The minimal membrane requirements for BAX-induced pore opening upon exposure to oxidative stress

. 2024 Oct 15 ; 123 (20) : 3519-3532. [epub] 20240826

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39188056
Odkazy

PubMed 39188056
PubMed Central PMC11494524
DOI 10.1016/j.bpj.2024.08.017
PII: S0006-3495(24)00564-2
Knihovny.cz E-zdroje

Perforation of the outer mitochondrial membrane triggered by BAX and facilitated by its main activator cBID is a fundamental process in cell apoptosis. Here, we employ a newly designed correlative approach based on a combination of a fluorescence cross correlation binding with a calcein permeabilization assay to understand the involvement of BAX in pore formation under oxidative stress conditions. To mimic the oxidative stress, we enriched liposomal membranes by phosphatidylcholines with truncated sn-2 acyl chains terminated by a carboxyl or aldehyde moiety. Our observations revealed that oxidative stress enhances proapoptotic conditions involving accelerated pore-opening kinetics. This enhancement is achieved through increased recruitment of BAX to the membrane and facilitation of BAX membrane insertion. Despite these effects, the fundamental mechanism of pore formation remained unchanged, suggesting an all-or-none mechanism. In line with this mechanism, we demonstrated that the minimal number of BAX molecules at the membrane necessary for pore formation remains constant regardless of BAX activation by cBID or the presence of oxidized lipids. Overall, our findings give a comprehensive picture of the molecular mechanisms underlying apoptotic pore formation and highlight the selective amplifying role of oxidized lipids in triggering formation of membrane pores.

Zobrazit více v PubMed

Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016;1863:2977–2992. PubMed

Kannan K., Jain S.K. Oxidative stress and apoptosis. Pathophysiology. 2000;7:153–163. PubMed

Patel M.Y., Stovall K., Franklin J.L. The intrinsic apoptotic pathway lies upstream of oxidative stress in multiple organs. Free Radic. Biol. Med. 2020;158:13–19. PubMed PMC

Halliwell B., Gutteridge J.M.C. Fifth Edition. Oxford; 2015. Free Radicals in Biology and Medicine.

Jaeschke H. Mechanisms of Oxidant Stress-Induced Acute Tissue Injury. Exp. Biol. Med. 1995;209:104–111. PubMed

De Matteis F., Smith L.L. CRC Press; 2019. Molecular and Cellular Mechanisms of Toxicity.

Sies H. Biochemistry of oxidative stress. Eur. J. Cancer Clin. Oncol. 1987;23:1798.

Cwiklik L., Jungwirth P. Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration. Chem. Phys. Lett. 2010;486:99–103.

Fruhwirth G.O., Loidl A., Hermetter A. Oxidized phospholipids: From molecular properties to disease. Biochim. Biophys. Acta. 2007;1772:718–736. PubMed

Jurkiewicz P., Olzyńska A., et al. Hof M. Biophysics of lipid bilayers containing oxidatively modified phospholipids: Insights from fluorescence and EPR experiments and from MD simulations. Biochim. Biophys. Acta Biomembr. 2012;1818:2388–2402. PubMed

Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44:479–496. PubMed PMC

Kaneto H., Katakami N., et al. Matsuoka T.A. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat. Inflamm. 2010;2010 PubMed PMC

Volpe C.M.O., Villar-Delfino P.H., et al. Nogueira-Machado J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications review-Article. Cell Death Dis. 2018;9 PubMed PMC

Berliner J.A., Leitinger N., Tsimikas S. The role of oxidized phospholipids in atherosclerosis. J. Lipid Res. 2009;50:207–212. PubMed PMC

Huang W.J., Zhang X., Chen W.W. Role of oxidative stress in Alzheimer’s disease (review) Biomed. Rep. 2016;4:519–522. PubMed PMC

Chang K.-H., Chen C.-M. The Role of Oxidative Stress in Parkinson’s Disease. Antioxidants. 2020;9:597. PubMed PMC

Onyango I.G. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem. Res. 2008;33:589–597. PubMed

Wang B., Wang Y., et al. Peng Z. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol. 2023;97:1439–1451. PubMed

Hsu Y.T., Wolter K.G., Youle R.J. Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc. Natl. Acad. Sci. USA. 1997;94:3668–3672. PubMed PMC

Wolter K.G., Hsu Y.T., et al. Youle R.J. Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 1997;139:1281–1292. PubMed PMC

Subburaj Y., Cosentino K., et al. García-Sáez A.J. Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat. Commun. 2015;6 PubMed PMC

Gross A., Jockel J., et al. Korsmeyer S.J. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 1998;17:3878–3885. PubMed PMC

Antonsson B., Montessuit S., et al. Martinou J.C. Bax Is Present as a High Molecular Weight Oligomer/Complex in the Mitochondrial Membrane of Apoptotic Cells. J. Biol. Chem. 2001;276:11615–11623. PubMed

Bleicken S., Landeta O., et al. García-Sáez A.J. Proapoptotic Bax and Bak proteins form stable protein-permeable pores of tunable size. J. Biol. Chem. 2013;288:33241–33252. PubMed PMC

Bleicken S., Wagner C., García-Sáez A.J. Mechanistic differences in the membrane activity of bax and Bcl-xL correlate with their opposing roles in apoptosis. Biophys. J. 2013;104:421–431. PubMed PMC

Terrones O., Antonsson B., et al. Basañez G. Lipidic pore formation by the concerted action of proapoptotic BAX and tBID. J. Biol. Chem. 2004;279:30081–30091. PubMed

Shamas-Din A., Bindner S., et al. Fradin C.É. Distinct lipid effects on tBid and Bim activation of membrane permeabilization by pro-apoptotic Bax. Biochem. J. 2015;467:495–505. PubMed

Shamas-Din A., Satsoura D., et al. Andrews D.W. Multiple partners can kiss-and-run: Bax transfers between multiple membranes and permeabilizes those primed by tBid. Cell Death Dis. 2014;5:e1277–e1279. PubMed PMC

Lidman M., Pokorná Š., et al. Gröbner G. The oxidized phospholipid PazePC promotes permeabilization of mitochondrial membranes by Bax. Biochim. Biophys. Acta Biomembr. 2016;1858:1288–1297. PubMed

Desagher S., Osen-Sand A., et al. Martinou J.C. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 1999;144:891–901. PubMed PMC

Czabotar P.E., Westphal D., et al. Colman P.M. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell. 2013;152:519–531. PubMed

Westphal D., Dewson G., et al. Kluck R.M. Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane. Proc. Natl. Acad. Sci. USA. 2014;111:E4076–E4085. PubMed PMC

Bleicken S., Jeschke G., et al. Bordignon E. Structural Model of Active Bax at the Membrane. Mol. Cell. 2014;56:496–505. PubMed PMC

Kim H., Tu H.C., et al. Cheng E.H.Y. Stepwise Activation of BAX and BAK by tBID, BIM, and PUMA Initiates Mitochondrial Apoptosis. Mol. Cell. 2009;36:487–499. PubMed PMC

Annis M.G., Soucie E.L., et al. Andrews D.W. Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J. 2005;24:2096–2103. PubMed PMC

Zhang Z., Subramaniam S., et al. Lin J. BH 3-in-groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes. EMBO J. 2016;35:208–236. PubMed PMC

Clifton L.A., Wacklin-Knecht H.P., et al. Gröbner G. Creation of distinctive Bax-lipid complexes at mitochondrial membrane surfaces drives pore formation to initiate apoptosis. Sci. Adv. 2023;9 PubMed PMC

Dingeldein A.P.G., Pokorná Š., et al. Gröbner G. Apoptotic Bax at Oxidatively Stressed Mitochondrial Membranes: Lipid Dynamics and Permeabilization. Biophys. J. 2017;112:2147–2158. PubMed PMC

Krüger D., Ebenhan J., et al. Bacia K. Measuring Protein Binding to Lipid Vesicles by Fluorescence Cross-Correlation Spectroscopy. Biophys. J. 2017;113:1311–1320. PubMed PMC

Schön P., García-Sáez A.J., et al. Schwille P. Equinatoxin II permeabilizing activity depends on the presence of sphingomyelin and lipid phase coexistence. Biophys. J. 2008;95:691–698. PubMed PMC

Nguyen M.T.H., Biriukov D., et al. Vazdar M. Ionic Strength and Solution Composition Dictate the Adsorption of Cell-Penetrating Peptides onto Phosphatidylcholine Membranes. Langmuir. 2022;38:11284–11295. PubMed PMC

Angelova M.I., Soléau S., et al. Bothorel P. Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Trends Colloid Interface Sci. VI. 2007;131:127–131.

Koukalová A., Pokorná Š., et al. Hof M. Membrane activity of the pentaene macrolide didehydroroflamycoin in model lipid bilayers. Biochim. Biophys. Acta Biomembr. 2015;1848:444–452. PubMed

Kantari C., Walczak H. Caspase-8 and Bid: Caught in the act between death receptors and mitochondria. Biochim. Biophys. Acta. 2011;1813:558–563. PubMed

Edlich F., Banerjee S., et al. Youle R.J. Bcl-xL retrotranslocates Bax from the mitochondria into the cytosol. Cell. 2011;145:104–116. PubMed PMC

Schellenberg B., Wang P., et al. Gilmore A.P. Bax Exists in a Dynamic Equilibrium between the Cytosol and Mitochondria to Control Apoptotic Priming. Mol. Cell. 2013;49:959–971. PubMed PMC

Jeng P.S., Inoue-Yamauchi A., et al. Cheng E.H. BH3-Dependent and Independent Activation of BAX and BAK in Mitochondrial Apoptosis. Curr. Opin. Physiol. 2018;3:71–81. PubMed PMC

Iyer S., Uren R.T., et al. Kluck R.M. Robust autoactivation for apoptosis by BAK but not BAX highlights BAK as an important therapeutic target. Cell Death Dis. 2020;11 PubMed PMC

Chen H.C., Kanai M., et al. Cheng E.H. An interconnected hierarchical model of cell death regulation by the BCL-2 family. Nat. Cell Biol. 2015;17:1270–1281. PubMed PMC

Satsoura D., Kučerka N., et al. Fradin C. Interaction of the full-length Bax protein with biomimetic mitochondrial liposomes: A small-angle neutron scattering and fluorescence study. Biochim. Biophys. Acta Biomembr. 2012;1818:384–401. PubMed

Shamas-Din A., Bindner S., et al. Fradin C. TBid undergoes multiple conformational changes at the membrane required for bax activation. J. Biol. Chem. 2013;288:22111–22127. PubMed PMC

Shivakumar S., Kurylowicz M., et al. Fradin C. The proapoptotic protein tbid forms both superficially bound and membrane-inserted oligomers. Biophys. J. 2014;106:2085–2095. PubMed PMC

Lovell J.F., Billen L.P., et al. Andrews D.W. Membrane Binding by tBid Initiates an Ordered Series of Events Culminating in Membrane Permeabilization by Bax. Cell. 2008;135:1074–1084. PubMed

Cosentino K., Hertlein V., et al. Garcia-Saez A.J. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation. Mol. Cell. 2022;82:933–949.e9. PubMed PMC

Zhang M., Zheng J., Ma B., et al. Release of Cytochrome C from Bax Pores at the Mitochondrial Membrane. Sci. Rep. 2017;7 PubMed PMC

Bagheri B., Boonnoy P., et al. Karttunen M. Effect of oxidation on POPC lipid bilayers: anionic carboxyl group plays a major role. Phys. Chem. Chem. Phys. 2023;25:18310–18321. PubMed

Wallgren M., Beranova L., et al. Gröbner G. Impact of oxidized phospholipids on the structural and dynamic organization of phospholipid membranes: A combined DSC and solid state NMR study. Faraday Discuss. 2013;161:499–589. PubMed

Chen Y., McMillan-Ward E., et al. Gibson S.B. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ. 2008;15:171–182. PubMed

Wang M., Wu X., et al. Jin C.Y. LCT-3d Induces Oxidative Stress-Mediated Apoptosis by Upregulating Death Receptor 5 in Gastric Cancer Cells. Front. Oncol. 2021;11 PubMed PMC

Andrés Juan C., Pérez de la Lastra J.M., et al. Reinbothe S. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021;22:4642. PubMed PMC

Halliwell B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007;35:1147–1150. PubMed

Hunt C.R., Sim J.E., et al. Spitz D.R. Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res. 1998;58:3986–3992. PubMed

Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal. 2007;19:1807–1819. PubMed

Yang E., Korsmeyer S.J. Molecular thanatopsis: A discourse on the BCL2 family and cell death. Blood. 1996;88:386–401. PubMed

Hockenbery D.M. bcl-2, a novel reguator of cell death. Bioessays. 1995;17:631–638. PubMed

Antonsson B., Conti F., et al. Martinou J.C. Inhibition of Bax channel-forming activity by Bcl-2. Science. 1997;277:370–372. PubMed

Lindenboim L., Grozki D., et al. Stein R. Apoptotic stress induces Bax-dependent, caspase-independent redistribution of LINC complex nesprins. Cell Death Dis. 2020;6 PubMed PMC

Qian S., Wei Z., et al. Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 2022;12 PubMed PMC

Park H.-A., Broman K., Jonas E.A. Oxidative stress battles neuronal Bcl-xL in a fight to the death. Neural Regen. Res. 2021;16:12–15. PubMed PMC

Yoshida K., Miki Y. The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci. 2010;101:831–835. PubMed PMC

Luna-Vargas M.P.A., Chipuk J.E. The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. FEBS J. 2016;283:2676–2689. PubMed PMC

Datta K., Babbar P., et al. Chattopadhyay P. P53 Dependent Apoptosis in Glioma Cell Lines in Response To Hydrogen Peroxide Induced Oxidative Stress. Int. J. Biochem. Cell Biol. 2002;34:148–157. PubMed

Pallepati P., Averill-Bates D.A. Mild thermotolerance induced at 40 °c protects HeLa cells against activation of death receptor-mediated apoptosis by hydrogen peroxide. Free Radic. Biol. Med. 2011;50:667–679. PubMed

McNeill-Blue C., Wetmore B.A., et al. Merrick B.A. Apoptosis mediated by p53 in rat neural AF5 cells following treatment with hydrogen peroxide and staurosporine. Brain Res. 2006;1112:1–15. PubMed

Yu J., Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27:S71–S83. PubMed PMC

Kirkland R.A., Windelborn J.A., et al. Franklin J.L. A bax-induced pro-oxidant state is critical for cytochrome c release during programmed neuronal death. J. Neurosci. 2002;22:6480–6490. PubMed PMC

Manon S. Utilization of Yeast to Investigate the Role of Lipid Oxidation in Cell Death. Antioxidants Redox Signal. 2004;6:259–267. PubMed

Jiang J., Huang Z., et al. Kagan V.E. Interplay between bax, reactive oxygen species production, and cardiolipin oxidation during apoptosis. Biochem. Biophys. Res. Commun. 2008;368:145–150. PubMed PMC

Hauck A.K., Bernlohr D.A. Thematic review series: Lipotoxicity: Many roads to cell dysfunction and cell death: Oxidative stress and lipotoxicity. J. Lipid Res. 2016;57:1976–1986. PubMed

Dingeldein A.P.G., Lindberg M.J., et al. Gröbner G. Bax to the future – A novel, high-yielding approach for purification and expression of full-length Bax protein for structural studies. Protein Expr. Purif. 2019;158:20–26. PubMed

Šachl R., Čujová S., et al. Nickel W. Functional Assay to Correlate Protein Oligomerization States with Membrane Pore Formation. Anal. Chem. 2020;92:14861–14866. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...