Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27846797
PubMed Central
PMC5109749
DOI
10.1186/s12864-016-3271-4
PII: 10.1186/s12864-016-3271-4
Knihovny.cz E-zdroje
- Klíčová slova
- Citrus bark cracking viroid, High-throughput sequencing, Humulus lupulus, Target expression, Viroids, microRNA,
- MeSH
- datové kurátorství MeSH
- fenotyp MeSH
- Humulus genetika virologie MeSH
- messenger RNA genetika MeSH
- mikro RNA genetika MeSH
- nemoci rostlin genetika virologie MeSH
- regulace genové exprese u rostlin MeSH
- reprodukovatelnost výsledků MeSH
- RNA interference MeSH
- RNA rostlin MeSH
- stanovení celkové genové exprese MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA MeSH
- RNA rostlin MeSH
BACKGROUND: Hop (Humulus lupulus L.) plants are grown primarily for the brewing industry and have been used as a traditional medicinal herb for a long time. Severe hop stunt disease caused by the recently discovered Citrus bark cracking viroid (CBCVd) is one of the most devastating diseases among other viroid infections in hop. MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in gene expression regulation. To identify miRNAs in hop and their response to CBCVd-infection, two small RNA (sRNA) libraries were prepared from healthy and CBCVd-infected hop plants and were investigated by high throughput sequencing. RESULTS: A total of 67 conserved and 49 novel miRNAs were identified. Among them, 36 conserved and 37 novel miRNAs were found to be differentially recovered in response to CBCVd-infection. A total of 311 potential targets was predicted for conserved and novel miRNAs based on a sequence homology search using hop transcriptome data. The majority of predicted targets significantly belonged to transcriptional factors that may regulate hop leaf, root and cone growth and development. In addition, the identified miRNAs might also play an important roles in other cellular and metabolic processes, such as signal transduction, stress response and other physiological processes, including prenylflavonoid biosynthesis pathways. Quantitative real time PCR analysis of selected targets revealed their negative correlation with their corresponding CBCVd-responsive miRNAs. CONCLUSIONS: Based on the results, we concluded that CBCVd-responsive miRNAs modulate several hormone pathways and transcriptional factors that play important roles in the regulation of metabolism, growth and development. These results provide a framework for further analysis of regulatory roles of sRNAs in plant defense mechanism including other hop infecting viroids in particular.
Zobrazit více v PubMed
Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol. 2009;25:21–44. doi: 10.1146/annurev.cellbio.042308.113417. PubMed DOI PMC
Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PG. Elucidation of the small RNA component of the transcriptome. Science. 2005;309:1567–1569. doi: 10.1126/science.1114112. PubMed DOI
Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 2006;20(7):759–771. doi: 10.1101/gad.1410506. PubMed DOI
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev. 2002;16(13):1616–1626. doi: 10.1101/gad.1004402. PubMed DOI PMC
Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC. Expression of Arabidopsis MIRNA genes. Plant Physiol. 2005;138(4):2145–2154. doi: 10.1104/pp.105.062943. PubMed DOI PMC
Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA. Identification and characterization of new plant microRNAs using EST analysis. Cell Res. 2005;15(15):336–360. doi: 10.1038/sj.cr.7290302. PubMed DOI
Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM. The evolution and diversification of dicers in plants. FEBS Lett. 2006;580(10):2442–2450. doi: 10.1016/j.febslet.2006.03.072. PubMed DOI
Xie M, Zhang S, Yu B. microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci. 2015;72(1):87–99. doi: 10.1007/s00018-014-1728-7. PubMed DOI PMC
Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136(4):669–687. doi: 10.1016/j.cell.2009.01.046. PubMed DOI
Baumberger N, Baulcombe DC. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A. 2005;102(33):11928–11933. doi: 10.1073/pnas.0505461102. PubMed DOI PMC
Duraisamy GS, Mishra AK, Jakse J, Matousek M. Computational Prediction, Target Identification and Experimental Validation of miRNAs from Expressed Sequence Tags in Cannabis sativa. L. Res Rev: J Bot Sci. 2015;4(2):32–42.
Wang TZ, Chen L, Zhao MG, Tian QY, Zhang WH. Identification of drought-responsive microRNAs and their targets in Medicago truncatula by genome-wide high-throughput sequencing and degradome analysis. BMC Genomics. 2011;12:367. doi: 10.1186/1471-2164-12-367. PubMed DOI PMC
Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y. Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot. 2009;103:29–38. doi: 10.1093/aob/mcn205. PubMed DOI PMC
Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta. 2008;1779:743–748. doi: 10.1016/j.bbagrm.2008.04.004. PubMed DOI
Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW. Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot. 2010;61(1):165–177. doi: 10.1093/jxb/erp296. PubMed DOI PMC
Zhao M, Ding H, Zhu JK, Zhang F, Li WX. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol. 2011;190(4):906–915. doi: 10.1111/j.1469-8137.2011.03647.x. PubMed DOI PMC
Valdes-Lopez O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G. MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol. 2010;187(3):805–818. doi: 10.1111/j.1469-8137.2010.03320.x. PubMed DOI
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–D73. doi: 10.1093/nar/gkt1181. PubMed DOI PMC
Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in and plants. Plant Cell. 2005;17(6):1658–1673. doi: 10.1105/tpc.105.032185. PubMed DOI PMC
Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 2008;18(10):1602–1609. doi: 10.1101/gr.080127.108. PubMed DOI PMC
Motameny S, Wolters S, Nürnberg P, Schumacher B. Next Generation Sequencing of miRNAs-Strategies, Resources and Methods. Genes (Basel) 2010;1(1):70–84. PubMed PMC
Jagadeeswaran G, Zheng Y, Sumathipala N, Jiang H, Arrese EL, Soulages JL, Zhang W, Sunkar R. Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics. 2010;20:11–52. PubMed PMC
Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D. A Genome-Wide Characterization of MicroRNA Genes in Maize. PLoS Genet. 2009;5(11):e1000716. doi: 10.1371/journal.pgen.1000716. PubMed DOI PMC
Lakhotia N, Joshi G, Bhardwaj AR, Katiyar-Agarwal S, Agarwal M, Jagannath A, Goel S, Kumar A. Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biol. 2014;14:6. doi: 10.1186/1471-2229-14-6. PubMed DOI PMC
Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, Yang Z, He Y, Liang X, Yu S. Identification and Characterization of microRNAs from Peanut (Arachis hypogaea L.) by High-Throughput Sequencing. PLoS ONE. 2011;6(11):e27530. doi: 10.1371/journal.pone.0027530. PubMed DOI PMC
Lv S, Nie X, Wang L, Du X, Biradar SS, Jia X, Weining S. Identification and characterization of microRNAs from Barley (Hordeum vulgare L.) by high-throughput sequencing. Int J Mol Sci. 2012;13:2973–2984. doi: 10.3390/ijms13032973. PubMed DOI PMC
Shamimuzzaman M, Vodkin L. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics. 2012;13(16):310. doi: 10.1186/1471-2164-13-310. PubMed DOI PMC
Wang F, Li L, Liu L, Li H, Zhang Y, Yao Y, Ni Z, Gao J. High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis) Mol Genet Genomics. 2012;287(7):555–563. doi: 10.1007/s00438-012-0699-3. PubMed DOI
Jia L, Zhang D, Qi X, Ma B, Xiang Z, He N. Identification of the conserved and novel miRNAs in mulberry by high-throughput sequencing. PLoS ONE. 2014;9(8):e104409. doi: 10.1371/journal.pone.0104409. PubMed DOI PMC
Gao J, Yin F, Liu M, Luo M, Qin C, Yang A, Yang S, Zhang Z, Shen Y, Lin H, Pan G. Identification and characterization of tobacco microRNA transcriptome using high-throughput sequencing. Plant Biol. 2015;17(3):591–598. doi: 10.1111/plb.12275. PubMed DOI
Matousek J, Vrba L, Skopek J, Orctova L, Pesina K, Heyerick A, Baulcombe D, De Keukeleire D. Sequence analysis of a “true” chalcone synthase (chs_H1) oligofamily from hop (Humulus lupulus L.) and PAP1 activation of chs_H1 in heterologous systems. J Agric Food Chem. 2006;54(20):7606–7615. doi: 10.1021/jf061785g. PubMed DOI
Van Cleemput M, Cattoor K, De Bosscher K, Haegeman G, De Keukeleire D, Heyerick A. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J Nat Prod. 2009;72(6):1220–1230. doi: 10.1021/np800740m. PubMed DOI
Diener TO. Biological properties. In: Diener TO, editor. The Viroids. New York: Plenum Press; 1987. pp. 9–35.
Daròs JA, Flores R. Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proc Natl Acad Sci U S A. 2004;101(17):6792–6797. doi: 10.1073/pnas.0401090101. PubMed DOI PMC
Sano T, Barba M, Li SF, Hadidi A. Viroids and RNA silencing: mechanism, role in viroid pathogenicity and development of viroid-resistant plants. GM Crops. 2010;1(12):80–86. PubMed
Wang Y, Shibuya M, Taneda A, Kurauchi T, Senda M, Owens RA, Sano T. Accumulation of Potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars. Virology. 2011;413(1):72–83. doi: 10.1016/j.virol.2011.01.021. PubMed DOI
Markarian N, Li HW, Ding SW, Semancik JS. RNA silencing as related to viroid induced symptom expression. Arch Virol. 2004;149(2):397–406. doi: 10.1007/s00705-003-0215-5. PubMed DOI
Martinez G, Donaire L, Llave C, Pallás V, Gómez G. High-throughput sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and phloem. Mol Plant Pathol. 2010;11(3):347–359. doi: 10.1111/j.1364-3703.2009.00608.x. PubMed DOI PMC
Jakse J, Radisek S, Pokorn T, Matousek J, Javornik B. Deep-sequencing revealed Citrus bark cracking viroid (CBCVd) as a highly aggressive pathogen on hop. Plant Pathol. 2015;64(4):831–842. doi: 10.1111/ppa.12325. DOI
Hammann C, Steger G. Viroid-specific small RNA in plant disease. RNA Biol. 2012;9(6):809–819. doi: 10.4161/rna.19810. PubMed DOI
Diermann N, Matoušek J, Junge M, Riesner D, Steger G. Characterization of plant miRNAs and small RNAs derived from Potato spindle tuber viroid (PSTVd) in infected tomato. Biol Chem. 2010;391(12):1379–1390. doi: 10.1515/bc.2010.148. PubMed DOI
Blankenberg D, Gordon A, Kuster GV, Coraor N, Taylor J, Nekrutenko A, Galaxy Team Manipulation of FASTQ data with Galaxy. Bioinformatics. 2010;26(14):1783–1785. doi: 10.1093/bioinformatics/btq281. PubMed DOI PMC
Lei J, Sun Y. miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics. 2014;30(19):2837–2839. doi: 10.1093/bioinformatics/btu380. PubMed DOI
Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK. Criteria for annotation of plant microRNAs. Plant Cell. 2008;20(12):3186–3190. doi: 10.1105/tpc.108.064311. PubMed DOI PMC
Natsume S, Takagi H, Shiraishi A, Murata J, Toyonaga H, Patzak J, Takagi M, Yaegashi H, Uemura A, Mitsuoka C, Yoshida K, Krofta K, Satake H, Terauchi R, Ono E. The draft genome of hop (Humulus lupulus), an essence for brewing. Plant Cell Physiol. 2015;56(3):428–441. doi: 10.1093/pcp/pcu169. PubMed DOI
Mishra AK, Duraisamy GS, Matoušek J. Discovering microRNAs and their targets in Plants. Crit Rev Plant Sci. 2015;34(6):554–572. doi: 10.1080/07352689.2015.1078614. DOI
Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 2011;39:W155–W159. doi: 10.1093/nar/gkr319. PubMed DOI PMC
Kantar M, Unver T, Budak H. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics. 2010;10(4):493–507. doi: 10.1007/s10142-010-0181-4. PubMed DOI
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–3676. doi: 10.1093/bioinformatics/bti610. PubMed DOI
Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7(10):986–995. PubMed
Kramer MF. Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol. 2011;15(15):1–5. PubMed PMC
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Bologna NG, Mateos JL, Bresso EG, Palatnik JF. A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J. 2009;28(23):3646–3656. doi: 10.1038/emboj.2009.292. PubMed DOI PMC
Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell. 2013;25(7):2383–2399. doi: 10.1105/tpc.113.113159. PubMed DOI PMC
Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt BF, Mantovani R. The promiscuous life of plant nuclear factor transcription factors. Plant Cell. 2012;24(12):4777–4792. doi: 10.1105/tpc.112.105734. PubMed DOI PMC
Matoušek J, Kocábek T, Patzak J, Füssy Z, Procházková J, Heyerick A. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus lupulus L.) BMC Plant Biol. 2012;12(20):27. doi: 10.1186/1471-2229-12-27. PubMed DOI PMC
Lu CG, Koroleva OA, Farrar JF, Gallagher J, Pollock CJ, Tomos AD. Rubisco small subunit, chlorophyll a/b-binding protein and sucrose: fructan-6-fructosyl transferase gene expression and sugar status in single barley leaf cells in situ. Cell type specificity and induction by light. Plant Physiol. 2002;130:1335–1348. doi: 10.1104/pp.008979. PubMed DOI PMC
Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature. 2001;411:826–833. doi: 10.1038/35081161. PubMed DOI
Erickson FL, Dinesh-Kumar SP, Holzberg S, Ustach CV, Dutton M, Handley V, Corr C, Baker BJ. Interactions between tobacco mosaic virus and the tobacco N gene. Philos Trans R Soc Lond B Biol Sci. 1999;354:653–658. doi: 10.1098/rstb.1999.0417. PubMed DOI PMC
Yu QB, Jiang Y, Chong K, Yang ZN. AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana. Plant J. 2009;59:1011–1023. doi: 10.1111/j.1365-313X.2009.03930.x. PubMed DOI
Moon YH, Chen L, Pan RL, Chang HS, Zhu T, Maffeo DM, Sung ZR. EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell. 2003;15:681–693. doi: 10.1105/tpc.007831. PubMed DOI PMC
Schneider S. Inositol transport proteins. FEBS Lett. 2015;589:1049–1058. doi: 10.1016/j.febslet.2015.03.012. PubMed DOI
Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. Identification of the switch in early-to-late endosome transition. Cell. 2010;141:497–508. doi: 10.1016/j.cell.2010.03.011. PubMed DOI
Aldridge C, Maple J, Moller SG. The molecular biology of plastid division in higher plants. J Exp Bot. 2005;56:1061–1077. doi: 10.1093/jxb/eri118. PubMed DOI
Johnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell. 2002;14:1359–1375. doi: 10.1105/tpc.001404. PubMed DOI PMC
Minoia S, Carbonell A, Di Serio F, Gisel A, Carrington JC, Navarro B, Flores R. Specific ARGONAUTES bind selectively small RNAs derived from Potato spindle tuber viroid and attenuate viroid accumulation in vivo. J Virol. 2014;88(20):11933–11945. doi: 10.1128/JVI.01404-14. PubMed DOI PMC
Zavallo D, Debat HJ, Conti G, Manacorda CA, Rodriguez MC, Asurmendi S. Differential mRNA accumulation upon early Arabidopsis thaliana infection with ORMV and TMV-Cg is associated with distinct endogenous small RNAs level. PLoS ONE. 2015;10(8):e0134719. doi: 10.1371/journal.pone.0134719. PubMed DOI PMC
Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet. 2006;22(5):268–280. doi: 10.1016/j.tig.2006.03.003. PubMed DOI
Zilberman D, Cao X, Johansen LK, Xie Z, Carrington JC, Jacobsen SE. Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol. 2004;14(13):1214–1220. doi: 10.1016/j.cub.2004.06.055. PubMed DOI
Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci. 2006;63(2):246–254. doi: 10.1007/s00018-005-5467-7. PubMed DOI PMC
Axtell MJ, Snyder JA, Bartel DP. Common functions for diverse small RNAs of land plants. Plant Cell. 2007;19(6):1750–1769. doi: 10.1105/tpc.107.051706. PubMed DOI PMC
Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell MJ, Zhang W, Sunkar R. Transcriptome-wide identification of microRNA targets in rice. Plant J. 2010;62(5):742–759. doi: 10.1111/j.1365-313X.2010.04187.x. PubMed DOI
Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci U S A. 2010;107(34):15269–15274. doi: 10.1073/pnas.1001738107. PubMed DOI PMC
Lu YD, Gan QH, Chi XY, Qin S. Roles of microRNA in plant defense and virus offense interaction. Plant Cell Rep. 2008;27(10):1571–1579. doi: 10.1007/s00299-008-0584-z. PubMed DOI
Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted Squamosa promoter binding-like transcription factors. Plant Cell. 2012;24(8):3320–3332. doi: 10.1105/tpc.112.101014. PubMed DOI PMC
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 2013;199(3):639–644. doi: 10.1111/nph.12291. PubMed DOI
Curaba J, Singh MB, Bhalla PL. miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot. 2014;65(6):1425–1438. doi: 10.1093/jxb/eru002. PubMed DOI
Hirsch S, Oldroyd GE. GRAS-domain transcription factors that regulate plant development. Plant Signal Behav. 2009;4(8):698–700. doi: 10.4161/psb.4.8.9176. PubMed DOI PMC
Jiang SC, Mei C, Liang S, Yu YT, Lu K, Wu Z, Wang XF, Zhang DP. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol Biol. 2015;88(4–5):369–385. doi: 10.1007/s11103-015-0327-9. PubMed DOI PMC
Liang W, Li C, Liu F, Jiang H, Li S, Sun J, Wu X, Li C. The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses. Cell Res. 2009;19(3):307–316. doi: 10.1038/cr.2008.317. PubMed DOI
Mapping the Gene Expression Spectrum of Mediator Subunits in Response to Viroid Infection in Plants