Role of Divalent Ions in Membrane Models of Polymyxin-Sensitive and Resistant Gram-Negative Bacteria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39825802
PubMed Central
PMC11815837
DOI
10.1021/acs.jcim.4c01574
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální léková rezistence * účinky léků MeSH
- buněčná membrána * účinky léků metabolismus MeSH
- gramnegativní bakterie * účinky léků MeSH
- kationty dvojmocné metabolismus MeSH
- mutace MeSH
- polymyxiny * farmakologie MeSH
- Salmonella enterica * účinky léků metabolismus MeSH
- simulace molekulární dynamiky MeSH
- vápník metabolismus MeSH
- vnější bakteriální membrána * účinky léků metabolismus chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- kationty dvojmocné MeSH
- polymyxiny * MeSH
- vápník MeSH
Polymyxins, critical last-resort antibiotics, impact the distribution of membrane-bound divalent cations in the outer membrane of Gram-negative bacteria. We employed atomistic molecular dynamics simulations to model the effect of displacing these ions. Two polymyxin-sensitive and two polymyxin-resistant models of the outer membrane of Salmonella enterica were investigated. First, we found that the removal of all calcium ions induces global stress on the model membranes, leading to substantial membrane restructuring. Next, we used enhanced sampling methods to explore the effects of localized stress by displacing membrane-bound ions. Our findings indicate that creating defects in the membrane-bound ion network facilitates polymyxin permeation. Additionally, our study of polymyxin-resistant mutations revealed that divalent ions in resistant model membranes are less likely to be displaced, potentially contributing to the increased resistance associated with these mutations. Lastly, we compared results from all-atom molecular dynamics simulations with coarse-grained simulations, demonstrating that the choice of force field significantly influences the behavior of membrane-bound ions under stress.
Zobrazit více v PubMed
WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed 2024–03–28).
Hawkey P. M. Multidrug-Resistant Gram-Negative Bacteria: A Product of Globalization. Journal of Hospital Infection 2015, 89 (4), 241–247. 10.1016/j.jhin.2015.01.008. PubMed DOI
Bassetti M.; Garau J. Current and Future Perspectives in the Treatment of Multidrug-Resistant Gram-Negative Infections. J. Antimicrob. Chemother. 2021, 76 (Supplement_4), iv23–iv37. 10.1093/jac/dkab352. PubMed DOI PMC
Renwick M. J.; Brogan D. M.; Mossialos E. A Systematic Review and Critical Assessment of Incentive Strategies for Discovery and Development of Novel Antibiotics. J. Antibiot (Tokyo) 2016, 69 (2), 73–88. 10.1038/ja.2015.98. PubMed DOI PMC
Kostyanev T.; Bonten M. J. M.; O’Brien S.; Steel H.; Ross S.; François B.; Tacconelli E.; Winterhalter M.; Stavenger R. A.; Karlén A.; Harbarth S.; Hackett J.; Jafri H. S.; Vuong C.; MacGowan A.; Witschi A.; Angyalosi G.; Elborn J. S.; deWinter R.; Goossens H. The Innovative Medicines Initiative’s New Drugs for Bad Bugs Programme: European Public–Private Partnerships for the Development of New Strategies to Tackle Antibiotic Resistance. J. Antimicrob. Chemother. 2016, 71 (2), 290–295. 10.1093/jac/dkv339. PubMed DOI
Ribeiro da Cunha B.; Fonseca L. P.; Calado C. R. C. Antibiotic Discovery: Where Have We Come from, Where Do We Go?. Antibiotics (Basel) 2019, 8 (2), 45.10.3390/antibiotics8020045. PubMed DOI PMC
Wu E. L.; Engström O.; Jo S.; Stuhlsatz D.; Yeom M. S.; Klauda J. B.; Widmalm G.; Im W. Molecular Dynamics and NMR Spectroscopy Studies of E. Coli Lipopolysaccharide Structure and Dynamics. Biophys. J. 2013, 105 (6), 1444–1455. 10.1016/j.bpj.2013.08.002. PubMed DOI PMC
Lundstedt E.; Kahne D.; Ruiz N. Assembly and Maintenance of Lipids at the Bacterial Outer Membrane. Chem. Rev. 2021, 121 (9), 5098–5123. 10.1021/acs.chemrev.0c00587. PubMed DOI PMC
Sun J.; Rutherford S. T.; Silhavy T. J.; Huang K. C. Physical Properties of the Bacterial Outer Membrane. Nat. Rev. Microbiol 2022, 20 (4), 236–248. 10.1038/s41579-021-00638-0. PubMed DOI PMC
Nikaido H. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol. Mol. Biol. Rev. 2003, 67 (4), 593–656. 10.1128/MMBR.67.4.593-656.2003. PubMed DOI PMC
Vergalli J.; Bodrenko I. V.; Masi M.; Moynié L.; Acosta-Gutiérrez S.; Naismith J. H.; Davin-Regli A.; Ceccarelli M.; van den Berg B.; Winterhalter M.; Pagès J.-M. Porins and Small-Molecule Translocation across the Outer Membrane of Gram-Negative Bacteria. Nat. Rev. Microbiol 2020, 18 (3), 164–176. 10.1038/s41579-019-0294-2. PubMed DOI
Needham B. D.; Trent M. S. Fortifying the Barrier: The Impact of Lipid A Remodelling on Bacterial Pathogenesis. Nat. Rev. Microbiol 2013, 11 (7), 467–481. 10.1038/nrmicro3047. PubMed DOI PMC
Lam N. H.; Ma Z.; Ha B.-Y. Electrostatic Modification of the Lipopolysaccharide Layer: Competing Effects of Divalent Cations and Polycationic or Polyanionic Molecules. Soft Matter 2014, 10 (38), 7528–7544. 10.1039/C4SM01262C. PubMed DOI
Kim S.; Patel D. S.; Park S.; Slusky J.; Klauda J. B.; Widmalm G.; Im W. Bilayer Properties of Lipid A from Various Gram-Negative Bacteria. Biophys. J. 2016, 111 (8), 1750–1760. 10.1016/j.bpj.2016.09.001. PubMed DOI PMC
Velkov T.; Roberts K. D.; Nation R. L.; Thompson P. E.; Li J. Pharmacology of Polymyxins: New Insights into an “old” Class of Antibiotics. Future Microbiol. 2013, 8 (6), 711–724. 10.2217/fmb.13.39. PubMed DOI PMC
Whitfield C.; Williams D. M.; Kelly S. D. Lipopolysaccharide O-Antigens—Bacterial Glycans Made to Measure. J. Biol. Chem. 2020, 295 (31), 10593–10609. 10.1074/jbc.REV120.009402. PubMed DOI PMC
Jefferies D.; Shearer J.; Khalid S. Role of O-Antigen in Response to Mechanical Stress of the E. Coli Outer Membrane: Insights from Coarse-Grained MD Simulations. J. Phys. Chem. B 2019, 123 (17), 3567–3575. 10.1021/acs.jpcb.8b12168. PubMed DOI
Evans M. E.; Feola D. J.; Rapp R. P. Polymyxin B Sulfate and Colistin: Old Antibiotics for Emerging Multiresistant Gram-Negative Bacteria. Ann. Pharmacother. 1999, 33 (9), 960–967. 10.1345/aph.18426. PubMed DOI
Sakura N.; Itoh T.; Uchida Y.; Ohki K.; Okimura K.; Chiba K.; Sato Y.; Sawanishi H. The Contribution of the N-Terminal Structure of Polymyxin B Peptides to Antimicrobial and Lipopolysaccharide Binding Activity. Bull. Chem. Soc. Jpn. 2004, 77 (10), 1915–1924. 10.1246/bcsj.77.1915. DOI
Kanazawa K.; Sato Y.; Ohki K.; Okimura K.; Uchida Y.; Shindo M.; Sakura N. Contribution of Each Amino Acid Residue in Polymyxin B3 to Antimicrobial and Lipopolysaccharide Binding Activity. Chem. Pharm. Bull. 2009, 57 (3), 240–244. 10.1248/cpb.57.240. PubMed DOI
Velkov T.; Thompson P. E.; Nation R. L.; Li J. Structure–Activity Relationships of Polymyxin Antibiotics. J. Med. Chem. 2010, 53 (5), 1898–1916. 10.1021/jm900999h. PubMed DOI PMC
Kimura Y.; Matsunaga H.; Vaara M. Polymyxin B-Octapeptide and Polymyxin B-Heptapeptide Are Potent Outer-Membrane Permeability-Increasing Agents. J. Antibiot. 1992, 45 (5), 742–749. 10.7164/antibiotics.45.742. PubMed DOI
Katz M.; Tsubery H.; Kolusheva S.; Shames A.; Fridkin M.; Jelinek R. Lipid Binding and Membrane Penetration of Polymyxin B Derivatives Studied in a Biomimetic Vesicle System. Biochem. J. 2003, 375, 405–413. 10.1042/bj20030784. PubMed DOI PMC
World Health Organization ; WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). Critically Important Antimicrobials for Human Medicine: Ranking of Antimicrobial Agents for Risk Management of Antimicrobial Resistance Due to Non-Human Use, 5th rev.; World Health Organization: Geneva, 2017.
Warren H.; Kania S.; Siber G. Binding the Neutralization of Bacterial Lipopolysaccharide by Colistin Nonapeptide. Antimicrob. Agents Chemother. 1985, 28 (1), 107–112. 10.1128/AAC.28.1.107. PubMed DOI PMC
Vaara M. The Outer-Membrane Permeability-Increasing Action of Linear Analogs of Polymyxin-B Nonapeptide. Drug Exp. Clin. Res. 1991, 17 (9), 437–444. PubMed
Berglund N. A.; Piggot T. J.; Jefferies D.; Sessions R. B.; Bond P. J.; Khalid S. Interaction of the Antimicrobial Peptide Polymyxin B1 with Both Membranes of E. Coli: A Molecular Dynamics Study. PLoS Comput. Biol. 2015, 11 (4), e100418010.1371/journal.pcbi.1004180. PubMed DOI PMC
Trimble M. J.; Mlynarcik P.; Kolar M.; Hancock R. E. W. Polymyxin: Alternative Mechanisms of Action and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6 (10), a02528810.1101/cshperspect.a025288. PubMed DOI PMC
Dupuy F. G.; Pagano I.; Andenoro K.; Peralta M. F.; Elhady Y.; Heinrich F.; Tristram-Nagle S. Selective Interaction of Colistin with Lipid Model Membranes. Biophys. J. 2018, 114 (4), 919–928. 10.1016/j.bpj.2017.12.027. PubMed DOI PMC
Cetuk H.; Anishkin A.; Scott A. J.; Rempe S. B.; Ernst R. K.; Sukharev S. Partitioning of Seven Different Classes of Antibiotics into LPS Monolayers Supports Three Different Permeation Mechanisms through the Outer Bacterial Membrane. Langmuir 2021, 37 (4), 1372–1385. 10.1021/acs.langmuir.0c02652. PubMed DOI
Sabnis A.; Hagart K. L. H.; Klockner A.; Becce M.; Evans L. E.; Furniss R. C. D.; Mavridou D. A.; Murphy R.; Stevens M. M.; Davies J. C.; Larrouy-Maumus G. J.; Clarke T. B.; Edwards A. M. Colistin Kills Bacteria by Targeting Lipopolysaccharide in the Cytoplasmic Membrane. eLife 2021, 10, e6583610.7554/eLife.65836. PubMed DOI PMC
Khondkerg A.; Dhaliwal A. K.; Saem S.; Mahmood A.; Fradin C.; Moran-Mirabal J.; Rheinstadte M. C. Membrane Charge and Lipid Packing Determine Polymyxin-Induced Membrane Damage. Commun. Biol. 2019, 2, 67.10.1038/s42003-019-0297-6. PubMed DOI PMC
Wallace S. J.; Li J.; Nation R. L.; Prankerd R. J.; Velkov T.; Boyd B. J. Self-Assembly Behavior of Colistin and Its Prodrug Colistin Methanesulfonate: Implications for Solution Stability and Solubilization. J. Phys. Chem. B 2010, 114 (14), 4836–4840. 10.1021/jp100458x. PubMed DOI PMC
Hancock I. C.; Meadow P. M. The Extractable Lipids of Pseudomonas Aeruginosa. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1969, 187 (3), 366–379. 10.1016/0005-2760(69)90010-1. PubMed DOI
Adams M. D.; Nickel G. C.; Bajaksouzian S.; Lavender H.; Murthy A. R.; Jacobs M. R.; Bonomo R. A. Resistance to Colistin in Acinetobacter Baumannii Associated with Mutations in the PmrAB Two-Component System. Antimicrob. Agents Chemother. 2009, 53 (9), 3628–3634. 10.1128/AAC.00284-09. PubMed DOI PMC
Han M.-L.; Velkov T.; Zhu Y.; Roberts K. D.; Le Brun A. P.; Chow S. H.; Gutu A. D.; Moskowitz S. M.; Shen H.-H.; Li J. Polymyxin-Induced Lipid A Deacylation in Pseudomonas Aeruginosa Perturbs Polymyxin Penetration and Confers High-Level Resistance. ACS Chem. Biol. 2018, 13 (1), 121–130. 10.1021/acschembio.7b00836. PubMed DOI
Ma W.; Jiang X.; Dou Y.; Zhang Z.; Li J.; Yuan B.; Yang K. Biophysical Impact of Lipid A Modification Caused by Mobile Colistin Resistance Gene on Bacterial Outer Membranes. J. Phys. Chem. Lett. 2021, 12 (48), 11629–11635. 10.1021/acs.jpclett.1c03295. PubMed DOI
Pelletier M. R.; Casella L. G.; Jones J. W.; Adams M. D.; Zurawski D. V.; Hazlett K. R. O.; Doi Y.; Ernst R. K. Unique Structural Modifications Are Present in the Lipopolysaccharide from Colistin-Resistant Strains of Acinetobacter Baumannii. Antimicrob. Agents Chemother. 2013, 57 (10), 4831–4840. 10.1128/AAC.00865-13. PubMed DOI PMC
Soon R. L.; Nation R. L.; Harper M.; Adler B.; Boyce J. D.; Tan C.-H.; Li J.; Larson I. Effect of Colistin Exposure and Growth Phase on the Surface Properties of Live Acinetobacter Baumannii Cells Examined by Atomic Force Microscopy. Int. J. Antimicrob. Agents 2011, 38 (6), 493–501. 10.1016/j.ijantimicag.2011.07.014. PubMed DOI PMC
Santos D. E. S.; Pol-Fachin L.; Lins R. D.; Soares T. A. Polymyxin Binding to the Bacterial Outer Membrane Reveals Cation Displacement and Increasing Membrane Curvature in Susceptible but Not in Resistant Lipopolysaccharide Chemotypes. J. Chem. Inf. Model. 2017, 57 (9), 2181–2193. 10.1021/acs.jcim.7b00271. PubMed DOI
Fu L.; Wan M.; Zhang S.; Gao L.; Fang W. Polymyxin B Loosens Lipopolysaccharide Bilayer but Stiffens Phospholipid Bilayer. Biophys. J. 2020, 118 (1), 138–150. 10.1016/j.bpj.2019.11.008. PubMed DOI PMC
Li J.; Beuerman R.; Verma C. S. Mechanism of Polyamine Induced Colistin Resistance through Electrostatic Networks on Bacterial Outer Membranes. Biochim. Biophys. Acta-Biomembr. 2020, 1862 (9), 18329710.1016/j.bbamem.2020.183297. PubMed DOI
Jiang X.; Sun Y.; Yang K.; Yuan B.; Velkov T.; Wang L.; Li J. Coarse-Grained Simulations Uncover Gram-Negative Bacterial Defense against Polymyxins by the Outer Membrane. Comp. Struct. Biotechnol. J. 2021, 19, 3885–3891. 10.1016/j.csbj.2021.06.051. PubMed DOI PMC
Nguyen H. L.; Linh H. Q.; Krupa P.; La Penna G.; Li M. S. Amyloid β Dodecamer Disrupts the Neuronal Membrane More Strongly than the Mature Fibril: Understanding the Role of Oligomers in Neurotoxicity. J. Phys. Chem. B 2022, 126 (20), 3659–3672. 10.1021/acs.jpcb.2c01769. PubMed DOI PMC
Yoo J.; Aksimentiev A. New Tricks for Old Dogs: Improving the Accuracy of Biomolecular Force Fields by Pair-Specific Corrections to Non-Bonded Interactions. Phys. Chem. Chem. Phys. 2018, 20 (13), 8432–8449. 10.1039/C7CP08185E. PubMed DOI PMC
Santos D. E. S.; Pontes F. J. S.; Lins R. D.; Coutinho K.; Soares T. A. SuAVE: A Tool for Analyzing Curvature-Dependent Properties in Chemical Interfaces. J. Chem. Inf. Model. 2020, 60 (2), 473–484. 10.1021/acs.jcim.9b00569. PubMed DOI
Rice A.; Rooney M. T.; Greenwood A. I.; Cotten M. L.; Wereszczynski J. Lipopolysaccharide Simulations Are Sensitive to Phosphate Charge and Ion Parameterization. J. Chem. Theory Comput. 2020, 16 (3), 1806–1815. 10.1021/acs.jctc.9b00868. PubMed DOI PMC
Buchoux S. FATSLiM: A Fast and Robust Software to Analyze MD Simulations of Membranes. Bioinformatics 2017, 33 (1), 133–134. 10.1093/bioinformatics/btw563. PubMed DOI
Ma H.; Irudayanathan F. J.; Jiang W.; Nangia S. Simulating Gram-Negative Bacterial Outer Membrane: A Coarse Grain Model. J. Phys. Chem. B 2015, 119 (46), 14668–14682. 10.1021/acs.jpcb.5b07122. PubMed DOI
Jefferies D.; Hsu P.-C.; Khalid S. Through the Lipopolysaccharide Glass: A Potent Antimicrobial Peptide Induces Phase Changes in Membranes. Biochemistry 2017, 56 (11), 1672–1679. 10.1021/acs.biochem.6b01063. PubMed DOI
Marvin H. J.; Ter Beest M. B.; Witholt B. Release of Outer Membrane Fragments from Wild-Type Escherichia Coli and from Several E. Coli Lipopolysaccharide Mutants by EDTA and Heat Shock Treatments. J. Bacteriol. 1989, 171 (10), 5262–5267. 10.1128/jb.171.10.5262-5267.1989. PubMed DOI PMC
Vaara M. Agents That Increase the Permeability of the Outer Membrane. Microbiol Rev. 1992, 56 (3), 395–411. 10.1128/mr.56.3.395-411.1992. PubMed DOI PMC
Prachayasittikul V.; Isarankura-Na-Ayudhya C.; Tantimongcolwat T.; Nantasenamat C.; Galla H.-J. EDTA-Induced Membrane Fluidization and Destabilization: Biophysical Studies on Artificial Lipid Membranes. ABBS 2007, 39 (11), 901–913. 10.1111/j.1745-7270.2007.00350.x. PubMed DOI
Clifton L. A.; Skoda M. W. A.; Le Brun A. P.; Ciesielski F.; Kuzmenko I.; Holt S. A.; Lakey J. H. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models. Langmuir 2015, 31 (1), 404–412. 10.1021/la504407v. PubMed DOI PMC
Clifton L. A.; Holt S. A.; Hughes A. V.; Daulton E. L.; Arunmanee W.; Heinrich F.; Khalid S.; Jefferies D.; Charlton T. R.; Webster J. R. P.; Kinane C. J.; Lakey J. H. An Accurate In Vitro Model of the E. Coli Envelope. Angew. Chem., Int. Ed. 2015, 54 (41), 11952–11955. 10.1002/anie.201504287. PubMed DOI PMC
Vazdar K.; Tempra C.; Olżyńska A.; Biriukov D.; Cwiklik L.; Vazdar M. Stealthy Player in Lipid Experiments? EDTA Binding to Phosphatidylcholine Membranes Probed by Simulations and Monolayer Experiments. J. Phys. Chem. B 2023, 127 (24), 5462–5469. 10.1021/acs.jpcb.3c03207. PubMed DOI PMC
Fu L.; Li X.; Zhang S.; Dong Y.; Fang W.; Gao L. Polymyxins Induce Lipid Scrambling and Disrupt the Homeostasis of Gram-Negative Bacteria Membrane. Biophys. J. 2022, 121 (18), 3486–3498. 10.1016/j.bpj.2022.08.007. PubMed DOI PMC
Piggot T. J.; Holdbrook D. A.; Khalid S. Electroporation of the E. Coli and S. Aureus Membranes: Molecular Dynamics Simulations of Complex Bacterial Membranes. J. Phys. Chem. B 2011, 115 (45), 13381–13388. 10.1021/jp207013v. PubMed DOI
Piggot T. J.; Holdbrook D. A.; Khalid S. Conformational Dynamics and Membrane Interactions of the E. Coli Outer Membrane Protein FecA: A Molecular Dynamics Simulation Study. Biochimica et Biophysica Acta (BBA) - Biomembranes 2013, 1828 (2), 284–293. 10.1016/j.bbamem.2012.08.021. PubMed DOI
Lopez C. A.; Zgurskaya H.; Gnanakaran S. Molecular Characterization of the Outer Membrane of Pseudomonas Aeruginosa. Biochim. Biophys. Acta-Biomembr. 2020, 1862 (3), 18315110.1016/j.bbamem.2019.183151. PubMed DOI
Guo L.; Lim K. B.; Poduje C. M.; Daniel M.; Gunn J. S.; Hackett M.; Miller S. I. Lipid A Acylation and Bacterial Resistance against Vertebrate Antimicrobial Peptides. Cell 1998, 95 (2), 189–198. 10.1016/S0092-8674(00)81750-X. PubMed DOI
Bader M. W.; Navarre W. W.; Shiau W.; Nikaido H.; Frye J. G.; McClelland M.; Fang F. C.; Miller S. I. Regulation of Salmonella Typhimurium Virulence Gene Expression by Cationic Antimicrobial Peptides. Mol. Microbiol. 2003, 50 (1), 219–230. 10.1046/j.1365-2958.2003.03675.x. PubMed DOI
Olaitan A. O.; Morand S.; Rolain J.-M. Mechanisms of Polymyxin Resistance: Acquired and Intrinsic Resistance in Bacteria. Front. Microbiol. 2014, 5, 643.10.3389/fmicb.2014.00643. PubMed DOI PMC
Lay W. K.; Miller M. S.; Elcock A. H. Optimizing Solute–Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements. J. Chem. Theory Comput. 2016, 12 (4), 1401–1407. 10.1021/acs.jctc.5b01136. PubMed DOI PMC
Schneider T.; Muellera A.; Miess H.; Gross H. Cyclic Lipopeptides as Antibacterial Agents - Potent Antibiotic Activity Mediated by Intriguing Mode of Actions. Int. J. Med. Microbiol. 2014, 304 (1), 37–43. 10.1016/j.ijmm.2013.08.009. PubMed DOI
Mohapatra S. S.; Dwibedy S. K.; Padhy I. Polymyxins, the Last-Resort Antibiotics: Mode of Action, Resistance Emergence, and Potential Solutions. J. Biosci. 2021, 46 (3), 85.10.1007/s12038-021-00209-8. PubMed DOI PMC
Manioglu S.; Modaresi S. M.; Ritzmann N.; Thoma J.; Overall S. A.; Harms A.; Upert G.; Luther A.; Barnes A. B.; Obrecht D.; Müller D. J.; Hiller S. Antibiotic Polymyxin Arranges Lipopolysaccharide into Crystalline Structures to Solidify the Bacterial Membrane. Nat. Commun. 2022, 13 (1), 6195.10.1038/s41467-022-33838-0. PubMed DOI PMC
Prakaash D.; González A. B.; Waterhouse F.; Khalid S. Characterization of Antimicrobial Peptide Interactions with a Realistically Phase Separated Model of the E. Coli Outer Membrane via Large-Scale Simulations. Biophys. J. 2024, 123 (3), 328a.10.1016/j.bpj.2023.11.2004. DOI
Bai G.; Yi H.-B.; Li H.-J.; Xu J.-J. Hydration Characteristics of Ca2+ and Mg2+: A Density Functional Theory, Polarized Continuum Model and Molecular Dynamics Investigation. Mol. Phys. 2013, 111 (4), 553–568. 10.1080/00268976.2012.737035. DOI
Xu H.-T.; Zhang N.; Li M.-R.; Zhang F.-S. Comparison of the Ionic Effects of Ca 2 + and Mg 2 + on Nucleic Acids in Liquids. J. Mol. Liq. 2021, 344, 11778110.1016/j.molliq.2021.117781. DOI
Sharma P.; Ayappa K. G. A Molecular Dynamics Study of Antimicrobial Peptide Interactions with the Lipopolysaccharides of the Outer Bacterial Membrane. J. Membr. Biol. 2022, 255 (6), 665–675. 10.1007/s00232-022-00258-6. PubMed DOI
Jiang X.; Han M.; Tran K.; Patil N. A.; Ma W.; Roberts K. D.; Xiao M.; Sommer B.; Schreiber F.; Wang L.; Velkov T.; Li J. An Intelligent Strategy with All-Atom Molecular Dynamics Simulations for the Design of Lipopeptides against Multidrug- Resistant Pseudomonas Aeruginosa. J. Med. Chem. 2022, 65 (14), 10001–10013. 10.1021/acs.jmedchem.2c00657. PubMed DOI
Gonzalez-Fernandez C. A.; Bringas E.; Oostenbrink C.; Ortiz I. In Silico Investigation and Surmounting of Lipopolysaccharide Barrier in Gram-Negative Bacteria: How Far Has Molecular Dynamics Come?. Comp. Struct. Biotechnol. J. 2022, 20, 5886–5901. 10.1016/j.csbj.2022.10.039. PubMed DOI PMC
Hancock R. E. W.; Chapple D. S. Peptide Antibiotics. Antimicrob. Agents Chemother. 1999, 43 (6), 1317–1323. 10.1128/AAC.43.6.1317. PubMed DOI PMC
Deris Z. Z.; Swarbrick J. D.; Roberts K. D.; Azad M. A. K.; Akter J.; Horne A. S.; Nation R. L.; Rogers K. L.; Thompson P. E.; Velkov T.; Li J. Probing the Penetration of Antimicrobial Polymyxin Lipopeptides into Gram-Negative Bacteria. Bioconjugate Chem. 2014, 25 (4), 750–760. 10.1021/bc500094d. PubMed DOI PMC
LaPorte D. C.; Rosenthal K. S.; Storm D. R. Inhibition of Escherichia Coli Growth and Respiration by Polymyxin B Covalently Attached to Agarose Beads. Biochemistry 1977, 16 (8), 1642–1648. 10.1021/bi00627a019. PubMed DOI
Zdrazil B.; Felix E.; Hunter F.; Manners E. J.; Blackshaw J.; Corbett S.; de Veij M.; Ioannidis H.; Lopez D. M.; Mosquera J. F.; Magarinos M. P.; Bosc N.; Arcila R.; Kizilören T.; Gaulton A.; Bento A. P.; Adasme M. F.; Monecke P.; Landrum G. A.; Leach A. R. The ChEMBL Database in 2023: A Drug Discovery Platform Spanning Multiple Bioactivity Data Types and Time Periods. Nucleic Acids Res. 2024, 52 (D1), D1180–D1192. 10.1093/nar/gkad1004. PubMed DOI PMC
O’Boyle N. M.; Banck M.; James C. A.; Morley C.; Vandermeersch T.; Hutchison G. R. Open Babel: An Open Chemical Toolbox. J. Cheminform 2011, 3 (1), 33.10.1186/1758-2946-3-33. PubMed DOI PMC
Jo S.; Kim T.; Iyer V. G.; Im W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29 (11), 1859–1865. 10.1002/jcc.20945. PubMed DOI
Kim S.; Lee J.; Jo S.; Brooks C. L.; Lee H. S.; Im W. CHARMM-GUI Ligand Reader and Modeler for CHARMM Force Field Generation of Small Molecules: CHARMM-GUI Ligand Reader and Modeler for CHARMM Force Field Generation of Small Molecules. J. Comput. Chem. 2017, 38 (21), 1879–1886. 10.1002/jcc.24829. PubMed DOI PMC
Pristovšek P.; Kidrič J. Solution Structure of Polymyxins B and E and Effect of Binding to Lipopolysaccharide: An NMR and Molecular Modeling Study. J. Med. Chem. 1999, 42 (22), 4604–4613. 10.1021/jm991031b. PubMed DOI
Graham J. A.; Essex J. W.; Khalid S. PyCGTOOL: Automated Generation of Coarse-Grained Molecular Dynamics Models from Atomistic Trajectories. J. Chem. Inf. Model. 2017, 57 (4), 650–656. 10.1021/acs.jcim.7b00096. PubMed DOI
Rice A.; Wereszczynski J. Atomistic Scale Effects of Lipopolysaccharide Modifications on Bacterial Outer Membrane Defenses. Biophys. J. 2018, 114 (6), 1389–1399. 10.1016/j.bpj.2018.02.006. PubMed DOI PMC
Kučerka N.; Papp-Szabo E.; Nieh M.-P.; Harroun T. A.; Schooling S. R.; Pencer J.; Nicholson E. A.; Beveridge T. J.; Katsaras J. Effect of Cations on the Structure of Bilayers Formed by Lipopolysaccharides Isolated from Pseudomonas Aeruginosa PAO1. J. Phys. Chem. B 2008, 112 (27), 8057–8062. 10.1021/jp8027963. PubMed DOI
Edrington T. C.; Kintz E.; Goldberg J. B.; Tamm L. K. Structural Basis for the Interaction of Lipopolysaccharide with Outer Membrane Protein H (OprH) from Pseudomonas Aeruginosa*. J. Biol. Chem. 2011, 286 (45), 39211–39223. 10.1074/jbc.M111.280933. PubMed DOI PMC
Lerouge I.; Vanderleyden J. O-Antigen Structural Variation: Mechanisms and Possible Roles in Animal/Plant–Microbe Interactions. FEMS Microbiol Rev. 2002, 26 (1), 17–47. 10.1111/j.1574-6976.2002.tb00597.x. PubMed DOI
Ongwae G. M.; Morrison K. R.; Allen R. A.; Kim S.; Im W.; Wuest W. M.; Pires M. M. Broadening Activity of Polymyxin by Quaternary Ammonium Grafting. ACS Infect. Dis. 2020, 6 (6), 1427–1435. 10.1021/acsinfecdis.0c00037. PubMed DOI PMC
Li A.; Schertzer J. W.; Yong X. Molecular Dynamics Modeling of Pseudomonas Aeruginosa Outer Membranes. Phys. Chem. Chem. Phys. 2018, 20 (36), 23635–23648. 10.1039/C8CP04278K. PubMed DOI PMC
Jiang X.; Yang K.; Han M.-L.; Yuan B.; Li J.; Gong B.; Velkov T.; Schreiber F.; Wang L.; Li J. Outer Membranes of Polymyxin-Resistant Acinetobacter Baumannii with Phosphoethanolamine-Modified Lipid A and Lipopolysaccharide Loss Display Different Atomic-Scale Interactions with Polymyxins. ACS Infect. Dis. 2020, 6 (10), 2698–2708. 10.1021/acsinfecdis.0c00330. PubMed DOI PMC
Li J.; Beuerman R.; Verma C. S. Dissecting the Molecular Mechanism of Colistin Resistance in Mcr-1 Bacteria. J. Chem. Inf. Model. 2020, 60 (10), 4975–4984. 10.1021/acs.jcim.0c01051. PubMed DOI
Patil N. A.; Ma W.; Jiang X.; He X.; Yu H. H.; Wickremasinghe H.; Wang J.; Thompson P. E.; Velkov T.; Roberts K. D.; Li J. Critical Role of Position 10 Residue in the Polymyxin Antimicrobial Activity. J. Med. Chem. 2023, 66 (4), 2865–2876. 10.1021/acs.jmedchem.2c01915. PubMed DOI
Awang T.; Pongprayoon P. The Penetration of Human Defensin 5 (HD5) through Bacterial Outer Membrane: Simulation Studies. J. Mol. Model. 2021, 27 (10), 291.10.1007/s00894-021-04915-w. PubMed DOI
Sun Y.; Deng Z.; Jiang X.; Yuan B.; Yang K. Interactions between Polymyxin B and Various Bacterial Membrane Mimics: A Molecular Dynamics Study. Colloid Surf. B-Biointerfaces 2022, 211, 11228810.1016/j.colsurfb.2021.112288. PubMed DOI
Clifton L. A.; Skoda M. W. A.; Daulton E. L.; Hughes A. V.; Le Brun A. P.; Lakey J. H.; Holt S. A. Asymmetric Phospholipid: Lipopolysaccharide Bilayers; a Gram-Negative Bacterial Outer Membrane Mimic. J. R. Soc. Interface. 2013, 10 (89), 20130810.10.1098/rsif.2013.0810. PubMed DOI PMC
Bello G.; Bodin A.; Lawrence M. J.; Barlow D.; Mason A. J.; Barker R. D.; Harvey R. D. The Influence of Rough Lipopolysaccharide Structure on Molecular Interactions with Mammalian Antimicrobial Peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (2), 197–209. 10.1016/j.bbamem.2015.11.007. PubMed DOI
Vieira T.; Dos Santos C. A.; De Jesus Bertani A. M.; Costa G. L.; Campos K. R.; Sacchi C. T.; Cunha M. P. V.; Carvalho E.; Da Costa A. J.; De Paiva J. B.; Rubio M. D. S.; Camargo C. H.; Tiba-Casas M. R. Polymyxin Resistance in Salmonella: Exploring Mutations and Genetic Determinants of Non-Human Isolates. Antibiotics 2024, 13 (2), 110.10.3390/antibiotics13020110. PubMed DOI PMC
Lee J.; Patel D. S.; Ståhle J.; Park S.-J.; Kern N. R.; Kim S.; Lee J.; Cheng X.; Valvano M. A.; Holst O.; Knirel Y. A.; Qi Y.; Jo S.; Klauda J. B.; Widmalm G.; Im W. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J. Chem. Theory Comput. 2019, 15 (1), 775–786. 10.1021/acs.jctc.8b01066. PubMed DOI
Chen H. D.; Groisman E. A. The Biology of the PmrA/PmrB Two-Component System: The Major Regulator of Lipopolysaccharide Modifications. Annu. Rev. Microbiol. 2013, 67, 83–112. 10.1146/annurev-micro-092412-155751. PubMed DOI PMC
Dalebroux Z. D.; Miller S. I. Salmonellae PhoPQ Regulation of the Outer Membrane to Resist Innate Immunity. Curr. Opin Microbiol 2014, 17, 106–113. 10.1016/j.mib.2013.12.005. PubMed DOI PMC
Huang J.; Li C.; Song J.; Velkov T.; Wang L.; Zhu Y.; Li J. Regulating Polymyxin Resistance in Gram-Negative Bacteria: Roles of Two-Component Systems PhoPQ and PmrAB. Future Microbiol. 2020, 15 (6), 445–459. 10.2217/fmb-2019-0322. PubMed DOI PMC
Zhou Z.; Ribeiro A. A.; Lin S.; Cotter R. J.; Miller S. I.; Raetz C. R. H. Lipid A Modifications in Polymyxin-Resistant Salmonella Typhimurium. J. Biol. Chem. 2001, 276 (46), 43111–43121. 10.1074/jbc.M106960200. PubMed DOI
Gibbons H. S.; Kalb S. R.; Cotter R. J.; Raetz C. R. H. Role of Mg2+ and pH in the Modification of Salmonella Lipid A after Endocytosis by Macrophage Tumour Cells. Mol. Microbiol. 2005, 55 (2), 425–440. 10.1111/j.1365-2958.2004.04409.x. PubMed DOI
Raetz C. R. H.; Reynolds C. M.; Trent M. S.; Bishop R. E. Lipid A Modification Systems in Gram-Negative Bacteria. Annu. Rev. Biochem. 2007, 76 (1), 295–329. 10.1146/annurev.biochem.76.010307.145803. PubMed DOI PMC
Guo L.; Lim K. B.; Gunn J. S.; Bainbridge B.; Darveau R. P.; Hackett M.; Miller S. I. Regulation of Lipid A Modifications by Salmonella Typhimurium Virulence Genes phoP-phoQ. Science 1997, 276 (5310), 250–253. 10.1126/science.276.5310.250. PubMed DOI
Bauer D. Danijoo/WHAM: Bugfixes 2021, 10.5281/ZENODO.1488597. DOI
Bonomi M.; Bussi G.; Camilloni C.; Tribello G. A.; Banáš P.; Barducci A.; Bernetti M.; Bolhuis P. G.; Bottaro S.; Branduardi D.; Capelli R.; Carloni P.; Ceriotti M.; Cesari A.; Chen H.; Chen W.; Colizzi F.; De S.; De La Pierre M.; Donadio D.; Drobot V.; Ensing B.; Ferguson A. L.; Filizola M.; Fraser J. S.; Fu H.; Gasparotto P.; Gervasio F. L.; Giberti F.; Gil-Ley A.; Giorgino T.; Heller G. T.; Hocky G. M.; Iannuzzi M.; Invernizzi M.; Jelfs K. E.; Jussupow A.; Kirilin E.; Laio A.; Limongelli V.; Lindorff-Larsen K.; Löhr T.; Marinelli F.; Martin-Samos L.; Masetti M.; Meyer R.; Michaelides A.; Molteni C.; Morishita T.; Nava M.; Paissoni C.; Papaleo E.; Parrinello M.; Pfaendtner J.; Piaggi P.; Piccini G.; Pietropaolo A.; Pietrucci F.; Pipolo S.; Provasi D.; Quigley D.; Raiteri P.; Raniolo S.; Rydzewski J.; Salvalaglio M.; Sosso G. C.; Spiwok V.; Šponer J.; Swenson D. W. H.; Tiwary P.; Valsson O.; Vendruscolo M.; Voth G. A.; White A. The PLUMED consortium. Promoting Transparency and Reproducibility in Enhanced Molecular Simulations. Nat. Methods 2019, 16 (8), 670–673. 10.1038/s41592-019-0506-8. PubMed DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103 (19), 8577–8593. 10.1063/1.470117. DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New Feathers for an Old Bird. Comput. Phys. Commun. 2014, 185 (2), 604–613. 10.1016/j.cpc.2013.09.018. DOI
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18 (12), 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
De Jong D. H.; Singh G.; Bennett W. F. D.; Arnarez C.; Wassenaar T. A.; Schäfer L. V.; Periole X.; Tieleman D. P.; Marrink S. J. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 2013, 9 (1), 687–697. 10.1021/ct300646g. PubMed DOI
Gautier R.; Bacle A.; Tiberti M. L.; Fuchs P. F.; Vanni S.; Antonny B. PackMem: A Versatile Tool to Compute and Visualize Interfacial Packing Defects in Lipid Bilayers. Biophys. J. 2018, 115 (3), 436–444. 10.1016/j.bpj.2018.06.025. PubMed DOI PMC
Michaud-Agrawal N.; Denning E. J.; Woolf T. B.; Beckstein O. MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. J. Comput. Chem. 2011, 32 (10), 2319–2327. 10.1002/jcc.21787. PubMed DOI PMC
Gowers R.; Linke M.; Barnoud J.; Reddy T.; Melo M.; Seyler S.; Domański J.; Dotson D.; Buchoux S.; Kenney I.; Beckstein O.. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations; Austin, TX, 2016; pp 98–105. 10.25080/Majora-629e541a-00e. DOI