Ionic Strength and Solution Composition Dictate the Adsorption of Cell-Penetrating Peptides onto Phosphatidylcholine Membranes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36083171
PubMed Central
PMC9494944
DOI
10.1021/acs.langmuir.2c01435
Knihovny.cz E-zdroje
- MeSH
- adsorpce MeSH
- arginin MeSH
- fosfatidylcholiny chemie MeSH
- fosforylcholin MeSH
- lecitiny MeSH
- lipidové dvojvrstvy * chemie MeSH
- osmolární koncentrace MeSH
- penetrační peptidy * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arginin MeSH
- fosfatidylcholiny MeSH
- fosforylcholin MeSH
- lecitiny MeSH
- lipidové dvojvrstvy * MeSH
- penetrační peptidy * MeSH
Adsorption of arginine-rich positively charged peptides onto neutral zwitterionic phosphocholine (PC) bilayers is a key step in the translocation of those potent cell-penetrating peptides into the cell interior. In the past, we have shown both theoretically and experimentally that polyarginines adsorb to the neutral PC-supported lipid bilayers in contrast to polylysines. However, comparing our results with previous studies showed that the results often do not match even at the qualitative level. The adsorption of arginine-rich peptides onto 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) may qualitatively depend on the actual experimental conditions where binding experiments have been performed. In this work, we systematically studied the adsorption of R9 and K9 peptides onto the POPC bilayer, aided by molecular dynamics (MD) simulations and fluorescence cross-correlation spectroscopy (FCCS) experiments. Using MD simulations, we tested a series of increasing peptide concentrations, in parallel with increasing Na+ and Ca2+ salt concentrations, showing that the apparent strength of adsorption of R9 decreases upon the increase of peptide or salt concentration in the system. The key result from the simulations is that the salt concentrations used experimentally can alter the picture of peptide adsorption qualitatively. Using FCCS experiments with fluorescently labeled R9 and K9, we first demonstrated that the binding of R9 to POPC is tighter by almost 2 orders of magnitude compared to that of K9. Finally, upon the addition of an excess of either Na+ or Ca2+ ions with R9, the total fluorescence correlation signal is lost, which implies the unbinding of R9 from the PC bilayer, in agreement with our predictions from MD simulations.
Department of Mathematics University of Chemistry and Technology 166 28 Prague Czech Republic
Faculty of Mathematics and Physics at Charles University 110 00 Prague Czech Republic
Institute of Biotechnology University of Helsinki FI 00014 University of Helsinki Finland
Zobrazit více v PubMed
Vargason A. M.; Anselmo A. C.; Mitragotri S. The evolution of commercial drug delivery technologies. Nature Biomedical Engineering 2021, 5, 951–967. 10.1038/s41551-021-00698-w. PubMed DOI
Abes R.; Arzumanov A.; Moulton H.; Abes S.; Ivanova G.; Iversen P.; Gait M.; Lebleu B. Cell-penetrating-peptide-based delivery of oligonucleotides: an overview. Biochem. Soc. Trans. 2007, 35, 775–779. 10.1042/BST0350775. PubMed DOI
Torchilin V. P.; et al. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome–DNA complexes. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 1972–1977. 10.1073/pnas.0435906100. PubMed DOI PMC
Foged C.; Nielsen H. M. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 2008, 5, 105–117. 10.1517/17425247.5.1.105. PubMed DOI
Kanekura K.; Harada Y.; Fujimoto M.; Yagi T.; Hayamizu Y.; Nagaoka K.; Kuroda M. Characterization of membrane penetration and cytotoxicity of C9orf72-encoding arginine-rich dipeptides. Sci. Rep 2018, 8, 12740.10.1038/s41598-018-31096-z. PubMed DOI PMC
Langel U.LATEX: Cell-penetrating peptides, processes and applications; CRC Press Pharmacology & Toxicology Series; CRC Press: New York, 2002.
Frankel A. D.; Pabo C. O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988, 55, 1189–1193. 10.1016/0092-8674(88)90263-2. PubMed DOI
Green M.; Loewenstein P. M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988, 55, 1179–1188. 10.1016/0092-8674(88)90262-0. PubMed DOI
Crosio M.; Via M.; Cámara C.; Mangiarotti A.; Del Pópolo M.; Wilke N. Interaction of a Polyarginine Peptide with Membranes of Different Mechanical Properties. Biomolecules 2019, 9, 625.10.3390/biom9100625. PubMed DOI PMC
Li Z.-l.; Ding H.-m.; Ma Y.-q. Translocation of polyarginines and conjugated nanoparticles across asymmetric membranes. Soft Matter 2013, 9, 1281–1286. 10.1039/C2SM26519B. DOI
Hu J.; Lou Y.; Wu F. Improved Intracellular Delivery of Polyarginine Peptides with Cargoes. J. Phys. Chem. B 2019, 123, 2636–2644. 10.1021/acs.jpcb.8b10483. PubMed DOI
Vazdar M.; Heyda J.; Mason P. E.; Tesei G.; Allolio C.; Lund M.; Jungwirth P. Arginine “Magic”: Guanidinium Like-Charge Ion Pairing from Aqueous Salts to Cell Penetrating Peptides. Acc. Chem. Res. 2018, 51, 1455–1464. 10.1021/acs.accounts.8b00098. PubMed DOI
Schmidt N.; Mishra A.; Lai G. H.; Wong G. C. Arginine-rich cell-penetrating peptides. FEBS letters 2010, 584, 1806–1813. 10.1016/j.febslet.2009.11.046. PubMed DOI
Bechara C.; Sagan S. Cell-penetrating peptides: 20 years later, where do we stand?. FEBS letters 2013, 587, 1693–1702. 10.1016/j.febslet.2013.04.031. PubMed DOI
Stewart K. M.; Horton K. L.; Kelley S. O. Cell-penetrating peptides as delivery vehicles for biology and medicine. Organic & biomolecular chemistry 2008, 6, 2242–2255. 10.1039/b719950c. PubMed DOI
Koren E.; Torchilin V. P. Cell-penetrating peptides: breaking through to the other side. Trends in molecular medicine 2012, 18, 385–393. 10.1016/j.molmed.2012.04.012. PubMed DOI
Zhang J.; Yang W.; Tan J.; Ye S. In situ examination of a charged amino acid-induced structural change in lipid bilayers by sum frequency generation vibrational spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 5657–5665. 10.1039/C7CP07389E. PubMed DOI
Burlina F.; Sagan S.; Bolbach G.; Chassaing G. Quantification of the Cellular Uptake of Cell-Penetrating Peptides by MALDI-TOF Mass Spectrometry. Angewandte Chemie International Edition 2005, 44, 4244–4247. 10.1002/anie.200500477. PubMed DOI
Jiao C.-Y.; Delaroche D.; Burlina F.; Alves I. D.; Chassaing G.; Sagan S. Translocation and Endocytosis for Cell-penetrating Peptide Internalization. J. Biol. Chem. 2009, 284, 33957–33965. 10.1074/jbc.M109.056309. PubMed DOI PMC
Ruseska I.; Zimmer A. Internalization mechanisms of cell-penetrating peptides. Beilstein Journal of Nanotechnology 2020, 11, 101–123. 10.3762/bjnano.11.10. PubMed DOI PMC
Tünnemann G.; Ter-Avetisyan G.; Martin R. M.; Stöckl M.; Herrmann A.; Cardoso M. C. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. Journal of Peptide Science 2008, 14, 469–476. 10.1002/psc.968. PubMed DOI
Trofimenko E.; Grasso G.; Heulot M.; Chevalier N.; Deriu M. A.; Dubuis G.; Arribat Y.; Serulla M.; Michel S.; Vantomme G.; et al. Genetic, cellular and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. elife 2021, 10, e6983210.7554/eLife.69832. PubMed DOI PMC
Wallbrecher R.; Ackels T.; Olea R. A.; Klein M. J.; Caillon L.; Schiller J.; Bovée-Geurts P. H.; van Kuppevelt T. H.; Ulrich A. S.; Spehr M.; et al. Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity. J. Controlled Release 2017, 256, 68–78. 10.1016/j.jconrel.2017.04.013. PubMed DOI
Pokhrel N.; Maibaum L. Free Energy Calculations of Membrane Permeation: Challenges Due to Strong Headgroup–Solute Interactions. J. Chem. Theory Comput. 2018, 14, 1762–1771. 10.1021/acs.jctc.7b01159. PubMed DOI
Lee C. T.; Comer J.; Herndon C.; Leung N.; Pavlova A.; Swift R. V.; Tung C.; Rowley C. N.; Amaro R. E.; Chipot C.; et al. Simulation-Based Approaches for Determining Membrane Permeability of Small Compounds. J. Chem. Inf. Model. 2016, 56, 721–733. 10.1021/acs.jcim.6b00022. PubMed DOI PMC
Robison A. D.; Sun S.; Poyton M. F.; Johnson G. A.; Pellois J.-P.; Jungwirth P.; Vazdar M.; Cremer P. S. Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers. J. Phys. Chem. B 2016, 120, 9287–9296. 10.1021/acs.jpcb.6b05604. PubMed DOI PMC
Vazdar M.; Wernersson E.; Khabiri M.; Cwiklik L.; Jurkiewicz P.; Hof M.; Mann E.; Kolusheva S.; Jelinek R.; Jungwirth P. Aggregation of Oligoarginines at Phospholipid Membranes: Molecular Dynamics Simulations, Time-Dependent Fluorescence Shift, and Biomimetic Colorimetric Assays. J. Phys. Chem. B 2013, 117, 11530–11540. 10.1021/jp405451e. PubMed DOI
Allolio C.; Magarkar A.; Jurkiewicz P.; Baxová K.; Javanainen M.; Mason P. E.; Šachl R.; Cebecauer M.; Hof M.; Horinek D.; et al. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 11923–11928. 10.1073/pnas.1811520115. PubMed DOI PMC
Brock D. J.; Kustigian L.; Jiang M.; Graham K.; Wang T.-Y.; Erazo-Oliveras A.; Najjar K.; Zhang J.; Rye H.; Pellois J.-P. Efficient cell delivery mediated by lipid-specific endosomal escape of supercharged branched peptides. Traffic (Copenhagen, Denmark) 2018, 19, 421–435. 10.1111/tra.12566. PubMed DOI PMC
Brock D. J.; Kondow-McConaghy H.; Allen J.; Brkljača Z.; Kustigian L.; Jiang M.; Zhang J.; Rye H.; Vazdar M.; Pellois J.-P. Mechanism of Cell Penetration by Permeabilization of Late Endosomes: Interplay between a Multivalent TAT Peptide and Bis(monoacylglycero)phosphate. Cell Chemical Biology 2020, 27, 1296–1307.e5. 10.1016/j.chembiol.2020.07.015. PubMed DOI PMC
Pujals S.; Miyamae H.; Afonin S.; Murayama T.; Hirose H.; Nakase I.; Taniuchi K.; Umeda M.; Sakamoto K.; Ulrich A. S.; et al. Curvature Engineering: Positive Membrane Curvature Induced by Epsin N-Terminal Peptide Boosts Internalization of Octaarginine. ACS Chem. Biol. 2013, 8, 1894–1899. 10.1021/cb4002987. PubMed DOI
Kumara B.; Wijesiri N.; Rathnayake P.; Ranatunga R. A Re-evaluation of the Free Energy Profiles for Cell-Penetrating Peptides Across DOPC Membranes. International Journal of Peptide Research and Therapeutics 2021, 27, 2931.10.1007/s10989-021-10301-0. DOI
Gao X.; Hong S.; Liu Z.; Yue T.; Dobnikar J.; Zhang X. Membrane potential drives direct translocation of cell-penetrating peptides. Nanoscale 2019, 11, 1949–1958. 10.1039/C8NR10447F. PubMed DOI
Wang B.; Zhang J.; Zhang Y.; Mao Z.; Lu N.; Liu Q. H. The penetration of a charged peptide across a membrane under an external electric field: a coarse-grained molecular dynamics simulation. RSC Adv. 2018, 8, 41517–41525. 10.1039/C8RA07654E. PubMed DOI PMC
Sakamoto K.; Morishita T.; Aburai K.; Sakai K.; Abe M.; Nakase I.; Futaki S.; Sakai H. Key Process and Factors Controlling the Direct Translocation of Cell-Penetrating Peptide through Bio-Membrane. International Journal of Molecular Sciences 2020, 21, 5466.10.3390/ijms21155466. PubMed DOI PMC
Sakamoto K.; Morishita T.; Aburai K.; Ito D.; Imura T.; Sakai K.; Abe M.; Nakase I.; Futaki S.; Sakai H. Direct entry of cell-penetrating peptide can be controlled by maneuvering the membrane curvature. Sci. Rep. 2021, 11, 31.10.1038/s41598-020-79518-1. PubMed DOI PMC
Krüger D.; Ebenhan J.; Werner S.; Bacia K. Measuring Protein Binding to Lipid Vesicles by Fluorescence Cross-Correlation Spectroscopy. Biophys. J. 2017, 113, 1311–1320. 10.1016/j.bpj.2017.06.023. PubMed DOI PMC
Leontyev I. V.; Stuchebrukhov A. A. Electronic continuum model for molecular dynamics simulations of biological molecules. J. Chem. Theory Comput. 2010, 6, 1498–1508. 10.1021/ct9005807. PubMed DOI PMC
Kirby B. J.; Jungwirth P. Charge scaling manifesto: A way of reconciling the inherently macroscopic and microscopic natures of molecular simulations. journal of physical chemistry letters 2019, 10, 7531–7536. 10.1021/acs.jpclett.9b02652. PubMed DOI
Melcr J.; Martinez-Seara H.; Nencini R.; Kolafa J.; Jungwirth P.; Ollila O. H. S. Accurate Binding of Sodium and Calcium to a POPC Bilayer by Effective Inclusion of Electronic Polarization. J. Phys. Chem. B 2018, 122, 4546–4557. 10.1021/acs.jpcb.7b12510. PubMed DOI
Melcr J.; Ferreira T. M.; Jungwirth P.; Ollila O. S. Improved cation binding to lipid bilayers with negatively charged POPS by effective inclusion of electronic polarization. J. Chem. Theory Comput. 2020, 16, 738–748. 10.1021/acs.jctc.9b00824. PubMed DOI
Duboué-Dijon E.; Javanainen M.; Delcroix P.; Jungwirth P.; Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J. Chem. Phys. 2020, 153, 050901.10.1063/5.0017775. PubMed DOI
Nencini R.; Tempra C.; Biriukov D.; Polák J.; Ondo D.; Heyda J.; Ollila S. O.; Javanainen M.; Martinez-Seara H. Prosecco: polarization reintroduced by optimal scaling of electronic continuum correction origin in MD simulations. Biophys. J. 2022, 121, 157a.10.1016/j.bpj.2021.11.1935. PubMed DOI
Marquardt D.; Heberle F. A.; Miti T.; Eicher B.; London E.; Katsaras J.; Pabst G. 1H NMR shows slow phospholipid flip-flop in gel and fluid bilayers. Langmuir 2017, 33, 3731–3741. 10.1021/acs.langmuir.6b04485. PubMed DOI PMC
Lorent J.; Levental K.; Ganesan L.; Rivera-Longsworth G.; Sezgin E.; Doktorova M.; Lyman E.; Levental I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020, 16, 644–652. 10.1038/s41589-020-0529-6. PubMed DOI PMC
Ramírez P. G.; Del Pópolo M. G.; Vila J. A.; Szleifer I.; Longo G. S. Adsorption and insertion of polyarginine peptides into membrane pores: The trade-off between electrostatics, acid-base chemistry and pore formation energy. J. Colloid Interface Sci. 2019, 552, 701–711. 10.1016/j.jcis.2019.05.087. PubMed DOI
Klauda J.; Venable R.; Freites J.; O’Connor J.; Tobias D.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. J.; Pastor R. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 2010, 114, 7830–43. 10.1021/jp101759q. PubMed DOI PMC
Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; De Groot B. L.; Grubmüller H.; MacKerell A. D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. 10.1038/nmeth.4067. PubMed DOI PMC
Kohagen M.; Mason P. E.; Jungwirth P. Accurate Description of Calcium Solvation in Concentrated Aqueous Solutions. J. Phys. Chem. B 2014, 118, 7902–7909. 10.1021/jp5005693. PubMed DOI
Kohagen M.; Mason P. E.; Jungwirth P. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. J. Phys. Chem. B 2016, 120, 1454–1460. 10.1021/acs.jpcb.5b05221. PubMed DOI
Martinek T.; Duboué-Dijon E.; Timr Š.; Mason P. E.; Baxová K.; Fischer H. E.; Schmidt B.; Pluhařová E.; Jungwirth P. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering. J. Chem. Phys. 2018, 148, 222813.10.1063/1.5006779. PubMed DOI
Leontyev I.; Stuchebrukhov A. Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 2011, 13, 2613–2626. 10.1039/c0cp01971b. PubMed DOI
Catte A.; Girych M.; Javanainen M.; Loison C.; Melcr J.; Miettinen M. S.; Monticelli L.; Määttä J.; Oganesyan V. S.; Ollila O. H. S.; et al. Molecular electrometer and binding of cations to phospholipid bilayers. Phys. Chem. Chem. Phys. 2016, 18, 32560–32569. 10.1039/C6CP04883H. PubMed DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI
Durell S. R.; Brooks B. R.; Ben-Naim A. Solvent-induced forces between two hydrophilic groups. J. Phys. Chem. 1994, 98, 2198–2202. 10.1021/j100059a038. DOI
Páll S.; Hess B. A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 2013, 184, 2641–2650. 10.1016/j.cpc.2013.06.003. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N·log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. 10.1063/1.448118. DOI
Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Nose S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268. 10.1080/00268978400101201. DOI
Hoover W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. 10.1103/PhysRevA.31.1695. PubMed DOI
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Hess B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122. 10.1021/ct700200b. PubMed DOI
Miyamoto S.; Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Páll S.; Zhmurov A.; Bauer P.; Abraham M.; Lundborg M.; Gray A.; Hess B.; Lindahl E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 2020, 153, 134110.10.1063/5.0018516. PubMed DOI
Michaud-Agrawal N.; Denning E. J.; Woolf T. B.; Beckstein O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. 10.1002/jcc.21787. PubMed DOI PMC
Barducci A.; Bussi G.; Parrinello M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100, 020603.10.1103/PhysRevLett.100.020603. PubMed DOI
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI
Sun W.-C.; Gee K. R.; Klaubert D. H.; Haugland R. P. Synthesis of Fluorinated Fluoresceins. J. Org. Chem. 1997, 62, 6469–6475. 10.1021/jo9706178. DOI
Gutfreund H. Binding and Linkage: Functional chemistry of biological macromolecules. FEBS Lett. 1991, 293, 224.10.1016/0014-5793(91)81192-B. DOI
Takechi Y.; Tanaka H.; Kitayama H.; Yoshii H.; Tanaka M.; Saito H. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes. Chem. Phys. Lipids 2012, 165, 51–58. 10.1016/j.chemphyslip.2011.11.002. PubMed DOI
Åmand H. L.; Fant K.; Nordén B.; Esbjörner E. K. Stimulated endocytosis in penetratin uptake: Effect of arginine and lysine. Biochem. Biophys. Res. Commun. 2008, 371, 621–625. 10.1016/j.bbrc.2008.04.039. PubMed DOI
Tang M.; Waring A. J.; Hong M. Phosphate-Mediated Arginine Insertion into Lipid Membranes and Pore Formation by a Cationic Membrane Peptide from Solid-State NMR. J. Am. Chem. Soc. 2007, 129, 11438–11446. 10.1021/ja072511s. PubMed DOI
Hughes L. D.; Rawle R. J.; Boxer S. G. Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers. PLoS One 2014, 9, e87649.10.1371/journal.pone.0087649. PubMed DOI PMC
Irvin R. T.; MacAlister T. J.; Costerton J. W. Tris(hydroxymethyl)aminomethane buffer modification of Escherichia coli outer membrane permeability. J. Bacteriol. 1981, 145, 1397–1403. 10.1128/jb.145.3.1397-1403.1981. PubMed DOI PMC
Wolde-Kidan A.; Netz R. R. Interplay of Interfacial Viscosity, Specific-Ion, and Impurity Adsorption Determines Zeta Potentials of Phospholipid Membranes. Langmuir 2021, 37, 8463–8473. 10.1021/acs.langmuir.1c00868. PubMed DOI
Pielak G. J. Buffers, Especially the Good Kind. Biochemistry 2021, 60, 3436–3440. 10.1021/acs.biochem.1c00200. PubMed DOI
He X.; Lin M.; Guo J.; Qu Z.; Xu F. Experimental and simulation studies of polyarginines across the membrane of giant unilamellar vesicles. RSC Adv. 2016, 6, 30454–30459. 10.1039/C6RA02420C. DOI
Tesei G.; Vazdar M.; Jensen M. R.; Cragnell C.; Mason P. E.; Heyda J.; Skepö M.; Jungwirth P.; Lund M. Self-association of a highly charged arginine-rich cell-penetrating peptide. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 11428–11433. 10.1073/pnas.1712078114. PubMed DOI PMC
Khomich D. A.; Nesterenko A. M.; Kostritskii A. Y.; Kondinskaia D. A.; Ermakov Y. A.; Gurtovenko A. A. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes. Journal of Physics: Conference Series 2017, 794, 012010.10.1088/1742-6596/794/1/012010. DOI
Javanainen M.; Melcrová A.; Magarkar A.; Jurkiewicz P.; Hof M.; Jungwirth P.; Martinez-Seara H. Two cations, two mechanisms: interactions of sodium and calcium with zwitterionic lipid membranes. Chem. Commun. 2017, 53, 5380–5383. 10.1039/C7CC02208E. PubMed DOI
The minimal membrane requirements for BAX-induced pore opening upon exposure to oxidative stress
Efficient Simulations of Solvent Asymmetry Across Lipid Membranes Using Flat-Bottom Restraints