Apoptotic Bax at Oxidatively Stressed Mitochondrial Membranes: Lipid Dynamics and Permeabilization
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
28538152
PubMed Central
PMC5444002
DOI
10.1016/j.bpj.2017.04.019
PII: S0006-3495(17)30435-6
Knihovny.cz E-zdroje
- MeSH
- apoptóza fyziologie MeSH
- diferenciální skenovací kalorimetrie MeSH
- Escherichia coli MeSH
- fluorescenční barviva MeSH
- fosfolipidy metabolismus MeSH
- kardiolipiny metabolismus MeSH
- lidé MeSH
- lipidové dvojvrstvy chemie MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondrie metabolismus MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- oxidace-redukce MeSH
- oxidační stres fyziologie MeSH
- permeabilita buněčné membrány MeSH
- protein X asociovaný s bcl-2 metabolismus MeSH
- teplota MeSH
- unilamelární lipozómy chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BAX protein, human MeSH Prohlížeč
- fluorescenční barviva MeSH
- fosfolipidy MeSH
- kardiolipiny MeSH
- lipidové dvojvrstvy MeSH
- protein X asociovaný s bcl-2 MeSH
- unilamelární lipozómy MeSH
Mitochondria are crucial compartments of eukaryotic cells because they function as the cellular power plant and play a central role in the early stages of programmed cell death (apoptosis). To avoid undesired cell death, this apoptotic pathway is tightly regulated by members of the Bcl-2 protein family, which interact on the external surface of the mitochondria, i.e., the mitochondrial outer membrane (MOM), and modulate its permeability to apoptotic factors, controlling their release into the cytosol. A growing body of evidence suggests that the MOM lipids play active roles in this permeabilization process. In particular, oxidized phospholipids (OxPls) formed under intracellular stress seem to directly induce apoptotic activity at the MOM. Here we show that the process of MOM pore formation is sensitive to the type of OxPls species that are generated. We created MOM-mimicking liposome systems, which resemble the cellular situation before apoptosis and upon triggering of oxidative stress conditions. These vesicles were studied using 31P solid-state magic-angle-spinning nuclear magnetic resonance spectroscopy and differential scanning calorimetry, together with dye leakage assays. Direct polarization and cross-polarization nuclear magnetic resonance experiments enabled us to probe the heterogeneity of these membranes and their associated molecular dynamics. The addition of apoptotic Bax protein to OxPls-containing vesicles drastically changed the membranes' dynamic behavior, almost completely negating the previously observed effect of temperature on the lipids' molecular dynamics and inducing an ordering effect that led to more cooperative membrane melting. Our results support the hypothesis that the mitochondrion-specific lipid cardiolipin functions as a first contact site for Bax during its translocation to the MOM in the onset of apoptosis. In addition, dye leakage assays revealed that different OxPls species in the MOM-mimicking vesicles can have opposing effects on Bax pore formation.
Zobrazit více v PubMed
Fulda S., Galluzzi L., Kroemer G. Targeting mitochondria for cancer therapy. Nat. Drug. Discov. 2010;9:447–464. PubMed
Kerr J.F., Wyllie A.H., Currie A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 1972;26:239–257. PubMed PMC
Ulukaya E., Acilan C., Yilmaz Y. Apoptosis: why and how does it occur in biology? Cell Biochem. Funct. 2011;29:468–480. PubMed
Adams J.M., Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr. Opin. Immunol. 2007;19:488–496. PubMed PMC
Youle R.J., Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008;9:47–59. PubMed
Czabotar P.E., Lessene G., Adams J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014;15:49–63. PubMed
Leber B., Lin J., Andrews D.W. Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene. 2010;29:5221–5230. PubMed PMC
Martinou J.C., Youle R.J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell. 2011;21:92–101. PubMed PMC
Renault T.T., Floros K.V., Chipuk J.E. Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis. Mol. Cell. 2015;57:69–82. PubMed PMC
Lucken-Ardjomande S., Montessuit S., Martinou J.C. Contributions to Bax insertion and oligomerization of lipids of the mitochondrial outer membrane. Cell Death Differ. 2008;15:929–937. PubMed
Schellenberg B., Wang P., Gilmore A.P. Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol. Cell. 2013;49:959–971. PubMed PMC
Wallgren M., Lidman M., Gröbner G. The oxidized phospholipid PazePC modulates interactions between Bax and mitochondrial membranes. Biochim. Biophys. Acta. 2012;1818:2718–2724. PubMed
Westphal D., Dewson G., Kluck R.M. Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane. Proc. Natl. Acad. Sci. USA. 2014;111:E4076–E4085. PubMed PMC
Luckey M. Cambridge University Press; New York: 2008. Membrane Structural Biology.
Ardail D., Privat J.P., Louisot P. Mitochondrial contact sites. Lipid composition and dynamics. J. Biol. Chem. 1990;265:18797–18802. PubMed
Karbowski M., Youle R.J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ. 2003;10:870–880. PubMed
Korytowski W., Basova L.V., Girotti A.W. Permeabilization of the mitochondrial outer membrane by Bax/truncated Bid (tBid) proteins as sensitized by cardiolipin hydroperoxide translocation: mechanistic implications for the intrinsic pathway of oxidative apoptosis. J. Biol. Chem. 2011;286:26334–26343. PubMed PMC
Gonzalvez F., Gottlieb E. Cardiolipin: setting the beat of apoptosis. Apoptosis. 2007;12:877–885. PubMed
Sani M.A., Dufourc E.J., Gröbner G. How does the Bax-α1 targeting sequence interact with mitochondrial membranes? The role of cardiolipin. Biochim. Biophys. Acta. 2009;1788:623–631. PubMed
Subburaj Y., Cosentino K., García-Sáez A.J. Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat. Commun. 2015;6:8042. PubMed PMC
Gahl R.F., He Y., Tjandra N. Conformational rearrangements in the pro-apoptotic protein, Bax, as it inserts into mitochondria: a cellular death switch. J. Biol. Chem. 2014;289:32871–32882. PubMed PMC
Shamas-Din A., Bindner S., Fradin C. Distinct lipid effects on tBid and Bim activation of membrane permeabilization by pro-apoptotic Bax. Biochem. J. 2015;467:495–505. PubMed
Fruhwirth G.O., Hermetter A. Mediation of apoptosis by oxidized phospholipids. Subcell. Biochem. 2008;49:351–367. PubMed
Fruhwirth G.O., Loidl A., Hermetter A. Oxidized phospholipids: from molecular properties to disease. Biochim. Biophys. Acta. 2007;1772:718–736. PubMed
Volinsky R., Kinnunen P.K.J. Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology. FEBS J. 2013;280:2806–2816. PubMed
Khandelia H., Mouritsen O.G. Lipid gymnastics: evidence of complete acyl chain reversal in oxidized phospholipids from molecular simulations. Biophys. J. 2009;96:2734–2743. PubMed PMC
Wallgren M., Beranova L., Gröbner G. Impact of oxidized phospholipids on the structural and dynamic organization of phospholipid membranes: a combined DSC and solid state NMR study. Faraday Discuss. 2013;161:499–513. discussion 563–589. PubMed
Hermetter A., Kinnunen P., Spickett C. Oxidized phospholipids-their properties and interactions with proteins. Biochim. Biophys. Acta. 2012;1818:2373. PubMed
Lidman M., Pokorná Š., Gröbner G. The oxidized phospholipid PazePC promotes permeabilization of mitochondrial membranes by Bax. Biochim. Biophys. Acta. 2016;1858:1288–1297. PubMed
Wallgren M., Pham Q.D., Grobner G. Impact of oxidized phospholipids on membrane organization. Biophys. J. 2013;104:249a. PubMed
Lindström F., Williamson P.T., Gröbner G. Molecular insight into the electrostatic membrane surface potential by 14N/31P MAS NMR spectroscopy: nociceptin-lipid association. J. Am. Chem. Soc. 2005;127:6610–6616. PubMed
Bonev B.B., Chan W.C., Watts A. Interaction of the lantibiotic nisin with mixed lipid bilayers: a 31P and 2H NMR study. Biochemistry. 2000;39:11425–11433. PubMed
Cornell B.A., Hiller R.G., Morris C. Biological membranes are rich in low-frequency motion. Biochim. Biophys. Acta. 1983;732:473–478. PubMed
Suzuki M., Youle R.J., Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell. 2000;103:645–654. PubMed
Banigan J.R., Gayen A., Traaseth N.J. Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy. Biochim. Biophys. Acta. 2015;1848(1 Pt. B):334–341. PubMed PMC
Angelova M.I., Soleau S., Bothorel P. Trends in Colloid and Interface Science VI. Dr Dietrich Steinkopff Verlag; Berlin, Germany: 1992. Preparation of giant vesicles by external AC electric fields—kinetics and applications.
Koukalová A., Pokorná Š., Hof M. Membrane activity of the pentaene macrolide didehydroroflamycoin in model lipid bilayers. Biochim. Biophys. Acta. 2015;1848:444–452. PubMed
Sani M.A., Keech O., Gröbner G. Magic-angle phosphorus NMR of functional mitochondria: in situ monitoring of lipid response under apoptotic-like stress. FASEB J. 2009;23:2872–2878. PubMed
Stohrer J., Grobner G., Kothe G. Collective lipid motions in bilayer-membranes studied by transverse deuteron spin relaxation. J. Chem. Phys. 1991;95:672–678.
Satsoura D., Kučerka N., Fradin C. Interaction of the full-length Bax protein with biomimetic mitochondrial liposomes: a small-angle neutron scattering and fluorescence study. Biochim. Biophys. Acta. 2012;1818:384–401. PubMed
Bleicken S., Jeschke G., Bordignon E. Structural model of active Bax at the membrane. Mol. Cell. 2014;56:496–505. PubMed PMC
Mannock D.A., Lewis R.N., McElhaney R.N. A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biochim. Biophys. Acta. 2010;1798:376–388. PubMed
Dufourc E.J., Mayer C., Kothe G. Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements. Biophys. J. 1992;61:42–57. PubMed PMC
Weisz K., Gröbner G., Kothe G. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior. Biochemistry. 1992;31:1100–1112. PubMed
Baoukina S., Mendez-Villuendas E., Tieleman D.P. Computer simulations of the phase separation in model membranes. Faraday Discuss. 2013;161:63–75. discussion 113–150. PubMed
Leber B., Lin J., Andrews D.W. Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis. 2007;12:897–911. PubMed PMC
Fuertes G., García-Sáez A.J., Salgado J. Pores formed by Baxα5 relax to a smaller size and keep at equilibrium. Biophys. J. 2010;99:2917–2925. PubMed PMC
Last N.B., Rhoades E., Miranker A.D. Islet amyloid polypeptide demonstrates a persistent capacity to disrupt membrane integrity. Proc. Natl. Acad. Sci. USA. 2011;108:9460–9465. PubMed PMC
Apellániz B., Nieva J.L., García-Sáez A.J. All-or-none versus graded: single-vesicle analysis reveals lipid composition effects on membrane permeabilization. Biophys. J. 2010;99:3619–3628. PubMed PMC
Duer M.J. Blackwell Science; Oxford, UK: 2002. Solid-State NMR Spectroscopy: Principles and Applications.
Benetis N.P., Kyrikou I., Mavromoustakos T. Static CP P-31 NMR multilamellar bilayer broadlines in the absence and presence of the bioactive dipeptide beta-Ala-Tyr or Glu. Chem. Phys. 2005;314:57–72.
Holland G.P., McIntyre S.K., Alam T.M. Distinguishing individual lipid headgroup mobility and phase transitions in raft-forming lipid mixtures with 31P MAS NMR. Biophys. J. 2006;90:4248–4260. PubMed PMC
Ivanova V.P., Makarov I.M., Heimburg T. Analyzing heat capacity profiles of peptide-containing membranes: cluster formation of gramicidin A. Biophys. J. 2003;84:2427–2439. PubMed PMC
Cornell B.A., Davenport J.B., Separovic F. Low-frequency motion in membranes. The effect of cholesterol and proteins. Biochim. Biophys. Acta. 1982;689:337–345. PubMed
Mendes Ferreira T., Sood R., Ollila O.H.S. Acyl chain disorder and azelaoyl orientation in lipid membranes containing oxidized lipids. Langmuir. 2016;32:6524–6533. PubMed
The minimal membrane requirements for BAX-induced pore opening upon exposure to oxidative stress