Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22340661
PubMed Central
PMC3340318
DOI
10.1186/1471-2229-12-27
PII: 1471-2229-12-27
Knihovny.cz E-zdroje
- MeSH
- flavonoidy biosyntéza MeSH
- Humulus genetika metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flavonoidy MeSH
- rostlinné proteiny MeSH
- transkripční faktory MeSH
BACKGROUND: Lupulin glands of hop produce a specific metabolome including hop bitter acids valuable for the brewing process and prenylflavonoids with promising health-beneficial activities. The detailed analysis of the transcription factor (TF)-mediated regulation of the oligofamily of one of the key enzymes, i.e., chalcone synthase CHS_H1 that efficiently catalyzes the production of naringenin chalcone, a direct precursor of prenylflavonoids in hop, constitutes an important part of the dissection of the biosynthetic pathways leading to the accumulation of these compounds. RESULTS: Homologues of flavonoid-regulating TFs HlMyb2 (M2), HlbHLH2 (B2) and HlWDR1 (W1) from hop were cloned using a lupulin gland-specific cDNA library from the hop variety Osvald's 72. Using a "combinatorial" transient GUS expression system it was shown that these unique lupulin-gland-associated TFs significantly activated the promoter (P) of chs_H1 in ternary combinations of B2, W1 and either M2 or the previously characterized HlMyb3 (M3). The promoter activation was strongly dependent on the Myb-P binding box TCCTACC having a core sequence CCWACC positioned on its 5' end region and it seems that the complexity of the promoter plays an important role. M2B2W1-mediated activation significantly exceeded the strength of expression of native chs_H1 gene driven by the 35S promoter of CaMV, while M3B2W1 resulted in 30% of the 35S:chs_H1 expression level, as quantified by real-time PCR. Another newly cloned hop TF, HlMyb7, containing a transcriptional repressor-like motif pdLNLD/ELxiG/S (PDLNLELRIS), was identified as an efficient inhibitor of chs_H1-activating TFs. Comparative analyses of hop and A. thaliana TFs revealed a complex activation of Pchs_H1 and Pchs4 in combinatorial or independent manners. CONCLUSIONS: This study on the sequences and functions of various lupulin gland-specific transcription factors provides insight into the complex character of the regulation of the chs_H1 gene that depends on variable activation by combinations of R2R3Myb, bHLH and WDR TF homologues and inhibition by a Myb repressor.
Zobrazit více v PubMed
Zanoli P, Zavatti M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharmacol. 2008;116(3):383–396. doi: 10.1016/j.jep.2008.01.011. PubMed DOI
Magalhaes PJ, Carvalho DO, Cruz JM, Guido LF, Barros AA. Fundamentals and health benefits of xanthohumol, a natural product derived from hops and beer. Nat Prod Commun. 2009;4(5):591–610. PubMed
Van-Cleemput M, Cattoor K, De-Bosscher K, Haegeman G, De-Keukeleire D, Heyerick A. Hop (Humulus lupulus)-Derived Bitter Acids as Multipotent Bioactive Compounds. J Nat Prod. 2009;72(6):1220–1230. doi: 10.1021/np800740m. PubMed DOI
Gerhäuser C, Alt A, Heiss E, Gamal-Eldeen A, Klimo K, Knauft J, Neumann I, Scherf HR, Frank N, Bartsch H, Becker H. Cancer chemopreventive activity of xanthohumol, a natural product derived from hop. Mol Cancer Ther. 2002;1(11):959–969. PubMed
Avula B, Ganzera M, Warnick JE, Feltenstein MW, Sufka KJ, Khan IA. High-performance liquid chromatographic determination of xanthohumol in rat plasma, urine, and fecal samples. J Chromat Sci. 2004;42(7):378–382. PubMed
Bolca S, Wyns C, Possemiers S, Depypere H, De-Keukeleire D, Bracke M, Verstraete W, Heyerick A. Cosupplementation of Isoflavones, Prenylflavonoids, and Lignans Alters Human Exposure to Phytoestrogen-Derived 17 beta-Estradiol Equivalents. J Nutrit. 2009;139(12):2293–2300. PubMed
Bolca S, Li J, Nikolic D, Roche N, Blondeel P, Possemiers S, De-Keukeleire D, Bracke M, Heyerick A, Van-Breemen RB, Depypere H. Disposition of hop prenylflavonoids in human breast tissue. Mol Nutr Food Res. 2010;52(2):284–294. PubMed PMC
Dorn C, Kraus B, Motyl M, Weiss TS, Gehrig M, Schölmerich J, Heilmann JC, Hellerbrand C. Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis. Mol Nutr Food Res. 2010;54(S2):205–213. doi: 10.1002/mnfr.200900314. PubMed DOI
Milligan SR, Kalita JC, Heyerick A, Rong H, De-Cooman L, De-Keukeleire D. Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J Clin Endocrinol Metab. 1999;84(6):2249–2252. doi: 10.1210/jc.84.6.2249. PubMed DOI
Chadwick LR, Pauli GF, Farnsworth NR. The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine. 2006;13(1-2):119–131. doi: 10.1016/j.phymed.2004.07.006. PubMed DOI PMC
Possemiers S, Bolca S, Verstraete W, Heyerick A. The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia. 2011;82(1):53–66. doi: 10.1016/j.fitote.2010.07.012. PubMed DOI
Heyerick A, Vervarcke S, Depypere H, Bracke M, De-Keukeleire D. A first prospective, randomized, double-blind, placebo-controlled study on the use of a standardized hop extract to alleviate menopausal discomforts. Maturitas. 2006;54(2):164–175. doi: 10.1016/j.maturitas.2005.10.005. PubMed DOI
Erkkola R, Vervarcke S, Vansteelandt S, Rompotti P, De-Keukeleire D, Heyerick A. A randomized, double-blind, placebo-controlled, cross-over pilot study on the use of a standardized hop extract to alleviate menopausal discomforts. Phytomedicine. 2010;17(6):389–396. doi: 10.1016/j.phymed.2010.01.007. PubMed DOI
Matoušek J, Novák P, Bříza J, Patzak J, Niedermeierová H. Cloning and characterisation of chs-specific DNA and cDNA sequences from hop. (Humulus lupulus L.) Plant Sci. 2002;162(6):1007–1018. doi: 10.1016/S0168-9452(02)00050-X. DOI
Novák P, Krofta K, Matoušek J. Chalcone synthase homologues from Humulus lupulus: some enzymatic properties and expression. Biol Plant. 2006;50(1):48–54. doi: 10.1007/s10535-005-0073-y. DOI
Matoušek J, Vrba L, Skopek J, Orctová L, Pešina K, Heyerick A, Baulcombe D, De-Keukeleire D. Sequence analysis of a „true"chalcone synthase (ch_H1) oligofamily from hop (Humulus lupulus L.) and PAP1 activation of ch_H1 in heterologous systems. J Agric Food Chem. 2006;54(20):7606–7615. doi: 10.1021/jf061785g. PubMed DOI
Okada Y, Ito K. Cloning and analysis of valerophenone synthase gene expressed specifically in lupulin gland of hop (Humulus lupulus L.) Biosci Biotechnol Biochem. 2001;65(1):150–155. doi: 10.1271/bbb.65.150. PubMed DOI
Novák P, Matoušek J, Bříza J. Valerophenone synthase-like chalcone synthase homologues in Humulus lupulus. Biol Plant. 2003;46(3):375–381. doi: 10.1023/A:1024326102694. DOI
Matoušek J, Vrba L, Novák P, Patzak J, De-Keukeleire J, Škopek J, Heyerick A, Roldán-Ruiz I, De-Keukeleire D. Cloning and molecular analysis of the regulatory factor HlMyb1 in hop (Humulus lupulus L.) and the potential of hop to produce bioactive prenylated flavonoids. J Agric Food Chem. 2005;53(12):4793–4798. doi: 10.1021/jf050175y. PubMed DOI
Matoušek J, Kocábek T, Patzak J, Škopek J, Maloukh L, Heyerick A, Fussy Z, Roldán-Ruiz I, De-Keukeleire D. HlMyb3, a putative regulatory factor in hop (Humulus lupulus L.), shows diverse biological effects in heterologous transgenotes. J Agric Food Chem. 2007;55(19):7767–7776. doi: 10.1021/jf071153+. PubMed DOI
Matoušek J, Kocábek T, Patzak J, Stehlík J, Füssy Z, Krofta K, Heyerick A, Roldán-Ruiz I, Maloukh L, De-Keukeleire D. Cloning and molecular analysis of HlbZip1 and HlbZip2 transcription factors putatively involved in the regulation of the lupulin metabolome in hops (Humulus lupulus L.) J Agric Food Chem. 2010;58(2):902–912. doi: 10.1021/jf9043106. PubMed DOI
Singh KB. Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol. 1998;118(4):1111–1120. doi: 10.1104/pp.118.4.1111. PubMed DOI PMC
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot. 2011;62(8):2465–2483. doi: 10.1093/jxb/erq442. PubMed DOI
Feller A, Machemer K, Braun LE, Grotewold E. Evolutionary and comparative analysis of Myb and bHLH plant transcription factors. Plant J. 2011;66(1):94–116. doi: 10.1111/j.1365-313X.2010.04459.x. PubMed DOI
Du H, Huang Y, Tang Y. Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol. 2010;86:1293–1312. doi: 10.1007/s00253-010-2512-8. PubMed DOI
Ramsay NA, Glover BJ. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci. 2005;10(2):63–70. doi: 10.1016/j.tplants.2004.12.011. PubMed DOI
Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 2004;39(3):366–380. doi: 10.1111/j.1365-313X.2004.02138.x. PubMed DOI
Baudry A, Caboche M, Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J. 2006;46(5):768–779. doi: 10.1111/j.1365-313X.2006.02733.x. PubMed DOI
Spelt C, Quattrocchio F, Mol J, Koes R. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell. 2002;14(9):2121–2135. doi: 10.1105/tpc.003772. PubMed DOI PMC
Hellens RP, Moreau C, Lin-Wang K, Schwinn KE, Thomson SJ, Fiers MWEJ, Frew TJ, Murray SR, Hofer JMI, Jacobs JME, Davies KM, Allan AC, Bendahmane A, Coyne CJ, Timmerman-Vaughan GM, Ellis THN. Identification of Mendel's white flower character. PLoS ONE. 2010;5(10):e13230. doi: 10.1371/journal.pone.0013230. PubMed DOI PMC
Yoshida K, Iwasaka R, Shimada N, Ayabe S, Aoki T, Sakuta M. Transcriptional control of the dihydroflavonol 4-reductase multigene family in Lotus japonicus. J Plant Res. 2010;123(6):801–805. doi: 10.1007/s10265-010-0325-6. PubMed DOI
Yamazaki M, Makita Y, Springob K, Saito K. Regulatory mechanisms for anthocyanin biosynthesis in chemotypes of Perilla frutescens var. Crispa Biochem Eng J. 2003;14(3):191–197. doi: 10.1016/S1369-703X(02)00222-X. DOI
Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S. Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol. 2006;47(4):457–470. doi: 10.1093/pcp/pcj012. PubMed DOI
Matus JT, Poupin MJ, Cañón P, Bordeu E, Alcalde JA, Arce-Johnson P. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.) Plant Mol Biol. 2010;72(6):607–620. doi: 10.1007/s11103-010-9597-4. PubMed DOI
Zhang X, Allan AC, Yi Q, Chen L, Li K, Shu Q, Su J. Differential gene expression analysis of Yunnan red pear, Pyrus pyrifolia, during fruit skin coloration. Plant Mol Biol Rep. 2011;29(2):305–314. doi: 10.1007/s11105-010-0231-z. DOI
Grotewold E, Sainz MB, Tagliani L, Hernandez M, Bowen B, Chandler VL. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc Natl Acad Sci USA. 2000;97(25):13579–13584. doi: 10.1073/pnas.250379897. PubMed DOI PMC
Hernandez JM, Heine GF, Irani NG, Feller A, Kim MG, Matulnik T, Chandler VL, Grotewold E. Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1. J Biol Chem. 2004;279(46):48205–48213. doi: 10.1074/jbc.M407845200. PubMed DOI
Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J. 2004;40(1):22–34. doi: 10.1111/j.1365-313X.2004.02183.x. PubMed DOI
Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005;10(5):236–242. doi: 10.1016/j.tplants.2005.03.002. PubMed DOI
Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C. Enrichment of tomato fruit with healthpromoting anthocyanins by expression of select transcription factors. Nat Biotechnol. 2008;26(11):1301–1308. doi: 10.1038/nbt.1506. PubMed DOI
Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE. EST analysis of hop glandular trichomes identifies an O-Methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell. 2008;20(1):186–200. doi: 10.1105/tpc.107.055178. PubMed DOI PMC
Jin HL, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 2000;19(22):6150–6161. doi: 10.1093/emboj/19.22.6150. PubMed DOI PMC
Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J. 2004;40(6):979–995. doi: 10.1111/j.1365-313X.2004.02280.x. PubMed DOI
Silvia F, Fathi MS, Tamara M, Montserrat C, Pere P, Joan R, David CR. Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol Biol. 2006;62(6):809–882. doi: 10.1007/s11103-006-9058-2. PubMed DOI
Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell. 2001;13(8):1959–1968. PubMed PMC
Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol. 2010;10:50. doi: 10.1186/1471-2229-10-50. PubMed DOI PMC
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martinez-Garcia JF, Bilbao-Castro JR, Robertson DL. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol. 2010;153(3):1398–1412. doi: 10.1104/pp.110.153593. PubMed DOI PMC
Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell. 2000;12(10):1863–1878. PubMed PMC
De-Vetten N, Quattrocchio F, Mol J, Koes R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev. 1997;11(11):1422–1434. doi: 10.1101/gad.11.11.1422. PubMed DOI
Wang G, Tian L, Aziz N, Broun P, Dai X, He J, King A, Zhao PX, Dixon RA. Terpene biosynthesis in glandular trichomes of hop. Plant Physiol. 2008;148(3):1254–1266. doi: 10.1104/pp.108.125187. PubMed DOI PMC
Maloukh L, Matousek J, Van-Bockstaele E, Roldán-Ruiz I. Housekeeping gene selection for real time-PCR normalization in female hop (Humulus lupulus L) tissues. J Plant Biochem Biotechnol. 2009;18(1):53–58.
De-Keukeleire J, Ooms G, Heyerick A, Roldán-Ruiz I, Van-Bockstaele E, De-Keukeleire D. Formation and accumulation of α-acids, β-acids, desmethylxanthohumol and xanthohumol during flowering of hops (Humulus Lupulus L.) J Agric Food Chem. 2003;51(15):4436–4441. doi: 10.1021/jf034263z. PubMed DOI
Grotewold E, Drummond BJ, Bowen B, Peterson T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell. 1994;76(3):543–553. doi: 10.1016/0092-8674(94)90117-1. PubMed DOI
Gubler F, Raventos D, Keys M, Watts R, Mundy J, Jacobsen JV. Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant J. 1999;17(1):1–9. doi: 10.1046/j.1365-313X.1999.00346.x. PubMed DOI
Sablowski RWM, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M. A flower specific myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J. 1994;13(1):128–137. PubMed PMC
Sainz MB, Grotewold E, Chandler VL. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell. 1997;9(4):611–625. PubMed PMC
Loake GJ, Faktor O, Lamb CJ, Dixon RA. Combination of H-box [CCTACC(N), CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proc Natl Acad Sci USA. 1992;89(19):9230–9234. doi: 10.1073/pnas.89.19.9230. PubMed DOI PMC
Chytilová E, Macas J, Galbraith DW. Green fluorescent protein targeted to the nucleus, a transgenic phenotype useful for studies in plant biology. Ann Botany. 1999;83(6):645–654. doi: 10.1006/anbo.1999.0866. DOI
Abe H, Yamaguchi-Shinozaki K, Urao T. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell. 1997;9(10):1859–1868. PubMed PMC
Stålberg K, Ellerstöm M, Ezcurra I, Ablov S, Rask L. Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta. 1996;199(4):515–519. PubMed
Pires N, Dolan L. Origin and diversification of basic-helix-loop-helic proteins in plants. Mol Biol Evol. 2010;27(4):862–874. doi: 10.1093/molbev/msp288. PubMed DOI PMC
Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development. 2008;135:1991–1999. doi: 10.1242/dev.016873. PubMed DOI
Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B. Towards functional characterisation of the members of the R2R3-MYBgene family from Arabidopsis thaliana. Plant J. 1998;16(2):263–276. doi: 10.1046/j.1365-313x.1998.00278.x. PubMed DOI
De-Keukeleire J, Roldán-Ruiz I, Van-Bockstaele E, Heyerick A, De-Keukeleire D. Screening for genes involved in the biosynthesis of prenylated chalcones in hops (Humulus lupulus L.) Acta Hort (ISHS) 2005;668:93–100.
Gatica-Arias A, Stanke M, Born U, Aldinger C, Höhnle M, Farag M, Matoušek J, Wessjohann L, Weber G. Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L. Plant Cell Rep. 2012;31(1):111–119. doi: 10.1007/s00299-011-1144-5. PubMed DOI
Saito R, Fukuta N, Ohmiya A, Itoh Y, Ozeki Y, Kuchitsu K, Nakayama M. Regulation of anthocyanin biosynthesis involved in the formation of marginal picotee petals in Petunia. Plant Sci. 2006;170(4):828–834. doi: 10.1016/j.plantsci.2005.12.003. PubMed DOI
Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 2005;42(2):218–235. doi: 10.1111/j.1365-313X.2005.02371.x. PubMed DOI
Horlemann C, Schwekendiek A, Höhnle M, Weber G. Regeneration and Agrobacterium-mediated transformation of hop (Humulus lupulus L.) Plant Cell Rep. 2003;22(3):210–217. doi: 10.1007/s00299-003-0676-8. PubMed DOI
Ishida T, Kurata T, Okada K, Wada T. A genetic regulatory network in the development of trichomes and root hairs. Ann Rev Plant Biol. 2008;59:365–386. doi: 10.1146/annurev.arplant.59.032607.092949. PubMed DOI
Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res. 1980;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. PubMed DOI PMC
Church GM, Gilbert W. Genomic Sequencing. Proc Natl Acad Sci USA. 1984;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):2002–2007. PubMed PMC
Vrba L, Matoušek J. Expression of modified 7SL RNA gene in transgenic Solanum tuberosum plants. Biol Plant. 2005;49:371–380. doi: 10.1007/s10535-005-0010-0. DOI
Holsters M, De-Waele D, Depicker A, Messens E, Van-Montagu M, Schell J. Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet. 1978;163(2):181–187. doi: 10.1007/BF00267408. PubMed DOI
Jefferson RA. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep. 1987;5(4):387–405. doi: 10.1007/BF02667740. DOI
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:465–469. doi: 10.1093/nar/gkn180. PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Bork P, Brown NP, Hegyi H, Schultz J. The protein phosphatase2C (PP2C) superfamily: Detection of bacterial homologues. Protein Sci. 1996;5(7):1421–1425. doi: 10.1002/pro.5560050720. PubMed DOI PMC
Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Res. 1999;27(1):297–300. doi: 10.1093/nar/27.1.297. PubMed DOI PMC
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201. doi: 10.1093/bioinformatics/bti770. PubMed DOI
Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis. 1997;18(15):2714–2723. doi: 10.1002/elps.1150181505. PubMed DOI