The "putative" role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.)
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27392499
DOI
10.1007/s11103-016-0510-7
PII: 10.1007/s11103-016-0510-7
Knihovny.cz E-zdroje
- Klíčová slova
- 5′ RNA degradome, Hop transformation, Lupulin biosynthesis, Plant promoter activation, Transcription factors, WRKY oligofamily,
- MeSH
- Humulus enzymologie genetika metabolismus MeSH
- listy rostlin enzymologie genetika MeSH
- promotorové oblasti (genetika) genetika MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- terpeny * MeSH
- transkripční faktory genetika metabolismus MeSH
- umlčování genů fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lupulon MeSH Prohlížeč
- rostlinné proteiny MeSH
- terpeny * MeSH
- transkripční faktory MeSH
Lupulin glands localized in female hop (Humulus lupulus L.) cones are valuable source of bitter acids, essential oils and polyphenols. These compounds are used in brewing industry and are important for biomedical applications. In this study we describe the potential effect of transcription factors from WRKY family in the activation of the final steps of lupulin biosynthesis. In particular, lupulin gland-specific transcription factor HlWRKY1 that shows significant similarity to AtWRKY75, has ability to activate the set of promoters driving key genes of xanthohumol and bitter acids biosynthesis such as chalcone synthase H1, valerophenone synthase, prenyltransferase 1, 1L and 2 and O-methyltransferase-1. When combined with co-factor HlWDR1 and silencing suppressor p19, HlWRKY1 is able to enhance transient expression of gus gene driven by Omt1 and Chs_H1 promoters to significant level as compared to 35S promoter of CaMV in Nicotiana. benthamiana. Transformation of hop with dual Agrobacterium vector bearing HlWRKY1/HlWDR1 led to ectopic overexpression of these transgenes and further activation of lupulin-specific genes expression in hop leaves. It was further showed that (1) HlWRKY1 is endowed with promoter autoactivation; (2) It is regulated by post-transcriptional gene silencing (PTGS) mechanism; (3) It is stimulated by kinase co-expression. Since HlWRKY1 promotes expression of lupulin-specific HlMyb3 gene therefore it can constitute a significant component in hop lupulin regulation network. Putative involvement of HlWRKY1 in the regulation of lupulin biosynthesis may suggest the original physiological function of lupulin components in hop as flower and seed protective compounds.
Zobrazit více v PubMed
J Agric Food Chem. 2006 Oct 4;54(20):7606-15 PubMed
Mol Plant. 2013 Mar;6(2):287-300 PubMed
Nat Protoc. 2009;4(3):356-62 PubMed
Plant Cell Physiol. 2007 Jan;48(1):8-18 PubMed
Plant J. 2011 Apr;66(1):94-116 PubMed
J Nutr. 2009 Dec;139(12):2293-300 PubMed
J Nat Prod. 2009 Jun;72(6):1220-30 PubMed
J Plant Physiol. 2015 Jul 1;183:85-94 PubMed
Biochem Biophys Res Commun. 2012 Jan 6;417(1):393-8 PubMed
Plant Mol Biol. 2008 Sep;68(1-2):81-92 PubMed
J Exp Bot. 2009;60(11):3043-65 PubMed
FEBS Lett. 2005 Oct 31;579(26):5830-40 PubMed
Trends Biochem Sci. 2010 Oct;35(10):565-74 PubMed
Plant Cell. 2008 Jan;20(1):186-200 PubMed
Plant Physiol. 2015 Mar;167(3):650-9 PubMed
AANA J. 2013 Jun;81(3):193-8 PubMed
Plant Physiol. 1998 Dec;118(4):1111-20 PubMed
Mol Gen Genet. 1994 Mar;242(5):573-85 PubMed
Plant Physiol. 2008 Nov;148(3):1254-66 PubMed
Eur J Cancer. 2005 Sep;41(13):1941-54 PubMed
Mol Biol Evol. 2013 Dec;30(12):2725-9 PubMed
Nat Rev Genet. 2005 Mar;6(3):206-20 PubMed
Mol Gen Genet. 1978 Jul 11;163(2):181-7 PubMed
Plant Physiol. 2007 Apr;143(4):1789-801 PubMed
BMC Plant Biol. 2013 Jan 24;13:12 PubMed
Plant Physiol. 2015 Feb;167(2):295-306 PubMed
J Agric Food Chem. 2005 Jun 15;53(12):4793-8 PubMed
J Ethnopharmacol. 2008 Mar 28;116(3):383-96 PubMed
Plant Physiol. 2011 Dec;157(4):2081-93 PubMed
Plant J. 2005 Apr;42(2):218-35 PubMed
Trends Plant Sci. 2000 May;5(5):199-206 PubMed
Gene. 2012 Jun 10;501(1):52-62 PubMed
Trends Plant Sci. 2010 May;15(5):247-58 PubMed
J Agric Food Chem. 2007 Sep 19;55(19):7767-76 PubMed
Nucleic Acids Res. 2001 May 1;29(9):e45 PubMed
Plant Signal Behav. 2014;9(9):e29526 PubMed
Trends Plant Sci. 2013 May;18(5):267-76 PubMed
Plant Cell. 2004 Oct;16(10):2573-85 PubMed
Plant Cell Rep. 2003 Oct;22(3):210-7 PubMed
Biosci Biotechnol Biochem. 2001 Jan;65(1):150-5 PubMed
Plant Cell. 2006 May;18(5):1310-26 PubMed
J Integr Plant Biol. 2012 Aug;54(8):526-39 PubMed
Plant Cell. 2016 Mar;28(3):786-803 PubMed
Plant Cell. 2014 Oct;26(10):4067-83 PubMed
Mol Biol Rep. 2011 Aug;38(6):3883-96 PubMed
BMC Plant Biol. 2012 Feb 20;12:27 PubMed
Trends Plant Sci. 2005 Feb;10(2):63-70 PubMed
J Exp Bot. 2015 Jul;66(13):3775-89 PubMed
New Phytol. 2014 Sep;203(4):1146-60 PubMed
Plant Sci. 2012 Apr;185-186:288-97 PubMed
Can J Microbiol. 1975 Feb;21(2):205-12 PubMed
Nucleic Acids Res. 1987 Jul 24;15(14):5890 PubMed
Curr Protoc Mol Biol. 2011 Jul;Chapter 15:Unit 15.10 PubMed
Phytochemistry. 2004 May;65(10):1317-30 PubMed
Plant Physiol. 2009 Aug;150(4):1648-55 PubMed
Curr Opin Plant Biol. 2007 Aug;10(4):366-71 PubMed
Plant Cell. 2012 Apr;24(4):1626-42 PubMed
J Agric Food Chem. 2010 Jan 27;58(2):902-12 PubMed
BMC Evol Biol. 2005 Jan 03;5:1 PubMed
Plant Physiol. 2014 May;165(1):186-95 PubMed
Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15012-7 PubMed
Plant Cell. 2010 Feb;22(2):481-96 PubMed
Plant Cell Physiol. 2015 Mar;56(3):428-41 PubMed
Plant Cell Rep. 2012 Jan;31(1):111-9 PubMed
J Plant Physiol. 2013 May 1;170(7):688-95 PubMed
Int J Food Microbiol. 1996 Dec;33(2-3):195-207 PubMed
Plant Physiol. 2012 Jun;159(2):810-25 PubMed