Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop (Humulus lupulus L.)

. 2018 Oct 18 ; 10 (10) : . [epub] 20181018

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30340328

Grantová podpora
CZ.02.2.69/0.0/0.0/16_027/0008357 MEMOBIC (EU Operational Programme Research, Development and Education No. - International
18-10515J/DFG STE 465/10-1 bilateral Czech Science foundation project - International
60077344 institutional support RVO - International

Viroids are smallest known pathogen that consist of non-capsidated, single-stranded non-coding RNA replicons and they exploits host factors for their replication and propagation. The severe stunting disease caused by Citrus bark cracking viroid (CBCVd) is a serious threat, which spreads rapidly within hop gardens. In this study, we employed comprehensive transcriptome analyses to dissect host-viroid interactions and identify gene expression changes that are associated with disease development in hop. Our analysis revealed that CBCVd-infection resulted in the massive modulation of activity of over 2000 genes. Expression of genes associated with plant immune responses (protein kinase and mitogen-activated protein kinase), hypersensitive responses, phytohormone signaling pathways, photosynthesis, pigment metabolism, protein metabolism, sugar metabolism, and modification, and others were altered, which could be attributed to systemic symptom development upon CBCVd-infection in hop. In addition, genes encoding RNA-dependent RNA polymerase, pathogenesis-related protein, chitinase, as well as those related to basal defense responses were up-regulated. The expression levels of several genes identified from RNA sequencing analysis were confirmed by qRT-PCR. Our systematic comprehensive CBCVd-responsive transcriptome analysis provides a better understanding and insights into complex viroid-hop plant interaction. This information will assist further in the development of future measures for the prevention of CBCVd spread in hop fields.

Zobrazit více v PubMed

Diener T.O. Discovering viroids—A personal perspective. Nat. Rev. Microbiol. 2003;1:75–80. doi: 10.1038/nrmicro736. PubMed DOI

Flores R., Delgado S., Gas M.E., Carbonell A., Molina D., Gago S., de la Peña M. Viroids: The minimal non-coding RNAs with autonomous replication. FEBS Lett. 2004;567:42–48. doi: 10.1016/j.febslet.2004.03.118. PubMed DOI

Gómez G., Pallás V. A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with hop stunt viroid RNA. J. Virol. 2004;78:10104–10110. doi: 10.1128/JVI.78.18.10104-10110.2004. PubMed DOI PMC

Ding B. Viroids: Self-replicating, mobile, and fast-evolving noncoding regulatory RNAs. Wiley Interdiscip. Rev. RNA. 2010;1:362–375. doi: 10.1002/wrna.22. PubMed DOI

Diener T.O. The Viroids. Plenum; New York, NY, USA: 1987. Biological properties; pp. 9–35. Chapter 1.

Pokorn T., Radišek S., Javornik B., Štajner N., Jakše J. Development of hop transcriptome to support research into host-viroid interactions. PLoS ONE. 2017;12:e0184528. doi: 10.1371/journal.pone.0184528. PubMed DOI PMC

Di Serio F., Flores R., Verhoeven J.T.J., Li S.-F., Pallás V., Randles W.J., Sano T., Vidalakis G., Owens R.A. Current status of viroid taxonomy. Arch. Virol. 2014;159:3467–3478. doi: 10.1007/s00705-014-2200-6. PubMed DOI

Tsagris E.M., de Alba Martínez A.E., Gozmanova M., Kalantidis K. Viroids. Cell. Microbiol. 2008;10:2168–2179. doi: 10.1111/j.1462-5822.2008.01231.x. PubMed DOI

Gas M.E., Hernández C., Flores R., Daròs J.A. Processing of nuclear viroids in vivo: An interplay between RNA conformations. PLoS Pathog. 2007;3:1813–1826. doi: 10.1371/journal.ppat.0030182. PubMed DOI PMC

Qi Y., Ding B. Inhibition of cell growth and shoot development by a specific nucleotide sequence in a noncoding viroid RNA. Plant Cell. 2003;15:1360–1374. doi: 10.1105/tpc.011585. PubMed DOI PMC

Voinnet O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci. 2008;13:317–328. doi: 10.1016/j.tplants.2008.05.004. PubMed DOI

Nagel J., Culley L.K., Lu Y., Liu E., Matthews P.D., Stevens J.F., Page J.E. EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell. 2008;20:186–200. doi: 10.1105/tpc.107.055178. PubMed DOI PMC

Zanoli P., Zavatti M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 2008;116:383–396. doi: 10.1016/j.jep.2008.01.011. PubMed DOI

Mishra A.K., Duraisamy G.S., Khare M., Kocábek T., Jakse J., Bříza J., Patzak J., Sano T., Matoušek J. Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors. BMC Genom. 2018;19:739. doi: 10.1186/s12864-018-5125-8. PubMed DOI PMC

Van Cleemput M., Cattoor K., de Bosscher K., Haegeman G., de Keu-keleire D., Heyerick A. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J. Nat. Prod. 2009;72:1220–1230. doi: 10.1021/np800740m. PubMed DOI

Martinez G., Donaire L., Llave C., Pallas V., Gomez G. High-throughput sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and phloem. Mol. Plant Pathol. 2010;11:347–359. doi: 10.1111/j.1364-3703.2009.00608.x. PubMed DOI PMC

Jakse J., Radisek S., Pokorn T., Matousek J., Javornik B. Deep-sequencing revealed Citrus bark cracking viroid (CBCVd) as a highly aggressive pathogen on hop. Plant Pathol. 2015;64:831–842. doi: 10.1111/ppa.12325. DOI

Mishra A.K., Duraisamy G.S., Matoušekm J., Radisek S., Javornik B., Jakse J. Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genom. 2016;17:919. doi: 10.1186/s12864-016-3271-4. PubMed DOI PMC

Tessitori M., Maria G., Capasso C., Catara G., Rizza S., de Luca V., Catara A., Capasso A., Carginale V. Differential display analysis of gene expression in Etrog citron leaves infected by citrus viroid III. Biochim. Biophys. Acta. 2007;1769:228–235. doi: 10.1016/j.bbaexp.2007.03.004. PubMed DOI

Rizza S., Conesa A., Juarez J., Catara A., Navarro L., Duran-Vila N., Ancillo G. Microarray analysis of etrog citron (Citrus medica L.) reveals changes in chloroplast, cell wall, peroxidase and symporter activities in response to viroid infection. Mol. Plant Pathol. 2012;13:852–864. doi: 10.1111/j.1364-3703.2012.00794.x. PubMed DOI PMC

Więsyk A., Iwanicka-Nowicka R., Fogtman A., Zagórski-Ostoja W., Góra-Sochacka A. Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses. 2018;10:257. doi: 10.3390/v10050257. PubMed DOI PMC

Marguerat S., Bahler J. RNA-seq: From technology to biology. Cell. Mol. Life Sci. 2010;67:569–579. doi: 10.1007/s00018-009-0180-6. PubMed DOI PMC

Owens R.A., Tech K.B., Shao J.Y., Sano T., Baker C.J. Global analysis of tomato gene expression during potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. Mol. Plant Microbe Interact. 2012;25:582–598. doi: 10.1094/MPMI-09-11-0258. PubMed DOI

Katsarou K., Wu Y., Zhang R., Bonar N., Morris J., Hedley P.E., Bryan G.J., Kalantidis K., Hornyik C. Insight on genes affecting tuber development in potato upon potato spindle tuber viroid (PSTVd) infection. PLoS ONE. 2016;11:e0150711. doi: 10.1371/journal.pone.0150711. PubMed DOI PMC

Herranz M.C., Niehl A., Rosales M., Fiore N., Zamorano A., Granell A., Pallas V. A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid. Virol. J. 2013;10:164. doi: 10.1186/1743-422X-10-164. PubMed DOI PMC

Kappagantu M., Bullock J.M., Nelson M.E., Eastwell K.C. Hop stunt viroid: Effect on host (Humulus lupulus) transcriptome and its interactions with hop powdery mildew (Podospheara macularis) Mol. Plant Microbe Interact. 2017;30:842–851. doi: 10.1094/MPMI-03-17-0071-R. PubMed DOI

Xia C., Li S., Hou W., Fan Z., Xiao H., Lu M., Sano T., Zhang Z. Global Transcriptomic Changes Induced by Infection of Cucumber (Cucumis sativus L.) with Mild and Severe Variants of Hop Stunt Viroid. Front Microbiol. 2017;12:2427. doi: 10.3389/fmicb.2017.02427. PubMed DOI PMC

Matoušek J., Stehlik J., Procházková J., Orctová L., Wullenweber J., Füssy Z., Kováčik J., Duraisamy G., Ziegler A., Schubert J., et al. Biological and molecular analysis of the pathogenic variant C3 of potato spindle tuber viroid (PSTVd) evolved during adaptation tochamomilla (Matricaria chamomilla) Biol. Chem. 2012;393:605–615. doi: 10.1515/hsz-2011-0286. PubMed DOI

Matoušek J., Orctová L., Steger G., Riesner D. Biolistic inoculation of plants with viroid nucleic acids. J. Virol. Methods. 2004;122:153–164. doi: 10.1016/j.jviromet.2004.08.011. PubMed DOI

Matoušek J., Siglová K., Jakše J., Radišek S., Brass J.R.J., Tsushima T., Guček T., Duraisamy G.S., Sano T., Steger G. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.) J. Plant Physiol. 2017;213:166–177. doi: 10.1016/j.jplph.2017.02.014. PubMed DOI

Matoušek J., Junker V., Vrba L., Schubert J., Patzak J., Steger G. Molecular characterization and genome organization of 7SL RNA genes from hop (Humulus lupulus L.) Gene. 1999;239:173–183. doi: 10.1016/S0378-1119(99)00352-2. PubMed DOI

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Anders S., Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:106. doi: 10.1186/gb-2010-11-10-r106. PubMed DOI PMC

Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC

Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 1995;57:289–300.

Zhao S., Guo Y., Sheng Q., Shyr Y. Advanced heat map and clustering analysis using heatmap3. Biomed. Res. Int. 2014;2014:986048. doi: 10.1155/2014/986048. PubMed DOI PMC

Conesa A., Gotz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genom. 2008;2008:619832. doi: 10.1155/2008/619832. PubMed DOI PMC

Du Z., Zhou X., Ling Y., Zhang Z.H., Su Z. AgriGO: A GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38:64–70. doi: 10.1093/nar/gkq310. PubMed DOI PMC

Supek F., Bošnjak M., Škunca N., Šmuc T. “REVIGO summarizes and visualizes long lists of Gene Ontology terms”. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC

Thimm O., Bläsing O., Gibon Y., Nagel A., Meyer S., Krüger P., Selbig J., Müller L.A., Rhee S.Y., Stitt M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–939. doi: 10.1111/j.1365-313X.2004.02016.x. PubMed DOI

Zhu M., Deng X., Joshi T., Xu D., Stacey G., Cheng J. Reconstructing differentially co-expressed gene modules and regulatory networks of soybean cells. BMC Genom. 2012;13:437. doi: 10.1186/1471-2164-13-437. PubMed DOI PMC

Li L., Stoeckert C.J., Jr., Roos D.S. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–2189. doi: 10.1101/gr.1224503. PubMed DOI PMC

Xia J., Gill E.E., Hancock R.E. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protoc. 2015;10:823–844. doi: 10.1038/nprot.2015.052. PubMed DOI

Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Maloukh L., Matousek J., van-Bockstaele E., Roldán-Ruiz I. Housekeeping gene selection for real time-PCR normalization in female hop (Humulus lupulus L.) tissues. J. Plant Biochem. Biotechnol. 2009;18:53–58. doi: 10.1007/BF03263295. DOI

Xu Q., Zhu J., Zhao S., Hou Y., Li F., Tai Y., Wan X., Wei C. Transcriptome profiling using single-molecule direct RNA sequencing approach for in-depth understanding of genes in secondary metabolism pathways of Camellia sinensis. Front. Plant Sci. 2017;8:1205. doi: 10.3389/fpls.2017.01205. PubMed DOI PMC

Bedre R., Mangu V.R., Srivastava S., Sanchez L.E., Baisakh N. Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity. BMC Genom. 2016;17:657. doi: 10.1186/s12864-016-3017-3. PubMed DOI PMC

Novaes E., Drost D.R., Farmerie W.G., Pappas G.J., Grattapaglia D., Sederoff R.R., Kirst M. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genom. 2008;30:312. doi: 10.1186/1471-2164-9-312. PubMed DOI PMC

Zhang H., Tian H., Chen M., Xiong J., Cai H., Liu Y. Transcriptome analysis reveals potential genes involved in flower pigmentation in a red-flowered mutant of white clover (Trifolium repens L.) Genomics. 2018;110:191–200. doi: 10.1016/j.ygeno.2017.09.011. PubMed DOI

Xu C., Jiao C., Zheng Y., Sun H., Liu W., Cai X., Wang X., Liu S., Xu Y., Mou B., et al. De novo and comparative transcriptome analysis of cultivated and wild spinach. Sci. Rep. 2015;5:17706. doi: 10.1038/srep17706. PubMed DOI PMC

Han R., Takahashi H., Nakamura M., Bunsupa S., Yoshimoto N., Yamamoto H., Suzuki H., Shibata D., Yamazaki M., Saito K. Transcriptome analysis of nine tissues to discover genes involved in the biosynthesis of active ingredients in Sophora flavescens. Biol. Pharm. Bull. 2015;38:876–883. doi: 10.1248/bpb.b14-00834. PubMed DOI

Trapnell C., Williams B.A., Pertea G., Mortazavi A., Kwan G., van Baren M.J., Salzberg S.L., Wold B.J., Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010;28:516–520. doi: 10.1038/nbt.1621. PubMed DOI PMC

Arena G.D., Ramos-gonzález P.L., Nunes M.A. Citrus leprosis virus C infection results in hypersensitive-like response, suppression of the JA/ET plant defense pathway and promotion of the colonization of its mite vector. Front. Plant Sci. 2016;7:1757. doi: 10.3389/fpls.2016.01757. PubMed DOI PMC

Camejo D., Guzmán-Cedeño Á., Moreno A. Reactive Oxygen Species, essential molecules, during plant-pathogen interactions. Plant Physiol. Biochem. 2016;103:10–23. doi: 10.1016/j.plaphy.2016.02.035. PubMed DOI

Aliferis K.A., Faubert D., Jabaji S. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens. PLoS ONE. 2014;9:e111930. doi: 10.1371/journal.pone.0111930. PubMed DOI PMC

Semancik J.S., Vidalakis G. The question of Citrus viroid IV as a Cocadviroid. Arch. Virol. 2005;150:1059–1067. doi: 10.1007/s00705-005-0499-8. PubMed DOI

Spoel S.H., Dong X. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 2012;12:89–100. doi: 10.1038/nri3141. PubMed DOI

Cheng C., Gao X., Feng B., Sheen J., Shan L., He P. Plant immune response to pathogens differs with changing temperatures. Nat. Commun. 2013;4:2530. doi: 10.1038/ncomms3530. PubMed DOI PMC

Ucci J.W., Kobayashi Y., Choi G., Alexandrescu A.T., Cole J.L. Mechanism of interaction of the double-stranded RNA (dsRNA) binding domain of protein kinase R with short dsRNA sequences. Biochemistry. 2007;46:55–65. doi: 10.1021/bi061531o. PubMed DOI

Bilgin D.D., Liu Y., Schiff M., Dinesh-Kumar S.P. P58IPK, a plant ortholog of double-stranded RNA-dependent protein kinase PKR inhibitor, functions in viral pathogenesis. Dev. Cell. 2003;4:651–661. doi: 10.1016/S1534-5807(03)00125-4. PubMed DOI

Bhattacharyya D., Chakraborty S. Chloroplast: The Trojan horse in plant-virus interaction. Mol. Plant Pathol. 2018;19:504–518. doi: 10.1111/mpp.12533. PubMed DOI PMC

Nohales M., Molina-Serrano D., Flores R., Daròs J.A. Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J. Virol. 2012;86:8269–8276. doi: 10.1128/JVI.00629-12. PubMed DOI PMC

Shu K., Liu X.D., Xie Q., He Z.H. Two faces of one seed: Hormonal regulation of dormancy and germination. Mol. Plant. 2016;9:34–45. doi: 10.1016/j.molp.2015.08.010. PubMed DOI

Novak O., Napier R., Ljung K. Zooming in on plant hormone analysis: Tissue- and cell-specific approaches. Annu. Rev. Plant Biol. 2017;68:323–348. doi: 10.1146/annurev-arplant-042916-040812. PubMed DOI

Collum T.D., Culver J.N. The impact of phytohormones on virus infection and disease. Curr. Opin. Virol. 2016;17:25–31. doi: 10.1016/j.coviro.2015.11.003. PubMed DOI

Zheng Y., Wang Y., Ding B., Fei Z.J. Comprehensive transcriptome analyses reveal that potato spindle tuber viroid triggers genome-wide changes in alternative splicing, inducible trans-acting activity of phasiRNAs and immune responses. J. Virol. 2017;91:e00247-17. doi: 10.1128/JVI.00247-17. PubMed DOI PMC

López-Gresa M.P., Lisón P., Yenush L., Conejero V., Rodrigo I., Bellés J.M. Salicylic acid is involved in the basal resistance of tomato plants to citrus exocortis viroid and tomato spotted wilt virus. PLoS ONE. 2016;11:e0166938. doi: 10.1371/journal.pone.0166938. PubMed DOI PMC

Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. Front. Plant Sci. 2014;5:66. doi: 10.3389/fpls.2014.00066. PubMed DOI PMC

Verchot J. Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum. Viruses. 2016;8:e314. doi: 10.3390/v8110314. PubMed DOI PMC

Sasvari Z., Alatriste Gonzalez P., Nagy P.D. Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors. Front. Plant Sci. 2014;5:383. doi: 10.3389/fpls.2014.00383. PubMed DOI PMC

Navarro B., Gisel A., Rodio M.E., Degado S., Flores R., di Serio F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J. 2012;70:991–1003. doi: 10.1111/j.1365-313X.2012.04940.x. PubMed DOI

Alam S.B., Rochon D. Cucumber Necrosis Virus Recruits Cellular Heat Shock Protein 70 Homologs at Several Stages of Infection. J. Virol. 2015;90:3302–3317. doi: 10.1128/JVI.02833-15. PubMed DOI PMC

Hafren A., Hofius D., Ronnholm G., Sonnewald U., Makinen K. HSP70 and its cochaperone CPIP promote potyvirus infection in Nicotiana benthamiana by regulating viral coat protein functions. Plant Cell. 2010;22:523–535. doi: 10.1105/tpc.109.072413. PubMed DOI PMC

Alves M.S., Dadalto S.P., Gonçalves A.B., de Souza G.B., Barros V.A., Fietto L.G. Transcription factor functional protein-protein interactions in plant defense responses. Proteomes. 2014;2:85–106. doi: 10.3390/proteomes2010085. PubMed DOI PMC

Matoušek J., Kocábek T., Patzak J., Bříza J., Siglová K., Mishra A.K., Duraisamy G.S., Týcová A., Ono E., Krofta K. The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.) Plant Mol. Biol. 2016;92:263–277. doi: 10.1007/s11103-016-0510-7. PubMed DOI

Falcone Ferreyra M.L., Rius S.P., Casati P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front Sci. 2012;3:222. doi: 10.3389/fpls.2012.00222. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...