Mapping the Gene Expression Spectrum of Mediator Subunits in Response to Viroid Infection in Plants

. 2020 Apr 03 ; 21 (7) : . [epub] 20200403

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32260277

Grantová podpora
CZ.02.2.69/0.0/0.0/16_027/0008357 MEMOBIC (EU Operational Programme Research, Development and Education)
P4-0077 ARRS research programme
RVO:60077344 IPMB institutional support

The mediator (MED) represents a large, conserved, multi-subunit protein complex that regulates gene expression through interactions with RNA polymerase II and enhancer-bound transcription factors. Expanding research accomplishments suggest the predominant role of plant MED subunits in the regulation of various physiological and developmental processes, including the biotic stress response against bacterial and fungal pathogens. However, the involvement of MED subunits in virus/viroid pathogenesis remains elusive. In this study, we investigated for the first time the gene expression modulation of selected MED subunits in response to five viroid species (Apple fruit crinkle viroid (AFCVd), Citrus bark cracking viroid (CBCVd), Hop latent viroid (HLVd), Hop stunt viroid (HSVd), and Potato spindle tuber viroid (PSTVd)) in two model plant species (Nicotiana tabacum and N. benthamiana) and a commercially important hop (Humulus lupulus) cultivar. Our results showed a differential expression pattern of MED subunits in response to a viroid infection. The individual plant MED subunits displayed a differential and tailored expression pattern in response to different viroid species, suggesting that the MED expression is viroid- and plant species-dependent. The explicit evidence obtained from our results warrants further investigation into the association of the MED subunit with symptom development. Together, we provide a comprehensive portrait of MED subunit expression in response to viroid infection and a plausible involvement of MED subunits in fine-tuning transcriptional reprogramming in response to viroid infection, suggesting them as a potential candidate for rewiring the defense response network in plants against pathogens.

Zobrazit více v PubMed

Dotson M.R., Yuan C.X., Roeder R.G., Myers L.C., Gustafsson C.M., Jiang Y.W., Li Y., Kornberg R.D., Asturias F.J. Structural organization of yeast and mammalian mediator complexes. Proc. Natl. Acad. Sci. USA. 2000;97:14307–14310. doi: 10.1073/pnas.260489497. PubMed DOI PMC

Malik S., Roeder R.G. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 2010;11:761–772. doi: 10.1038/nrg2901. PubMed DOI PMC

Conaway R.C., Conaway J.W. Function and regulation of the Mediator complex. Curr. Opin. Genet. Dev. 2011;21:225–230. doi: 10.1016/j.gde.2011.01.013. PubMed DOI PMC

Petrenko N., Jin Y., Wong K.H., Struhl K. Mediator undergoes a compositional change during transcriptional activation. Mol. Cell. 2016;64:443–454. doi: 10.1016/j.molcel.2016.09.015. PubMed DOI PMC

Soutourina J. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 2018;19:262–274. doi: 10.1038/nrm.2017.115. PubMed DOI

Knoll E.R., Zhu Z.I., Sarkar D., Landsman D., Morse R.H. Role of the pre-initiation complex in Mediator recruitment and dynamics. eLife. 2018;7:e39633. doi: 10.7554/eLife.39633. PubMed DOI PMC

Tsai K.-L., Sato S., Tomomori-Sato C., Conaway R.C., Conaway J.W., Asturias F.J. A conserved Mediator-CDK8 kinase module association regulates Mediator-RNA polymerase II interaction. Nat. Struct. Mol. Biol. 2013;20:611–619. doi: 10.1038/nsmb.2549. PubMed DOI PMC

Bäckström S., Elfving N., Nilsson R., Wingsle G., Björklund S. Purification of a Plant Mediator from Arabidopsis thaliana Identifies PFT1 as the Med25 Subunit. Mol. Cell. 2007;26:717–729. doi: 10.1016/j.molcel.2007.05.007. PubMed DOI

Malik N., Agarwal P., Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit. Rev. Biochem. Mol. Biol. 2017;52:475–502. doi: 10.1080/10409238.2017.1325830. PubMed DOI

Chen R., Jiang H., Li L., Zhai Q., Qi L., Zhou W., Liu X., Li H., Zheng W., Sun J., et al. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell. 2012;24:2898–2916. doi: 10.1105/tpc.112.098277. PubMed DOI PMC

Elfving N., Davoine C., Benlloch R., Blomberg J., Brannstrom K., Muller D., Nilsson A., Ulfstedt M., Ronne H., Wingsle G., et al. The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc. Natl. Acad. Sci. USA. 2011;108:8245–8250. doi: 10.1073/pnas.1002981108. PubMed DOI PMC

Iñigo S., Alvarez M.J., Strasser B., Califano A., Cerdán P.D. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J. 2012;69:601–612. doi: 10.1111/j.1365-313X.2011.04815.x. PubMed DOI

Kim Y.J., Chen X. The plant Mediator and its role in noncoding RNA production. Front. Biol. 2011;6:125. doi: 10.1007/s11515-011-1133-7. PubMed DOI PMC

Pérez-Martín F., Yuste-Lisbona F.J., Pineda B., García-Sogo B., Del Olmo I., de Dios Alché J., Egea I., Flores F.B., Piñeiro M., Jarillo J.A., et al. Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny. Plant J. 2018;96:300–315. doi: 10.1111/tpj.14031. PubMed DOI

Bonawitz N.D., Soltau W.L., Blatchley M.R., Powers B.L., Hurlock A.K., Seals L.A., Weng J.-K., Stout J., Chapple C. REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis. J. Biol. Chem. 2012;287:5434–5445. doi: 10.1074/jbc.M111.312298. PubMed DOI PMC

Dhawan R., Luo H., Foerster A.M., Abuqamar S., Du H.-N., Briggs S.D., Mittelsten Scheid O., Mengiste T. HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell. 2009;21:1000–1019. doi: 10.1105/tpc.108.062364. PubMed DOI PMC

Kidd B.N., Edgar C.I., Kumar K.K., Aitken E.A., Schenk P.M., Manners J.M., Kazan K. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell. 2009;21:2237–2252. doi: 10.1105/tpc.109.066910. PubMed DOI PMC

Zhang X., Wang C., Zhang Y., Sun Y., Mou Z. The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell. 2012;24:4294–4309. doi: 10.1105/tpc.112.103317. PubMed DOI PMC

Zhu Y., Schluttenhoffer C.M., Wang P., Fu F., Thimmapuram J., Zhu J.-K., Lee S.Y., Yun D.-J., Mengiste T. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis. Plant Cell. 2014;26:4149–4170. doi: 10.1105/tpc.114.128611. PubMed DOI PMC

Çevik V., Kidd B.N., Zhang P., Hill C., Kiddle S., Denby K.J., Holub E.B., Cahill D.M., Manners J.M., Schenk P.M., et al. MEDIATOR25 Acts as an Integrative Hub for the Regulation of Jasmonate-Responsive Gene Expression in Arabidopsis. Plant Physiol. 2012;160:541–555. doi: 10.1104/pp.112.202697. PubMed DOI PMC

Flores R., Hernández C., de Alba A.E.M., Daròs J.-A., Di Serio F. Viroids and Viroid-Host Interactions. Annu. Rev. Phytopathol. 2005;43:117–139. doi: 10.1146/annurev.phyto.43.040204.140243. PubMed DOI

Di Serio F., Flores R., Verhoeven J.T.J., Li S.-F., Pallás V., Randles J.W., Sano T., Vidalakis G., Owens R.A. Current status of viroid taxonomy. Arch. Virol. 2014;159:3467–3478. doi: 10.1007/s00705-014-2200-6. PubMed DOI

Flores R., Delgado S., Gas M.-E., Carbonell A., Molina D., Gago S., De la Pena M. Viroids: The minimal non-coding RNAs with autonomous replication. FEBS Lett. 2004;567:42–48. doi: 10.1016/j.febslet.2004.03.118. PubMed DOI

Tsagris E.M., Martínez de Alba Á.E., Gozmanova M., Kalantidis K. Viroids. Cell. Microbiol. 2008;10:2168–2179. doi: 10.1111/j.1462-5822.2008.01231.x. PubMed DOI

Maniataki E., Tabler M., Tsagris M. Viroid RNA systemic spread may depend on the interaction of a 71-nucleotide bulged hairpin with the host protein VirP1. RNA. 2003;9:346–354. doi: 10.1261/rna.2162203. PubMed DOI PMC

Dalakouras A., Dadami E., Wassenegger M. Viroid-induced DNA methylation in plants. Biomol. Concepts. 2013;4:557–565. doi: 10.1515/bmc-2013-0030. PubMed DOI

Zheng Y., Wang Y., Ding B., Fei Z. Comprehensive transcriptome analyses reveal that Potato spindle tuber viroid triggers genome-wide changes in alternative splicing, inducible trans-acting activity of phased secondary small interfering RNAs, and immune responses. J. Virol. 2017;91:e00247-17. doi: 10.1128/JVI.00247-17. PubMed DOI PMC

Navarro B., Gisel A., Rodio M.E., Delgado S., Flores R., Di Serio F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J. 2012;70:991–1003. doi: 10.1111/j.1365-313X.2012.04940.x. PubMed DOI

Kappagantu M., Nelson M.E., Bullock J.M., Kenny S.T., Eastwell K.C. Hop stunt viroid: Effects on vegetative growth and yield of hop cultivars, and its distribution in Central Washington State. Plant Dis. 2017;101:607–612. doi: 10.1094/PDIS-06-16-0884-RE. PubMed DOI

Mishra K.A., Kumar A., Mishra D., Nath S.V., Jakše J., Kocábek T., Killi K.U., Morina F., Matoušek J. Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop (Humulus lupulus L.) Viruses. 2018;10:570. doi: 10.3390/v10100570. PubMed DOI PMC

Stajner N., Radisek S., Mishra A.K., Nath V.S., Matousek J., Jakse J. Evaluation of disease severity and global transcriptome response induced by Citrus bark cracking viroid, Hop latent viroid, and their co-infection in hop (Humulus lupulus L.) Int. J. Mol. Sci. 2019;20:3154. doi: 10.3390/ijms20133154. PubMed DOI PMC

Samanta S., Thakur J.K. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. Front. Plant Sci. 2015;6:757. doi: 10.3389/fpls.2015.00757. PubMed DOI PMC

Yang Y., Li L., Qu L.-J. Plant Mediator complex and its critical functions in transcription regulation. J. Integr. Plant Biol. 2016;58:106–118. doi: 10.1111/jipb.12377. PubMed DOI

Cantin G.T., Stevens J.L., Berk A.J. Activation domain-mediator interactions promote transcription preinitiation complex assembly on promoter DNA. Proc. Natl. Acad. Sci. USA. 2003;100:12003–12008. doi: 10.1073/pnas.2035253100. PubMed DOI PMC

Baek H.J., Kang Y.K., Roeder R.G. Human mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly. J. Biol. Chem. 2006;281:15172–15181. doi: 10.1074/jbc.M601983200. PubMed DOI

Kim M.J., Jang I.-C., Chua N.-H. The Mediator complex MED15 subunit mediates activation of downstream lipid-related genes by the WRINKLED1 transcription factor. Plant Physiol. 2016;171:1951–1964. doi: 10.1104/pp.16.00664. PubMed DOI PMC

Owens R.A., Tech K.B., Shao J.Y., Sano T., Baker C.J. Global analysis of tomato gene expression during Potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. Mol. Plant Microbe Interact. 2012;25:582–598. doi: 10.1094/MPMI-09-11-0258. PubMed DOI

Katsarou K., Wu Y., Zhang R., Bonar N., Morris J., Hedley P.E., Bryan G.J., Kalantidis K., Hornyik C. Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection. PLoS ONE. 2016;11:e0150711. doi: 10.1371/journal.pone.0150711. PubMed DOI PMC

Sukumari Nath V., Kumar Mishra A., Kumar A., Matoušek J., Jakše J. Revisiting the role of transcription factors in coordinating the defense response against Citrus bark cracking viroid infection in commercial hop (Humulus Lupulus L.) Viruses. 2019;11:419. doi: 10.3390/v11050419. PubMed DOI PMC

An C., Mou Z. The function of the Mediator complex in plant immunity. Plant Signal. Behav. 2013;8:e23182. doi: 10.4161/psb.23182. PubMed DOI PMC

Lai Z., Schluttenhofer C.M., Bhide K., Shreve J., Thimmapuram J., Lee S.Y., Yun D.-J., Mengiste T. MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat. Commun. 2014;5:3064. doi: 10.1038/ncomms4064. PubMed DOI

Zhang X., Yao J., Zhang Y., Sun Y., Mou Z. The Arabidopsis Mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defense gene expression in plant immune responses. Plant J. 2013;75:484–497. doi: 10.1111/tpj.12216. PubMed DOI

Wathugala D.L., Hemsley P.A., Moffat C.S., Cremelie P., Knight M.R., Knight H. The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways. New Phytol. 2012;195:217–230. doi: 10.1111/j.1469-8137.2012.04138.x. PubMed DOI

Kim Y.J., Zheng B., Yu Y., Won S.Y., Mo B., Chen X. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J. 2011;30:814–822. doi: 10.1038/emboj.2011.3. PubMed DOI PMC

Mishra A.K., Duraisamy G.S., Matoušek J., Radisek S., Javornik B., Jakse J. Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genom. 2016;17 doi: 10.1186/s12864-016-3271-4. PubMed DOI PMC

Uthe H., Vanselow J.T., Schlosser A. Proteomic analysis of the Mediator complex interactome in Saccharomyces cerevisiae. Sci. Rep. 2017;7:43584. doi: 10.1038/srep43584. PubMed DOI PMC

Matoušek J., Siglová K., Jakše J., Radišek S., Brass J.R.J., Tsushima T., Guček T., Duraisamy G.S., Sano T., Steger G. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.) J. Plant Physiol. 2017;213:166–177. doi: 10.1016/j.jplph.2017.02.014. PubMed DOI

Kalantidis K., Denti M.A., Tzortzakaki S., Marinou E., Tabler M., Tsagris M. Virp1 is a host protein with a major role in Potato spindle tuber viroid infection in Nicotiana plants. J. Virol. 2007;81:12872–12880. doi: 10.1128/JVI.00974-07. PubMed DOI PMC

Štajner N., Cregeen S., Javornik B. Evaluation of reference genes for RT-qPCR expression studies in hop (Humulus lupulus L.) during infection with vascular pathogen Verticillium albo-atrum. PLoS ONE. 2013;8:e68228. doi: 10.1371/journal.pone.0068228. PubMed DOI PMC

Mathur S., Vyas S., Kapoor S., Tyagi A.K. The Mediator complex in plants: Structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (Rice) during reproduction and abiotic Stress. Plant Physiol. 2011;157:1609–1627. doi: 10.1104/pp.111.188300. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...