Stealthy Player in Lipid Experiments? EDTA Binding to Phosphatidylcholine Membranes Probed by Simulations and Monolayer Experiments

. 2023 Jun 22 ; 127 (24) : 5462-5469. [epub] 20230612

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37307026

Ethylenediaminetetraacetic acid (EDTA) is frequently used in lipid experiments to remove redundant ions, such as Ca2+, from the sample solution. In this work, combining molecular dynamics (MD) simulations and Langmuir monolayer experiments, we show that on top of the expected Ca2+ depletion, EDTA anions themselves bind to phosphatidylcholine (PC) monolayers. This binding, originating from EDTA interaction with choline groups of PC lipids, leads to the adsorption of EDTA anions at the monolayer surface and concentration-dependent changes in surface pressure as measured by monolayer experiments and explained by MD simulations. This surprising observation emphasizes that lipid experiments carried out using EDTA-containing solutions, especially of high concentrations, must be interpreted very carefully due to potential interfering interactions of EDTA with lipids and other biomolecules involved in the experiment, e.g., cationic peptides, that may alter membrane-binding affinities of studied compounds.

Zobrazit více v PubMed

Dwyer F.Chelating Agents and Metal Chelates; Academic Press, 1964; pp 335–382.

Carr M. H.; Frank H. A. Improved Method for Determination of Calcium and Magnesium of Biologic Fluids by EDTA Titration. Am. J. Clin. Pathol. 1956, 26, 1157–1168. 10.1093/AJCP/26.10.1157. PubMed DOI

Hart J. R.Ethylenediaminetetraacetic Acid and Related Chelating Agents. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp 573−578.

Jones S. S.; Long F. A. Complex Ions from Iron and Ethylenediaminetetraacetate: General Properties and Radioactive Exchange. J. Phys. Chem. A 1952, 56, 25–33. 10.1021/j150493a007. DOI

Faust B. C.; Zepp R. G. Photochemistry of Aqueous Iron(III)-Polycarboxylate Complexes: Roles in the Chemistry of Atmospheric and Surface Waters. Environ. Sci. Technol. 1993, 27, 2517–2522. 10.1021/es00048a032. DOI

George T.; Brady M. F. Ethylenediaminetetraacetic Acid (EDTA). Cold Spring Harb Protoc. 2022, 2009, pdb.caut277010.1101/pdb.caut2770. DOI

Foreman M. M.; Weber J. M. Ion Binding Site Structure and the Role of Water in Alkaline Earth EDTA Complexes. J. Phys. Chem. Lett. 2022, 13, 8558–8563. 10.1021/acs.jpclett.2c02391. PubMed DOI

Sillanpää M.; Oikari A. Assessing the Impact of Complexation by EDTA and DTPA on Heavy Metal Toxicity Using Microtox Bioassay. Chemosphere 1996, 32, 1485–1497. 10.1016/0045-6535(96)00057-4. DOI

Thompson K. A.; Goodale D. B. The Recent Development of Propofol (DIPRIVAN). Intensive Care Med. 2000, 26, S400–S404. 10.1007/PL00003783/METRICS. PubMed DOI

Ittoop S. M.; Seibold L. K.; Kahook M. Y.. Ocular Surface Disease and the Role of Preservatives in Glaucoma Medications. In Glaucoma; Elsevier, 2015; Vol. 1, pp 593–597.

Wreesmann C. T. J. Reasons for Raising the Maximum Acceptable Daily Intake of EDTA and the Benefits for Iron Fortification of Foods for Children 6–24 Months of Age. Matern. Child Nutr. 2014, 10, 481–495. 10.1111/MCN.12110. PubMed DOI PMC

Lanigan R. S.; Yamarik T. A.; Andersen F. A. Final Report on the Safety Assessment of EDTA, Calcium Disodium EDTA, Diammonium EDTA, Dipotassium EDTA, Disodium EDTA, TEA-EDTA, Tetrasodium EDTA, Tripotassium EDTA, Trisodium EDTA, HEDTA, and Trisodium HEDTA. Int. J. Toxicol. 2016, 21, 95–142. 10.1080/10915810290096522. PubMed DOI

Haque H.; Russell A. D. Effect of Ethylenediaminetetraacetic Acid and Related Chelating Agents on Whole Cells of Gram-Negative Bacteria. Antimicrob. Agents Chemother. 1974, 5, 447–452. 10.1128/AAC.5.5.447. PubMed DOI PMC

Alakomi H. L.; Saarela M.; Helander I. M. Effect of EDTA on Salmonella Enterica Serovar Typhimurium Involves a Component Not Assignable to Lipopolysaccharide Release. Microbiology 2003, 149, 2015–2021. 10.1099/mic.0.26312-0. PubMed DOI

EDTA | Blade Wiki | Fandom . EDTA is Used as a Weapon to Kill Vampires, 2023. https://blade.fandom.com/wiki/EDTA. (accessed March 07, 2023).

Sorour M. H.; Hani H. A.; Shaalan H. F.; El-Sayed M. M. H. Experimental Screening of Some Chelating Agents for Calcium and Magnesium Removal from Saline Solutions. Desalin. Water Treat. 2016, 57, 22799–22808. 10.1080/19443994.2015.1111595. DOI

Rahman Y. E.; Wright B. J. Liposomes Containing Chelating Agents. Cellular Penetration and a Possible Mechanism of Metal Removal. J. Cell Biol. 1975, 65, 112–122. 10.1083/JCB.65.1.112. PubMed DOI PMC

Dominguez K.; Ward W. S. A Novel Nuclease Activity That Is Activated by Ca2+ Chelated to EGTA. Syst. Biol. Reprod. Med. 2009, 55, 193–199. 10.3109/19396360903234052. PubMed DOI PMC

Napirei M.; Wulf S.; Eulitz D.; Mannherz H. G.; Kloeckl T. Comparative Characterization of Rat Deoxyribonuclease 1 (Dnase1) and Murine Deoxyribonuclease 1-like 3 (Dnase1l3). Biochem. J. 2005, 389, 355–364. 10.1042/BJ20042124. PubMed DOI PMC

Meyboom A.; Maretzki D.; Stevens P. A.; Hofmann K. P. Reversible Calcium-Dependent Interaction of Liposomes with Pulmonary Surfactant Protein A. J. Biol. Chem. 1997, 272, 14600–14605. 10.1074/jbc.272.23.14600. PubMed DOI

Kikuchi T.; Suzuki M.; Kusai A.; Iseki K.; Sasaki H. Synergistic Effect of EDTA and Boric Acid on Corneal Penetration of CS-088. Int. J. Pharm. 2005, 290, 83–89. 10.1016/J.IJPHARM.2004.11.019. PubMed DOI

Prachayasittikul V.; Isarankura-Na-Ayudhya C.; Tantimongcolwat T.; Nantasenamat C.; Galla H. J. EDTA-Induced Membrane Fluidization and Destabilization: Biophysical Studies on Artificial Lipid Membranes. Acta Biochim. Biophys. Sin. 2007, 39, 901–913. 10.1111/J.1745-7270.2007.00350.X. PubMed DOI

Melcrová A.; Pokorna S.; Pullanchery S.; Kohagen M.; Jurkiewicz P.; Hof M.; Jungwirth P.; Cremer P. S.; Cwiklik L. The Complex Nature of Calcium Cation Interactions with Phospholipid Bilayers. Sci. Rep. 2016, 6, 3803510.1038/srep38035. PubMed DOI PMC

Allolio C.; Magarkar A.; Jurkiewicz P.; Baxová K.; Javanainen M.; Mason P. E.; Šachl R.; Cebecauer M.; Hof M.; Horinek D.; et al. Arginine-Rich Cell-Penetrating Peptides Induce Membrane Multilamellarity and Subsequently Enter via Formation of a Fusion Pore. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 11923–11928. 10.1073/PNAS.1811520115. PubMed DOI PMC

Rupprecht A.; Sokolenko E. A.; Beck V.; Ninnemann O.; Jaburek M.; Trimbuch T.; Klishin S. S.; Jezek P.; Skulachev V. P.; Pohl E. E. Role of the Transmembrane Potential in the Membrane Proton Leak. Biophys. J. 2010, 98, 1503–1511. 10.1016/J.BPJ.2009.12.4301. PubMed DOI PMC

Stangherlin A.; Watson J. L.; Wong D. C. S.; Barbiero S.; Zeng A.; Seinkmane E.; Chew S. P.; Beale A. D.; Hayter E. A.; Guna A.; et al. Compensatory Ion Transport Buffers Daily Protein Rhythms to Regulate Osmotic Balance and Cellular Physiology. Nat. Commun. 2021, 12, 603510.1038/s41467-021-25942-4. PubMed DOI PMC

Berg J. M.; Tymoczko J. L.; Stryer L.. Biochemistry, 5th ed.; Berg J. M.; Tymoczko J. L.; Stryer L., Eds.; W.H. Freeman: New York NY, 2002; pp 84–137.

Javanainen M.; Lamberg A.; Cwiklik L.; Vattulainen I.; Ollila O. H. S. Atomistic Model for Nearly Quantitative Simulations of Langmuir Monolayers. Langmuir 2018, 34, 2565–2572. 10.1021/acs.langmuir.7b02855. PubMed DOI

Klauda J. B.; Venable R. M.; Freites J. A.; O’Connor J. W.; Tobias D. J.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. D.; Pastor R. W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010, 114, 7830–7843. 10.1021/jp101759q. PubMed DOI PMC

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Tempra C.; Ollila O. H. S.; Javanainen M. Accurate Simulations of Lipid Monolayers Require a Water Model with Correct Surface Tension. J. Chem. Theory Comput. 2022, 18, 1862–1869. 10.1021/acs.jctc.1c00951. PubMed DOI PMC

Kim S.; Lee J.; Jo S.; Brooks C. L.; Lee H. S.; Im W. CHARMM-GUI Ligand Reader and Modeler for CHARMM Force Field Generation of Small Molecules. J. Comput. Chem. 2017, 38, 1879–1886. 10.1002/JCC.24829. PubMed DOI PMC

Lee J.; Cheng X.; Swails J. M.; Yeom M. S.; Eastman P. K.; Lemkul J. A.; Wei S.; Buckner J.; Jeong J. C.; Qi Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. 10.1021/ACS.JCTC.5B00935. PubMed DOI PMC

Vanommeslaeghe K.; Raman E. P.; MacKerell A. D. Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges. J. Chem. Inf. Model. 2012, 52, 3155–3168. 10.1021/ci3003649. PubMed DOI PMC

Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI

Shirts M. R.; Mobley D. L.; Chodera J. D.; Pande V. S. Accurate and Efficient Corrections for Missing Dispersion Interactions in Molecular Simulations. J. Phys. Chem. B 2007, 111, 13052–13063. 10.1021/jp0735987. PubMed DOI

Hess B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122. 10.1021/CT700200B. PubMed DOI

Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindah E. Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI

Melcr J.; Martinez-Seara H.; Nencini R.; Kolafa J.; Jungwirth P.; Ollila O. H. S. Accurate Binding of Sodium and Calcium to a POPC Bilayer by Effective Inclusion of Electronic Polarization. J. Phys. Chem. B 2018, 122, 4546–4557. 10.1021/acs.jpcb.7b12510. PubMed DOI

Javanainen M.; Hua W.; Tichacek O.; Delcroix P.; Cwiklik L.; Allen H. C. Structural Effects of Cation Binding to DPPC Monolayers. Langmuir 2020, 36, 15258–15269. 10.1021/acs.langmuir.0c02555. PubMed DOI

Vazdar M.; Wernersson E.; Khabiri M.; Cwiklik L.; Jurkiewicz P.; Hof M.; Mann E.; Kolusheva S.; Jelinek R.; Jungwirth P. Aggregation of Oligoarginines at Phospholipid Membranes: Molecular Dynamics Simulations, Time-Dependent Fluorescence Shift, and Biomimetic Colorimetric Assays. J. Phys. Chem. B 2013, 117, 11530–11540. 10.1021/jp405451e. PubMed DOI

Robison A. D.; Sun S.; Poyton M. F.; Johnson G. A.; Pellois J. P.; Jungwirth P.; Vazdar M.; Cremer P. S. Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers. J. Phys. Chem. B 2016, 120, 9287–9296. 10.1021/acs.jpcb.6b05604. PubMed DOI PMC

Sakamoto K.; Morishita T.; Aburai K.; Ito D.; Imura T.; Sakai K.; Abe M.; Nakase I.; Futaki S.; Sakai H. Direct Entry of Cell-Penetrating Peptide Can Be Controlled by Maneuvering the Membrane Curvature. Sci. Rep. 2021, 11, 3110.1038/s41598-020-79518-1. PubMed DOI PMC

Sakamoto K.; Kitano T.; Kuwahara H.; Tedani M.; Aburai K.; Futaki S.; Abe M.; Sakai H.; Ohtaka H.; Yamashita Y. Effect of Vesicle Size on the Cytolysis of Cell-Penetrating Peptides (CPPs. Int. J. Mol. Sci. 2020, 21, 740510.3390/IJMS21197405. PubMed DOI PMC

Nguyen M. T. H.; Biriukov D.; Tempra C.; Baxova K.; Martinez-Seara H.; Evci H.; Singh V.; Šachl R.; Hof M.; Jungwirth P.; et al. Ionic Strength and Solution Composition Dictate the Adsorption of Cell-Penetrating Peptides onto Phosphatidylcholine Membranes. Langmuir 2022, 38, 11284–11295. 10.1021/acs.langmuir.2c01435. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...