salt concentrations, showing that the apparent strength of adsorption of R9 decreases upon the increase of peptide or salt concentration in the system. The key result from the simulations is that the salt concentrations used experimentally can alter the picture of peptide adsorption qualitatively. Using FCCS experiments with fluorescently labeled R9 and K9, we first demonstrated that the binding of R9 to POPC is tighter by almost 2 orders of magnitude compared to that of K9. Finally, upon the addition of an excess of either Na+ or Ca2+ ions with R9, the total fluorescence correlation signal is lost, which implies the unbinding of R9 from the PC bilayer, in agreement with our predictions from MD simulations.

Zobrazit více v PubMed

Vargason A. M.; Anselmo A. C.; Mitragotri S. The evolution of commercial drug delivery technologies. Nature Biomedical Engineering 2021, 5, 951–967. 10.1038/s41551-021-00698-w. PubMed DOI

Abes R.; Arzumanov A.; Moulton H.; Abes S.; Ivanova G.; Iversen P.; Gait M.; Lebleu B. Cell-penetrating-peptide-based delivery of oligonucleotides: an overview. Biochem. Soc. Trans. 2007, 35, 775–779. 10.1042/BST0350775. PubMed DOI

Torchilin V. P.; et al. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome–DNA complexes. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 1972–1977. 10.1073/pnas.0435906100. PubMed DOI PMC

Foged C.; Nielsen H. M. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 2008, 5, 105–117. 10.1517/17425247.5.1.105. PubMed DOI

Kanekura K.; Harada Y.; Fujimoto M.; Yagi T.; Hayamizu Y.; Nagaoka K.; Kuroda M. Characterization of membrane penetration and cytotoxicity of C9orf72-encoding arginine-rich dipeptides. Sci. Rep 2018, 8, 12740.10.1038/s41598-018-31096-z. PubMed DOI PMC

Langel U.LATEX: Cell-penetrating peptides, processes and applications; CRC Press Pharmacology & Toxicology Series; CRC Press: New York, 2002.

Frankel A. D.; Pabo C. O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988, 55, 1189–1193. 10.1016/0092-8674(88)90263-2. PubMed DOI

Green M.; Loewenstein P. M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988, 55, 1179–1188. 10.1016/0092-8674(88)90262-0. PubMed DOI

Crosio M.; Via M.; Cámara C.; Mangiarotti A.; Del Pópolo M.; Wilke N. Interaction of a Polyarginine Peptide with Membranes of Different Mechanical Properties. Biomolecules 2019, 9, 625.10.3390/biom9100625. PubMed DOI PMC

Li Z.-l.; Ding H.-m.; Ma Y.-q. Translocation of polyarginines and conjugated nanoparticles across asymmetric membranes. Soft Matter 2013, 9, 1281–1286. 10.1039/C2SM26519B. DOI

Hu J.; Lou Y.; Wu F. Improved Intracellular Delivery of Polyarginine Peptides with Cargoes. J. Phys. Chem. B 2019, 123, 2636–2644. 10.1021/acs.jpcb.8b10483. PubMed DOI

Vazdar M.; Heyda J.; Mason P. E.; Tesei G.; Allolio C.; Lund M.; Jungwirth P. Arginine “Magic”: Guanidinium Like-Charge Ion Pairing from Aqueous Salts to Cell Penetrating Peptides. Acc. Chem. Res. 2018, 51, 1455–1464. 10.1021/acs.accounts.8b00098. PubMed DOI

Schmidt N.; Mishra A.; Lai G. H.; Wong G. C. Arginine-rich cell-penetrating peptides. FEBS letters 2010, 584, 1806–1813. 10.1016/j.febslet.2009.11.046. PubMed DOI

Bechara C.; Sagan S. Cell-penetrating peptides: 20 years later, where do we stand?. FEBS letters 2013, 587, 1693–1702. 10.1016/j.febslet.2013.04.031. PubMed DOI

Stewart K. M.; Horton K. L.; Kelley S. O. Cell-penetrating peptides as delivery vehicles for biology and medicine. Organic & biomolecular chemistry 2008, 6, 2242–2255. 10.1039/b719950c. PubMed DOI

Koren E.; Torchilin V. P. Cell-penetrating peptides: breaking through to the other side. Trends in molecular medicine 2012, 18, 385–393. 10.1016/j.molmed.2012.04.012. PubMed DOI

Zhang J.; Yang W.; Tan J.; Ye S. In situ examination of a charged amino acid-induced structural change in lipid bilayers by sum frequency generation vibrational spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 5657–5665. 10.1039/C7CP07389E. PubMed DOI

Burlina F.; Sagan S.; Bolbach G.; Chassaing G. Quantification of the Cellular Uptake of Cell-Penetrating Peptides by MALDI-TOF Mass Spectrometry. Angewandte Chemie International Edition 2005, 44, 4244–4247. 10.1002/anie.200500477. PubMed DOI

Jiao C.-Y.; Delaroche D.; Burlina F.; Alves I. D.; Chassaing G.; Sagan S. Translocation and Endocytosis for Cell-penetrating Peptide Internalization. J. Biol. Chem. 2009, 284, 33957–33965. 10.1074/jbc.M109.056309. PubMed DOI PMC

Ruseska I.; Zimmer A. Internalization mechanisms of cell-penetrating peptides. Beilstein Journal of Nanotechnology 2020, 11, 101–123. 10.3762/bjnano.11.10. PubMed DOI PMC

Tünnemann G.; Ter-Avetisyan G.; Martin R. M.; Stöckl M.; Herrmann A.; Cardoso M. C. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. Journal of Peptide Science 2008, 14, 469–476. 10.1002/psc.968. PubMed DOI

Trofimenko E.; Grasso G.; Heulot M.; Chevalier N.; Deriu M. A.; Dubuis G.; Arribat Y.; Serulla M.; Michel S.; Vantomme G.; et al. Genetic, cellular and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. elife 2021, 10, e6983210.7554/eLife.69832. PubMed DOI PMC

Wallbrecher R.; Ackels T.; Olea R. A.; Klein M. J.; Caillon L.; Schiller J.; Bovée-Geurts P. H.; van Kuppevelt T. H.; Ulrich A. S.; Spehr M.; et al. Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity. J. Controlled Release 2017, 256, 68–78. 10.1016/j.jconrel.2017.04.013. PubMed DOI

Pokhrel N.; Maibaum L. Free Energy Calculations of Membrane Permeation: Challenges Due to Strong Headgroup–Solute Interactions. J. Chem. Theory Comput. 2018, 14, 1762–1771. 10.1021/acs.jctc.7b01159. PubMed DOI

Lee C. T.; Comer J.; Herndon C.; Leung N.; Pavlova A.; Swift R. V.; Tung C.; Rowley C. N.; Amaro R. E.; Chipot C.; et al. Simulation-Based Approaches for Determining Membrane Permeability of Small Compounds. J. Chem. Inf. Model. 2016, 56, 721–733. 10.1021/acs.jcim.6b00022. PubMed DOI PMC

Robison A. D.; Sun S.; Poyton M. F.; Johnson G. A.; Pellois J.-P.; Jungwirth P.; Vazdar M.; Cremer P. S. Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers. J. Phys. Chem. B 2016, 120, 9287–9296. 10.1021/acs.jpcb.6b05604. PubMed DOI PMC

Vazdar M.; Wernersson E.; Khabiri M.; Cwiklik L.; Jurkiewicz P.; Hof M.; Mann E.; Kolusheva S.; Jelinek R.; Jungwirth P. Aggregation of Oligoarginines at Phospholipid Membranes: Molecular Dynamics Simulations, Time-Dependent Fluorescence Shift, and Biomimetic Colorimetric Assays. J. Phys. Chem. B 2013, 117, 11530–11540. 10.1021/jp405451e. PubMed DOI

Allolio C.; Magarkar A.; Jurkiewicz P.; Baxová K.; Javanainen M.; Mason P. E.; Šachl R.; Cebecauer M.; Hof M.; Horinek D.; et al. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 11923–11928. 10.1073/pnas.1811520115. PubMed DOI PMC

Brock D. J.; Kustigian L.; Jiang M.; Graham K.; Wang T.-Y.; Erazo-Oliveras A.; Najjar K.; Zhang J.; Rye H.; Pellois J.-P. Efficient cell delivery mediated by lipid-specific endosomal escape of supercharged branched peptides. Traffic (Copenhagen, Denmark) 2018, 19, 421–435. 10.1111/tra.12566. PubMed DOI PMC

Brock D. J.; Kondow-McConaghy H.; Allen J.; Brkljača Z.; Kustigian L.; Jiang M.; Zhang J.; Rye H.; Vazdar M.; Pellois J.-P. Mechanism of Cell Penetration by Permeabilization of Late Endosomes: Interplay between a Multivalent TAT Peptide and Bis(monoacylglycero)phosphate. Cell Chemical Biology 2020, 27, 1296–1307.e5. 10.1016/j.chembiol.2020.07.015. PubMed DOI PMC

Pujals S.; Miyamae H.; Afonin S.; Murayama T.; Hirose H.; Nakase I.; Taniuchi K.; Umeda M.; Sakamoto K.; Ulrich A. S.; et al. Curvature Engineering: Positive Membrane Curvature Induced by Epsin N-Terminal Peptide Boosts Internalization of Octaarginine. ACS Chem. Biol. 2013, 8, 1894–1899. 10.1021/cb4002987. PubMed DOI

Kumara B.; Wijesiri N.; Rathnayake P.; Ranatunga R. A Re-evaluation of the Free Energy Profiles for Cell-Penetrating Peptides Across DOPC Membranes. International Journal of Peptide Research and Therapeutics 2021, 27, 2931.10.1007/s10989-021-10301-0. DOI

Gao X.; Hong S.; Liu Z.; Yue T.; Dobnikar J.; Zhang X. Membrane potential drives direct translocation of cell-penetrating peptides. Nanoscale 2019, 11, 1949–1958. 10.1039/C8NR10447F. PubMed DOI

Wang B.; Zhang J.; Zhang Y.; Mao Z.; Lu N.; Liu Q. H. The penetration of a charged peptide across a membrane under an external electric field: a coarse-grained molecular dynamics simulation. RSC Adv. 2018, 8, 41517–41525. 10.1039/C8RA07654E. PubMed DOI PMC

Sakamoto K.; Morishita T.; Aburai K.; Sakai K.; Abe M.; Nakase I.; Futaki S.; Sakai H. Key Process and Factors Controlling the Direct Translocation of Cell-Penetrating Peptide through Bio-Membrane. International Journal of Molecular Sciences 2020, 21, 5466.10.3390/ijms21155466. PubMed DOI PMC

Sakamoto K.; Morishita T.; Aburai K.; Ito D.; Imura T.; Sakai K.; Abe M.; Nakase I.; Futaki S.; Sakai H. Direct entry of cell-penetrating peptide can be controlled by maneuvering the membrane curvature. Sci. Rep. 2021, 11, 31.10.1038/s41598-020-79518-1. PubMed DOI PMC

Krüger D.; Ebenhan J.; Werner S.; Bacia K. Measuring Protein Binding to Lipid Vesicles by Fluorescence Cross-Correlation Spectroscopy. Biophys. J. 2017, 113, 1311–1320. 10.1016/j.bpj.2017.06.023. PubMed DOI PMC

Leontyev I. V.; Stuchebrukhov A. A. Electronic continuum model for molecular dynamics simulations of biological molecules. J. Chem. Theory Comput. 2010, 6, 1498–1508. 10.1021/ct9005807. PubMed DOI PMC

Kirby B. J.; Jungwirth P. Charge scaling manifesto: A way of reconciling the inherently macroscopic and microscopic natures of molecular simulations. journal of physical chemistry letters 2019, 10, 7531–7536. 10.1021/acs.jpclett.9b02652. PubMed DOI

Melcr J.; Martinez-Seara H.; Nencini R.; Kolafa J.; Jungwirth P.; Ollila O. H. S. Accurate Binding of Sodium and Calcium to a POPC Bilayer by Effective Inclusion of Electronic Polarization. J. Phys. Chem. B 2018, 122, 4546–4557. 10.1021/acs.jpcb.7b12510. PubMed DOI

Melcr J.; Ferreira T. M.; Jungwirth P.; Ollila O. S. Improved cation binding to lipid bilayers with negatively charged POPS by effective inclusion of electronic polarization. J. Chem. Theory Comput. 2020, 16, 738–748. 10.1021/acs.jctc.9b00824. PubMed DOI

Duboué-Dijon E.; Javanainen M.; Delcroix P.; Jungwirth P.; Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J. Chem. Phys. 2020, 153, 050901.10.1063/5.0017775. PubMed DOI

Nencini R.; Tempra C.; Biriukov D.; Polák J.; Ondo D.; Heyda J.; Ollila S. O.; Javanainen M.; Martinez-Seara H. Prosecco: polarization reintroduced by optimal scaling of electronic continuum correction origin in MD simulations. Biophys. J. 2022, 121, 157a.10.1016/j.bpj.2021.11.1935. PubMed DOI

Marquardt D.; Heberle F. A.; Miti T.; Eicher B.; London E.; Katsaras J.; Pabst G. 1H NMR shows slow phospholipid flip-flop in gel and fluid bilayers. Langmuir 2017, 33, 3731–3741. 10.1021/acs.langmuir.6b04485. PubMed DOI PMC

Lorent J.; Levental K.; Ganesan L.; Rivera-Longsworth G.; Sezgin E.; Doktorova M.; Lyman E.; Levental I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020, 16, 644–652. 10.1038/s41589-020-0529-6. PubMed DOI PMC

Ramírez P. G.; Del Pópolo M. G.; Vila J. A.; Szleifer I.; Longo G. S. Adsorption and insertion of polyarginine peptides into membrane pores: The trade-off between electrostatics, acid-base chemistry and pore formation energy. J. Colloid Interface Sci. 2019, 552, 701–711. 10.1016/j.jcis.2019.05.087. PubMed DOI

Klauda J.; Venable R.; Freites J.; O’Connor J.; Tobias D.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. J.; Pastor R. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 2010, 114, 7830–43. 10.1021/jp101759q. PubMed DOI PMC

Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; De Groot B. L.; Grubmüller H.; MacKerell A. D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. 10.1038/nmeth.4067. PubMed DOI PMC

Kohagen M.; Mason P. E.; Jungwirth P. Accurate Description of Calcium Solvation in Concentrated Aqueous Solutions. J. Phys. Chem. B 2014, 118, 7902–7909. 10.1021/jp5005693. PubMed DOI

Kohagen M.; Mason P. E.; Jungwirth P. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. J. Phys. Chem. B 2016, 120, 1454–1460. 10.1021/acs.jpcb.5b05221. PubMed DOI

Martinek T.; Duboué-Dijon E.; Timr Š.; Mason P. E.; Baxová K.; Fischer H. E.; Schmidt B.; Pluhařová E.; Jungwirth P. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering. J. Chem. Phys. 2018, 148, 222813.10.1063/1.5006779. PubMed DOI

Leontyev I.; Stuchebrukhov A. Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 2011, 13, 2613–2626. 10.1039/c0cp01971b. PubMed DOI

Catte A.; Girych M.; Javanainen M.; Loison C.; Melcr J.; Miettinen M. S.; Monticelli L.; Määttä J.; Oganesyan V. S.; Ollila O. H. S.; et al. Molecular electrometer and binding of cations to phospholipid bilayers. Phys. Chem. Chem. Phys. 2016, 18, 32560–32569. 10.1039/C6CP04883H. PubMed DOI

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI

Durell S. R.; Brooks B. R.; Ben-Naim A. Solvent-induced forces between two hydrophilic groups. J. Phys. Chem. 1994, 98, 2198–2202. 10.1021/j100059a038. DOI

Páll S.; Hess B. A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 2013, 184, 2641–2650. 10.1016/j.cpc.2013.06.003. DOI

Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI

Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N·log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI

Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. 10.1063/1.448118. DOI

Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI

Nose S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268. 10.1080/00268978400101201. DOI

Hoover W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. 10.1103/PhysRevA.31.1695. PubMed DOI

Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Hess B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122. 10.1021/ct700200b. PubMed DOI

Miyamoto S.; Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI

Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI

Páll S.; Zhmurov A.; Bauer P.; Abraham M.; Lundborg M.; Gray A.; Hess B.; Lindahl E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 2020, 153, 134110.10.1063/5.0018516. PubMed DOI

Michaud-Agrawal N.; Denning E. J.; Woolf T. B.; Beckstein O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. 10.1002/jcc.21787. PubMed DOI PMC

Barducci A.; Bussi G.; Parrinello M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100, 020603.10.1103/PhysRevLett.100.020603. PubMed DOI

Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI

Sun W.-C.; Gee K. R.; Klaubert D. H.; Haugland R. P. Synthesis of Fluorinated Fluoresceins. J. Org. Chem. 1997, 62, 6469–6475. 10.1021/jo9706178. DOI

Gutfreund H. Binding and Linkage: Functional chemistry of biological macromolecules. FEBS Lett. 1991, 293, 224.10.1016/0014-5793(91)81192-B. DOI

Takechi Y.; Tanaka H.; Kitayama H.; Yoshii H.; Tanaka M.; Saito H. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes. Chem. Phys. Lipids 2012, 165, 51–58. 10.1016/j.chemphyslip.2011.11.002. PubMed DOI

Åmand H. L.; Fant K.; Nordén B.; Esbjörner E. K. Stimulated endocytosis in penetratin uptake: Effect of arginine and lysine. Biochem. Biophys. Res. Commun. 2008, 371, 621–625. 10.1016/j.bbrc.2008.04.039. PubMed DOI

Tang M.; Waring A. J.; Hong M. Phosphate-Mediated Arginine Insertion into Lipid Membranes and Pore Formation by a Cationic Membrane Peptide from Solid-State NMR. J. Am. Chem. Soc. 2007, 129, 11438–11446. 10.1021/ja072511s. PubMed DOI

Hughes L. D.; Rawle R. J.; Boxer S. G. Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers. PLoS One 2014, 9, e87649.10.1371/journal.pone.0087649. PubMed DOI PMC

Irvin R. T.; MacAlister T. J.; Costerton J. W. Tris(hydroxymethyl)aminomethane buffer modification of Escherichia coli outer membrane permeability. J. Bacteriol. 1981, 145, 1397–1403. 10.1128/jb.145.3.1397-1403.1981. PubMed DOI PMC

Wolde-Kidan A.; Netz R. R. Interplay of Interfacial Viscosity, Specific-Ion, and Impurity Adsorption Determines Zeta Potentials of Phospholipid Membranes. Langmuir 2021, 37, 8463–8473. 10.1021/acs.langmuir.1c00868. PubMed DOI

Pielak G. J. Buffers, Especially the Good Kind. Biochemistry 2021, 60, 3436–3440. 10.1021/acs.biochem.1c00200. PubMed DOI

He X.; Lin M.; Guo J.; Qu Z.; Xu F. Experimental and simulation studies of polyarginines across the membrane of giant unilamellar vesicles. RSC Adv. 2016, 6, 30454–30459. 10.1039/C6RA02420C. DOI

Tesei G.; Vazdar M.; Jensen M. R.; Cragnell C.; Mason P. E.; Heyda J.; Skepö M.; Jungwirth P.; Lund M. Self-association of a highly charged arginine-rich cell-penetrating peptide. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 11428–11433. 10.1073/pnas.1712078114. PubMed DOI PMC

Khomich D. A.; Nesterenko A. M.; Kostritskii A. Y.; Kondinskaia D. A.; Ermakov Y. A.; Gurtovenko A. A. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes. Journal of Physics: Conference Series 2017, 794, 012010.10.1088/1742-6596/794/1/012010. DOI

Javanainen M.; Melcrová A.; Magarkar A.; Jurkiewicz P.; Hof M.; Jungwirth P.; Martinez-Seara H. Two cations, two mechanisms: interactions of sodium and calcium with zwitterionic lipid membranes. Chem. Commun. 2017, 53, 5380–5383. 10.1039/C7CC02208E. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...