Mapping the Gene Expression Spectrum of Mediator Subunits in Response to Viroid Infection in Plants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/16_027/0008357
MEMOBIC (EU Operational Programme Research, Development and Education)
P4-0077
ARRS research programme
RVO:60077344
IPMB institutional support
PubMed
32260277
PubMed Central
PMC7177877
DOI
10.3390/ijms21072498
PII: ijms21072498
Knihovny.cz E-zdroje
- Klíčová slova
- Nicotiana benthamiana, Nicotiana tabacum, differential expression, hop, mediator complex, pathogen, quantitative reverse transcription PCR, viroid,
- MeSH
- druhová specificita MeSH
- Humulus genetika virologie MeSH
- listy rostlin genetika mikrobiologie MeSH
- mediátorový komplex genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika MeSH
- rostlinné viry MeSH
- stanovení celkové genové exprese MeSH
- tabák genetika virologie MeSH
- viroidy genetika patogenita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mediátorový komplex MeSH
- rostlinné proteiny MeSH
The mediator (MED) represents a large, conserved, multi-subunit protein complex that regulates gene expression through interactions with RNA polymerase II and enhancer-bound transcription factors. Expanding research accomplishments suggest the predominant role of plant MED subunits in the regulation of various physiological and developmental processes, including the biotic stress response against bacterial and fungal pathogens. However, the involvement of MED subunits in virus/viroid pathogenesis remains elusive. In this study, we investigated for the first time the gene expression modulation of selected MED subunits in response to five viroid species (Apple fruit crinkle viroid (AFCVd), Citrus bark cracking viroid (CBCVd), Hop latent viroid (HLVd), Hop stunt viroid (HSVd), and Potato spindle tuber viroid (PSTVd)) in two model plant species (Nicotiana tabacum and N. benthamiana) and a commercially important hop (Humulus lupulus) cultivar. Our results showed a differential expression pattern of MED subunits in response to a viroid infection. The individual plant MED subunits displayed a differential and tailored expression pattern in response to different viroid species, suggesting that the MED expression is viroid- and plant species-dependent. The explicit evidence obtained from our results warrants further investigation into the association of the MED subunit with symptom development. Together, we provide a comprehensive portrait of MED subunit expression in response to viroid infection and a plausible involvement of MED subunits in fine-tuning transcriptional reprogramming in response to viroid infection, suggesting them as a potential candidate for rewiring the defense response network in plants against pathogens.
Zobrazit více v PubMed
Dotson M.R., Yuan C.X., Roeder R.G., Myers L.C., Gustafsson C.M., Jiang Y.W., Li Y., Kornberg R.D., Asturias F.J. Structural organization of yeast and mammalian mediator complexes. Proc. Natl. Acad. Sci. USA. 2000;97:14307–14310. doi: 10.1073/pnas.260489497. PubMed DOI PMC
Malik S., Roeder R.G. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 2010;11:761–772. doi: 10.1038/nrg2901. PubMed DOI PMC
Conaway R.C., Conaway J.W. Function and regulation of the Mediator complex. Curr. Opin. Genet. Dev. 2011;21:225–230. doi: 10.1016/j.gde.2011.01.013. PubMed DOI PMC
Petrenko N., Jin Y., Wong K.H., Struhl K. Mediator undergoes a compositional change during transcriptional activation. Mol. Cell. 2016;64:443–454. doi: 10.1016/j.molcel.2016.09.015. PubMed DOI PMC
Soutourina J. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 2018;19:262–274. doi: 10.1038/nrm.2017.115. PubMed DOI
Knoll E.R., Zhu Z.I., Sarkar D., Landsman D., Morse R.H. Role of the pre-initiation complex in Mediator recruitment and dynamics. eLife. 2018;7:e39633. doi: 10.7554/eLife.39633. PubMed DOI PMC
Tsai K.-L., Sato S., Tomomori-Sato C., Conaway R.C., Conaway J.W., Asturias F.J. A conserved Mediator-CDK8 kinase module association regulates Mediator-RNA polymerase II interaction. Nat. Struct. Mol. Biol. 2013;20:611–619. doi: 10.1038/nsmb.2549. PubMed DOI PMC
Bäckström S., Elfving N., Nilsson R., Wingsle G., Björklund S. Purification of a Plant Mediator from Arabidopsis thaliana Identifies PFT1 as the Med25 Subunit. Mol. Cell. 2007;26:717–729. doi: 10.1016/j.molcel.2007.05.007. PubMed DOI
Malik N., Agarwal P., Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit. Rev. Biochem. Mol. Biol. 2017;52:475–502. doi: 10.1080/10409238.2017.1325830. PubMed DOI
Chen R., Jiang H., Li L., Zhai Q., Qi L., Zhou W., Liu X., Li H., Zheng W., Sun J., et al. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell. 2012;24:2898–2916. doi: 10.1105/tpc.112.098277. PubMed DOI PMC
Elfving N., Davoine C., Benlloch R., Blomberg J., Brannstrom K., Muller D., Nilsson A., Ulfstedt M., Ronne H., Wingsle G., et al. The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc. Natl. Acad. Sci. USA. 2011;108:8245–8250. doi: 10.1073/pnas.1002981108. PubMed DOI PMC
Iñigo S., Alvarez M.J., Strasser B., Califano A., Cerdán P.D. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J. 2012;69:601–612. doi: 10.1111/j.1365-313X.2011.04815.x. PubMed DOI
Kim Y.J., Chen X. The plant Mediator and its role in noncoding RNA production. Front. Biol. 2011;6:125. doi: 10.1007/s11515-011-1133-7. PubMed DOI PMC
Pérez-Martín F., Yuste-Lisbona F.J., Pineda B., García-Sogo B., Del Olmo I., de Dios Alché J., Egea I., Flores F.B., Piñeiro M., Jarillo J.A., et al. Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny. Plant J. 2018;96:300–315. doi: 10.1111/tpj.14031. PubMed DOI
Bonawitz N.D., Soltau W.L., Blatchley M.R., Powers B.L., Hurlock A.K., Seals L.A., Weng J.-K., Stout J., Chapple C. REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis. J. Biol. Chem. 2012;287:5434–5445. doi: 10.1074/jbc.M111.312298. PubMed DOI PMC
Dhawan R., Luo H., Foerster A.M., Abuqamar S., Du H.-N., Briggs S.D., Mittelsten Scheid O., Mengiste T. HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell. 2009;21:1000–1019. doi: 10.1105/tpc.108.062364. PubMed DOI PMC
Kidd B.N., Edgar C.I., Kumar K.K., Aitken E.A., Schenk P.M., Manners J.M., Kazan K. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell. 2009;21:2237–2252. doi: 10.1105/tpc.109.066910. PubMed DOI PMC
Zhang X., Wang C., Zhang Y., Sun Y., Mou Z. The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell. 2012;24:4294–4309. doi: 10.1105/tpc.112.103317. PubMed DOI PMC
Zhu Y., Schluttenhoffer C.M., Wang P., Fu F., Thimmapuram J., Zhu J.-K., Lee S.Y., Yun D.-J., Mengiste T. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis. Plant Cell. 2014;26:4149–4170. doi: 10.1105/tpc.114.128611. PubMed DOI PMC
Çevik V., Kidd B.N., Zhang P., Hill C., Kiddle S., Denby K.J., Holub E.B., Cahill D.M., Manners J.M., Schenk P.M., et al. MEDIATOR25 Acts as an Integrative Hub for the Regulation of Jasmonate-Responsive Gene Expression in Arabidopsis. Plant Physiol. 2012;160:541–555. doi: 10.1104/pp.112.202697. PubMed DOI PMC
Flores R., Hernández C., de Alba A.E.M., Daròs J.-A., Di Serio F. Viroids and Viroid-Host Interactions. Annu. Rev. Phytopathol. 2005;43:117–139. doi: 10.1146/annurev.phyto.43.040204.140243. PubMed DOI
Di Serio F., Flores R., Verhoeven J.T.J., Li S.-F., Pallás V., Randles J.W., Sano T., Vidalakis G., Owens R.A. Current status of viroid taxonomy. Arch. Virol. 2014;159:3467–3478. doi: 10.1007/s00705-014-2200-6. PubMed DOI
Flores R., Delgado S., Gas M.-E., Carbonell A., Molina D., Gago S., De la Pena M. Viroids: The minimal non-coding RNAs with autonomous replication. FEBS Lett. 2004;567:42–48. doi: 10.1016/j.febslet.2004.03.118. PubMed DOI
Tsagris E.M., Martínez de Alba Á.E., Gozmanova M., Kalantidis K. Viroids. Cell. Microbiol. 2008;10:2168–2179. doi: 10.1111/j.1462-5822.2008.01231.x. PubMed DOI
Maniataki E., Tabler M., Tsagris M. Viroid RNA systemic spread may depend on the interaction of a 71-nucleotide bulged hairpin with the host protein VirP1. RNA. 2003;9:346–354. doi: 10.1261/rna.2162203. PubMed DOI PMC
Dalakouras A., Dadami E., Wassenegger M. Viroid-induced DNA methylation in plants. Biomol. Concepts. 2013;4:557–565. doi: 10.1515/bmc-2013-0030. PubMed DOI
Zheng Y., Wang Y., Ding B., Fei Z. Comprehensive transcriptome analyses reveal that Potato spindle tuber viroid triggers genome-wide changes in alternative splicing, inducible trans-acting activity of phased secondary small interfering RNAs, and immune responses. J. Virol. 2017;91:e00247-17. doi: 10.1128/JVI.00247-17. PubMed DOI PMC
Navarro B., Gisel A., Rodio M.E., Delgado S., Flores R., Di Serio F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J. 2012;70:991–1003. doi: 10.1111/j.1365-313X.2012.04940.x. PubMed DOI
Kappagantu M., Nelson M.E., Bullock J.M., Kenny S.T., Eastwell K.C. Hop stunt viroid: Effects on vegetative growth and yield of hop cultivars, and its distribution in Central Washington State. Plant Dis. 2017;101:607–612. doi: 10.1094/PDIS-06-16-0884-RE. PubMed DOI
Mishra K.A., Kumar A., Mishra D., Nath S.V., Jakše J., Kocábek T., Killi K.U., Morina F., Matoušek J. Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop (Humulus lupulus L.) Viruses. 2018;10:570. doi: 10.3390/v10100570. PubMed DOI PMC
Stajner N., Radisek S., Mishra A.K., Nath V.S., Matousek J., Jakse J. Evaluation of disease severity and global transcriptome response induced by Citrus bark cracking viroid, Hop latent viroid, and their co-infection in hop (Humulus lupulus L.) Int. J. Mol. Sci. 2019;20:3154. doi: 10.3390/ijms20133154. PubMed DOI PMC
Samanta S., Thakur J.K. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. Front. Plant Sci. 2015;6:757. doi: 10.3389/fpls.2015.00757. PubMed DOI PMC
Yang Y., Li L., Qu L.-J. Plant Mediator complex and its critical functions in transcription regulation. J. Integr. Plant Biol. 2016;58:106–118. doi: 10.1111/jipb.12377. PubMed DOI
Cantin G.T., Stevens J.L., Berk A.J. Activation domain-mediator interactions promote transcription preinitiation complex assembly on promoter DNA. Proc. Natl. Acad. Sci. USA. 2003;100:12003–12008. doi: 10.1073/pnas.2035253100. PubMed DOI PMC
Baek H.J., Kang Y.K., Roeder R.G. Human mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly. J. Biol. Chem. 2006;281:15172–15181. doi: 10.1074/jbc.M601983200. PubMed DOI
Kim M.J., Jang I.-C., Chua N.-H. The Mediator complex MED15 subunit mediates activation of downstream lipid-related genes by the WRINKLED1 transcription factor. Plant Physiol. 2016;171:1951–1964. doi: 10.1104/pp.16.00664. PubMed DOI PMC
Owens R.A., Tech K.B., Shao J.Y., Sano T., Baker C.J. Global analysis of tomato gene expression during Potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. Mol. Plant Microbe Interact. 2012;25:582–598. doi: 10.1094/MPMI-09-11-0258. PubMed DOI
Katsarou K., Wu Y., Zhang R., Bonar N., Morris J., Hedley P.E., Bryan G.J., Kalantidis K., Hornyik C. Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection. PLoS ONE. 2016;11:e0150711. doi: 10.1371/journal.pone.0150711. PubMed DOI PMC
Sukumari Nath V., Kumar Mishra A., Kumar A., Matoušek J., Jakše J. Revisiting the role of transcription factors in coordinating the defense response against Citrus bark cracking viroid infection in commercial hop (Humulus Lupulus L.) Viruses. 2019;11:419. doi: 10.3390/v11050419. PubMed DOI PMC
An C., Mou Z. The function of the Mediator complex in plant immunity. Plant Signal. Behav. 2013;8:e23182. doi: 10.4161/psb.23182. PubMed DOI PMC
Lai Z., Schluttenhofer C.M., Bhide K., Shreve J., Thimmapuram J., Lee S.Y., Yun D.-J., Mengiste T. MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat. Commun. 2014;5:3064. doi: 10.1038/ncomms4064. PubMed DOI
Zhang X., Yao J., Zhang Y., Sun Y., Mou Z. The Arabidopsis Mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defense gene expression in plant immune responses. Plant J. 2013;75:484–497. doi: 10.1111/tpj.12216. PubMed DOI
Wathugala D.L., Hemsley P.A., Moffat C.S., Cremelie P., Knight M.R., Knight H. The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways. New Phytol. 2012;195:217–230. doi: 10.1111/j.1469-8137.2012.04138.x. PubMed DOI
Kim Y.J., Zheng B., Yu Y., Won S.Y., Mo B., Chen X. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J. 2011;30:814–822. doi: 10.1038/emboj.2011.3. PubMed DOI PMC
Mishra A.K., Duraisamy G.S., Matoušek J., Radisek S., Javornik B., Jakse J. Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genom. 2016;17 doi: 10.1186/s12864-016-3271-4. PubMed DOI PMC
Uthe H., Vanselow J.T., Schlosser A. Proteomic analysis of the Mediator complex interactome in Saccharomyces cerevisiae. Sci. Rep. 2017;7:43584. doi: 10.1038/srep43584. PubMed DOI PMC
Matoušek J., Siglová K., Jakše J., Radišek S., Brass J.R.J., Tsushima T., Guček T., Duraisamy G.S., Sano T., Steger G. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.) J. Plant Physiol. 2017;213:166–177. doi: 10.1016/j.jplph.2017.02.014. PubMed DOI
Kalantidis K., Denti M.A., Tzortzakaki S., Marinou E., Tabler M., Tsagris M. Virp1 is a host protein with a major role in Potato spindle tuber viroid infection in Nicotiana plants. J. Virol. 2007;81:12872–12880. doi: 10.1128/JVI.00974-07. PubMed DOI PMC
Štajner N., Cregeen S., Javornik B. Evaluation of reference genes for RT-qPCR expression studies in hop (Humulus lupulus L.) during infection with vascular pathogen Verticillium albo-atrum. PLoS ONE. 2013;8:e68228. doi: 10.1371/journal.pone.0068228. PubMed DOI PMC
Mathur S., Vyas S., Kapoor S., Tyagi A.K. The Mediator complex in plants: Structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (Rice) during reproduction and abiotic Stress. Plant Physiol. 2011;157:1609–1627. doi: 10.1104/pp.111.188300. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI