The Influence of Hop Latent Viroid (HLVd) Infection on Gene Expression and Secondary Metabolite Contents in Hop (Humulus lupulus L.) Glandular Trichomes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34834660
PubMed Central
PMC8617911
DOI
10.3390/plants10112297
PII: plants10112297
Knihovny.cz E-zdroje
- Klíčová slova
- HLVd, Humulus lupulus, bitter acids content, differential gene expression, essential oils, hop, hop latent viroid, xanthohumol,
- Publikační typ
- časopisecké články MeSH
Viroids are small infectious pathogens, composed of a short single-stranded circular RNA. Hop (Humulus lupulus L.) plants are hosts to four viroids from the family Pospiviroidae. Hop latent viroid (HLVd) is spread worldwide in all hop-growing regions without any visible symptoms on infected hop plants. In this study, we evaluated the influence of HLVd infection on the content and the composition of secondary metabolites in maturated hop cones, together with gene expression analyses of involved biosynthesis and regulation genes for Saaz, Sládek, Premiant and Agnus cultivars. We confirmed that the contents of alpha bitter acids were significantly reduced in the range from 8.8% to 34% by viroid infection. New, we found that viroid infection significantly reduced the contents of xanthohumol in the range from 3.9% to 23.5%. In essential oils of Saaz cultivar, the contents of monoterpenes, terpene epoxides and terpene alcohols were increased, but the contents of sesquiterpenes and terpene ketones were decreased. Secondary metabolites changes were supported by gene expression analyses, except essential oils. Last-step biosynthesis enzyme genes, namely humulone synthase 1 (HS1) and 2 (HS2) for alpha bitter acids and O-methytransferase 1 (OMT1) for xanthohumol, were down-regulated by viroid infection. We found that the expression of ribosomal protein L5 (RPL5) RPL5 and the splicing of transcription factor IIIA-7ZF were affected by viroid infection and a disbalance in proteosynthesis can influence transcriptions of biosynthesis and regulatory genes involved in of secondary metabolites biosynthesis. We suppose that RPL5/TFIIIA-7ZF regulatory cascade can be involved in HLVd replication as for other viroids of the family Pospiviroidae.
Zobrazit více v PubMed
Hadidi A., Flores R., Randles J.W., Palukaitis P. Viroids and Sattelites. Academic Press; Cambridge, UK: 2017. p. 716.
Pethybridge S.J., Hay F.S., Barbara D.J., Eastwell K.C., Wilson C.R. Viruses and viroid infected hop: Epidemiology and management. Plant Dis. 2008;92:324–338. doi: 10.1094/PDIS-92-3-0324. PubMed DOI
Sano T., Yoshida H., Goshono M., Monma T., Kawasaki H., Ishizaki K. Characterization of a new viroid strain from hops: Evidence for viroid speciation by isolation in different host species. J. Gen. Plant Pathol. 2004;70:181–187. doi: 10.1007/s10327-004-0105-z. DOI
Radišek S., Majer A., Jakše J., Javornik B., Matoušek J. First report of Hop stunt viroid infecting hop in Slovenia. Plant Dis. 2012;96:592–593. doi: 10.1094/PDIS-08-11-0640-PDN. PubMed DOI
Kappagantu M., Nelson M.E., Bullock J.M., Kenny S.T., Eastwell K.C. Hop stunt viroid: Effects on vegetative growth and yield of hop cultivars, and its cistribution in Central Washington state. Plant Dis. 2017;101:607–612. doi: 10.1094/PDIS-06-16-0884-RE. PubMed DOI
Clark S.M., Vaitheeswaran V., Ambrose S.J., Purves R.W., Page J.E. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus) BMC Plant Biol. 2013;13:12. doi: 10.1186/1471-2229-13-12. PubMed DOI PMC
Radišek S., Oset M., Čerenak A., Jakše J., Knapič V., Matoušek J., Javornik B. Research activities focused on hop viroid diseases in Slovenia; Proceedings of the Scientific Commission of IHGC; Kiev, Ukraine. 4–9 June 2013; pp. 58–3785.
Radišek S. Management of hop viroid diseases in Slovenia; Proceedings of the 56th International Hop Growers’ Convention (IHGC) Congress; Yakima, WA, USA. 30 July–3 August 2017.
Patzak J., Matoušek J., Krofta K., Svoboda P. Hop latent viroid (HLVd)-caused pathogenesis: Effects of HLVd infection on lupulin composition of meristem culture-derived hop (Humulus lupulus L.) Biol. Plant. 2001;44:579–585. doi: 10.1023/A:1013798821676. DOI
Seigner E., Haugg B., Hager P., Enders R., Kneidl J., Lutz A., Seigner L., Einberger K., Absmeier C., Keckel L., et al. Realtime PCR based diagnostics and meristem culture—Essential tools for healthy hops; Proceedings of the Scientific Commission of IHGC; Bischoffsheim, France. 7–11 July 2019; pp. 114–3785.
Barbara D.J., Morton A., Adams A.N., Green C.P. Some effects of hop latent viroid on two cultivars of hop (Humulus lupulus) in the UK. Ann. Appl. Biol. 1990;117:359–366. doi: 10.1111/j.1744-7348.1990.tb04222.x. DOI
Adams A.N., Barbara D.J., Morton A. Effects of hop latent viroid on weight and quality of the cones of the hop cultivar Wye challenger. Ann. Appl. Biol. 1991;118((Suppl.)):126–127.
Adams A.N., Morton A., Barbara D., Ridout M. The distribution and spread of hop latent viroid within two commercial plantings of hop (Humulus lupulus) Ann. Appl. Biol. 1992;121:585–592. doi: 10.1111/j.1744-7348.1992.tb03468.x. DOI
Pistelli L., Ferri B., Cioni P.L., Koziara M., Agacka M., Skomra U. Aroma profile and bitter acid characterization of hop cones (Humulus lupulus L.) of five healthy and infected Polish cultivars. Ind. Crops Prod. 2018;124:653–662. doi: 10.1016/j.indcrop.2018.08.009. DOI
Kovačevič M., Kač M. Determination and verification of hop varieties by analysis of essential oils. Food Chem. 2002;77:489–494. doi: 10.1016/S0308-8146(02)00114-0. DOI
Okada Y., Ito K. Cloning and analysis of valerophenone synthase gene expressed specifically in lupulin gland of hop (Humulus lupulus L.) Biosci. Biotechnol. Biochem. 2001;65:150–155. doi: 10.1271/bbb.65.150. PubMed DOI
Xu H., Zhang F., Liu B., Huhman D.V., Sumner L.W., Dixon R.A., Wang G. Characterization of the formation of branched short-chain fatty acid:CoAs for bitter acid biosynthesis in hop glandular trichomes. Mol. Plant. 2013;6:1301–1317. doi: 10.1093/mp/sst004. PubMed DOI
Okada K. The biosynthesis of isoprenoids and the mechanisms regulating it in plants. Biosci. Biotechnol. Biochem. 2011;75:1219–1225. doi: 10.1271/bbb.110228. PubMed DOI
Tsurumaru Y., Sasaki K., Miyawaki T., Momma T., Umemoto N., Yazaki K. An aromatic prenyltransferase-like gene HlPT-1 preferentially expressed in lupulin glands of hop. Plant Biotechnol. 2010;27:199–204. doi: 10.5511/plantbiotechnology.27.199. DOI
Tsurumaru Y., Sasaki K., Miyawaki T., Uto Y., Momma T., Umemoto N., Yazaki K. HlPT-1, a membrane-bound prenyltransferase responsible for the biosynthesis of bitter acids in hops. Biochem. Biophys. Res. Comm. 2012;417:393–398. doi: 10.1016/j.bbrc.2011.11.125. PubMed DOI
Li H., Ban Z., Qin H., Ma L., King A.J., Wang G. A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway. Plant Physiol. 2015;167:650–659. doi: 10.1104/pp.114.253682. PubMed DOI PMC
Champagne A., Boutry M. A comprehensive proteome map of glandular trichomes of hop (Humulus lupulus L) female cones: Identification of biosynthetic pathways of the major terpenoid-related compounds and possible transport proteins. Proteomics. 2017;17:1600411. doi: 10.1002/pmic.201600411. PubMed DOI
Okada Y., Sugimoto M., Ito K. Molecular cloning and expression of farnesyl pyrophosphate synthase gene responsible for essential oil biosynthesis in hop (Humulus lupulus) J. Plant Physiol. 2001;158:1183–1188. doi: 10.1078/S0176-1617(04)70145-5. DOI
Wang G., Tian L., Aziz N., Broun P., Dai X., He J., King A., Zhao P.X., Dixon R.A. Terpene biosynthesis in glandular trichomes of hop. Plant Physiol. 2008;148:1254–1266. doi: 10.1104/pp.108.125187. PubMed DOI PMC
Wang G., Dixon R.A. Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc. Nat. Acad. Sci. USA. 2009;106:9914–9919. doi: 10.1073/pnas.0904069106. PubMed DOI PMC
Matoušek J., Novák P., Bříza J., Patzak J., Niedermaierová H. Cloning and characterisation of chs-specific DNA and cDNA sequences from hop (Humulus lupulus L.) Plant Sci. 2002;162:1007–1018. doi: 10.1016/S0168-9452(02)00050-X. DOI
Ban Z., Qin H., Mitchell A.J., Liu B., Zhang F., Weng J.-K., Dixon R.A., Wang G. Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis. Proc. Nat. Acad. Sci. USA. 2018;115:E5223–E5232. doi: 10.1073/pnas.1802223115. PubMed DOI PMC
Nagel J., Culley L.K., Lu Y., Liu E., Matthews P.D., Stevens J.F., Page J.E. EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell. 2008;20:186–200. doi: 10.1105/tpc.107.055178. PubMed DOI PMC
Matoušek J., Kocábek T., Patzak J., Füssy Z., Procházková J., Heyerick A. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus lupulus L.) BMC Plant Biol. 2012;12:27. doi: 10.1186/1471-2229-12-27. PubMed DOI PMC
Mishra A.K., Duraisamy G.S., Khare M., Kocábek T., Jakse J., Bříza J., Patzak J., Sano T., Matoušek J. Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors. BMC Genom. 2018;19:739. doi: 10.1186/s12864-018-5125-8. PubMed DOI PMC
Matoušek J., Kocábek T., Patzak J., Bříza J., Siglová K., Mishra A.K., Duraisamy G.S., Týcová A., Ono E., Krofta K. The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.) Plant Mol. Biol. 2016;92:263–277. doi: 10.1007/s11103-016-0510-7. PubMed DOI
Kocábek T., Mishra A.K., Matoušek J., Patzak J., Lomnická A., Khare M., Krofta K. The R2R3 transcription factor HlMYB8 and its role in flavonoid biosynthesis in hop (Humulus lupulus L.) Plant Sci. 2018;269:32–46. doi: 10.1016/j.plantsci.2018.01.004. PubMed DOI
Pokorn T., Radišek S., Javornik B., Štajner N., Jakše J. Development of hop transcriptome to support research into host-viroid interactions. PLoS ONE. 2017;12:e0184528. doi: 10.1371/journal.pone.0184528. PubMed DOI PMC
Štajner N., Radišek S., Mishra A.K., Nath V.S., Matoušek J., Jakše J. Evaluation of disease severity and global transcriptome response induced by citrus bark cracking viroid, hop latent viroid, and their co-Infection in hop (Humulus lupulus L.) Int. J. Mol. Sci. 2019;20:3154. doi: 10.3390/ijms20133154. PubMed DOI PMC
Nath V.S., Shrestha A., Awasthi P., Mishra A.K., Kocábek T., Matoušek J., Sečnik A., Jakše J., Radišek S., Hallan V. Mapping the gene expression spectrum of mediator subunits in response to viroid infection in plants. Int. J. Mol. Sci. 2020;21:2498. doi: 10.3390/ijms21072498. PubMed DOI PMC
Eiras M., Nohales M.A., Kitajima E.W., Flores R., Daròs J.A. Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Arch. Virol. 2010;156:529–533. doi: 10.1007/s00705-010-0867-x. PubMed DOI
Wang Y., Qu J., Ji S., Wallace A.J., Wu J., Li Y., Gopalan V., Ding B. A land plant-specific transcription factor directly enhances transcription of a pathogenic noncoding RNA template by DNA-dependent RNA Polymerase II. Plant Cell. 2016;28:1094–1107. doi: 10.1105/tpc.16.00100. PubMed DOI PMC
Jiang J., Smith H.N., Ren D., Mudiyanselage S.D.D., Dawe A.L., Wang L., Wang Y. Potato spindle tuber viroid modulates its replication through a direct interaction with a splicing regulator. J. Virol. 2018;92:e01004-18. doi: 10.1128/JVI.01004-18. PubMed DOI PMC
Mudiyanselage S.D.D., Qu J., Tian N., Jiang J., Wang Y. Potato spindle tuber viroid RNA-templated transcription: Factors and regulation. Viruses. 2018;10:503. doi: 10.3390/v10090503. PubMed DOI PMC
Matoušek J., Steinbachová L., Drábková L.Z., Kocábek T., Potěšil D., Mishra A.K., Honys D. Elimination of viroids from tobacco pollen involves a decrease in propagation rate and an increase of the degradation processes. Int. J. Mol. Sci. 2020;21:3029. doi: 10.3390/ijms21083029. PubMed DOI PMC
Matoušek J., Patzak J. A low transmissibility of hop latent viroid through a generative phase of Humulus lupulus L. Biol. Plant. 2000;43:145–148. doi: 10.1023/A:1026531819806. DOI
Matoušek J., Kocábek T., Mishra A.K., Radišek S., Steger G. Book of Abstracts, V. International Humulus Symposium. University of Hohenheim; Stuttgart, Germany: Mar 8−12, 2021. The decrease of the propagation rate of hop viroids in pollen and a potential multifunctional role of transcription factor TFIIIA; p. 36.
Patzak J., Krofta K., Henychová A., Nesvadba V. Number and size of lupulin glands, glandular trichomes of hop (Humulus lupulus L.), play a key role in contents of bitter acids and polyphenols in hop cone. Int. J. Food Sci. Technol. 2015;50:1864–1872. doi: 10.1111/ijfs.12825. DOI
Krofta K. Contents of xanthohumol in Czech hops. Kvasný Prům. 2003;49:62–69. doi: 10.18832/kp2003004. DOI
Krofta K., Poustka J., Nováková K., Hajšlová J. Contents of prenylflavonoids in Czech hops and beers. Acta Hortic. 2005;668:201–206. doi: 10.17660/ActaHortic.2005.668.25. DOI
Nesvadba V., Krofta K. Variability in the contents of important compounds for pharmaceutical and brewing industries within hop gene pool. Agriculture. 2009;55:10–16.
Patzak J., Henychová A., Matoušek J. Developmental regulation of lupulin gland-associated genes in aroma and bitter hops (Humulus lupulus L.) BMC Plant Biol. 2021 PubMed PMC
Samanta A., Das G., Das S.K. Roles of flavonoids in plants. Int. J. Pharm. Sci. Technol. 2011;100:12–35.
Feiner A., Pitra N., Matthews P., Pillen K., Wessjohann L.A., Riewe D. Downy mildew resistance is genetically mediated by prophylactic production of phenylpropanoids in hop. Plant Cell Environ. 2021;44:323–338. doi: 10.1111/pce.13906. PubMed DOI
Singh B., Sharma R.A. Plant terpenes: Defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech. 2015;5:129–151. doi: 10.1007/s13205-014-0220-2. PubMed DOI PMC
Patzak J., Henychová A., Svoboda P., Malířová I. Assessment of epigenetic methylation changes in hop (Humulus lupulus) plants obtained by meristem culture. Czech J. Genet. Plant Breed. 2020;56:159–164. doi: 10.17221/27/2020-CJGPB. DOI
Patzak J. Assessment of somaclonal variability in hop (Humulus lupulus L.) in vitro meristem cultures and clones by molecular methods. Euphytica. 2003;131:343–350. doi: 10.1023/A:1024096401424. DOI
Patzak J., Svoboda P., Henychová A., Malířová I. Detection of hop viruses and viroids by qRT-PCR in the Czech Republic; Proceedings of the Scientific Commission of IHGC; Stefan am Walde, Austria. 25–29 June 2017; pp. 101–3785.
Patzak J., Nesvadba V., Krofta K., Henychová A., Marzoev A.I., Richards K. Evaluation of genetic variability of wild hops (Humulus lupulus L.) in Canada and the Caucasus region by chemical and molecular methods. Genome. 2010;53:545–557. doi: 10.1139/G10-024. PubMed DOI
Natsume S., Takagi H., Shiraishi A., Murata J., Toyonaga H., Patzak J., Takagi M., Yaegashi H., Uemura A., Mitsuoka C., et al. The draft genome of hop (Humulus lupulus), an essence for brewing. Plant Cell Physiol. 2015;56:428–441. doi: 10.1093/pcp/pcu169. PubMed DOI
Hill S.T., Sudarsanam R., Henning J., Hendrix D. HopBase: A unified resource for Humulus genomics. Database. 2017;2017:bax009. doi: 10.1093/database/bax009. PubMed DOI PMC
Padgitt-Cobb L.K., Kingan S.B., Wells J., Elser J., Kronmiller B., Moore D., Concepcion G., Peluso P., Rank D., Jaiswal P., et al. A draft phased assembly of the diploid Cascade hop (Humulus lupulus) genome. Plant Genome. 2021;14:e20072. doi: 10.1002/tpg2.20072. PubMed DOI