Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 13-03037S
Czech Science Foundation (GACR)
RVO:60077344
Institutional support
PubMed
30305019
PubMed Central
PMC6180420
DOI
10.1186/s12864-018-5125-8
PII: 10.1186/s12864-018-5125-8
Knihovny.cz E-zdroje
- Klíčová slova
- Bitter acids, Flavonoids, Genetic transformation, Humulus lupulus, Secondary metabolite, Transcription factors, Transcriptome analysis,
- MeSH
- anotace sekvence MeSH
- exprese genu MeSH
- geneticky modifikované rostliny MeSH
- genomika * MeSH
- Humulus genetika MeSH
- rostlinné proteiny genetika MeSH
- stanovení celkové genové exprese * MeSH
- transkripční faktory genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rostlinné proteiny MeSH
- transkripční faktory MeSH
BACKGROUND: The hop plant (Humulus lupulus L.) is a valuable source of several secondary metabolites, such as flavonoids, bitter acids, and essential oils. These compounds are widely implicated in the beer brewing industry and are having potential biomedical applications. Several independent breeding programs around the world have been initiated to develop new cultivars with enriched lupulin and secondary metabolite contents but met with limited success due to several constraints. In the present work, a pioneering attempt has been made to overexpress master regulator binary transcription factor complex formed by HlWRKY1 and HlWDR1 using a plant expression vector to enhance the level of prenylflavonoid and bitter acid content in the hop. Subsequently, we performed transcriptional profiling using high-throughput RNA-Seq technology in leaves of resultant transformants and wild-type hop to gain in-depth information about the genome-wide functional changes induced by HlWRKY1 and HlWDR1 overexpression. RESULTS: The transgenic WW-lines exhibited an elevated expression of structural and regulatory genes involved in prenylflavonoid and bitter acid biosynthesis pathways. In addition, the comparative transcriptome analysis revealed a total of 522 transcripts involved in 30 pathways, including lipids and amino acids biosynthesis, primary carbon metabolism, phytohormone signaling and stress responses were differentially expressed in WW-transformants. It was apparent from the whole transcriptome sequencing that modulation of primary carbon metabolism and other pathways by HlWRKY1 and HlWDR1 overexpression resulted in enhanced substrate flux towards secondary metabolites pathway. The detailed analyses suggested that none of the pathways or genes, which have a detrimental effect on physiology, growth and development processes, were induced on a genome-wide scale in WW-transgenic lines. CONCLUSIONS: Taken together, our results suggest that HlWRKY1 and HlWDR1 simultaneous overexpression positively regulates the prenylflavonoid and bitter acid biosynthesis pathways in the hop and thus these transgenes are presented as prospective candidates for achieving enhanced secondary metabolite content in the hop.
Zobrazit více v PubMed
Lamy V, Roussi S, Chaabi M, Gossé F, Lobstein A, Raul F. Lupulone, a hop bitter acid, activates different death pathways involving apoptotic TRAIL-receptors, in human colon tumor cells and in their derived metastatic cells. Apoptosis. 2008;13(10):1232–1242. doi: 10.1007/s10495-008-0250-5. PubMed DOI
Hougee S, Faber J, Sanders A, Berg WB, Garssen J, Smit HF, Hoijer MA. Selective inhibition of COX-2 by a standardized CO2 extract of Humulus lupulus in-vitro and its activity in a mouse model of zymosan-induced arthritis. Planta Med. 2006;72(3):228–233. doi: 10.1055/s-2005-916212. PubMed DOI
Overk CR, Yao P, Chadwick LR, Nikolic D, Sun Y, Cuendet MA, Deng Y, Hedayat AS, Pauli GF, Farnsworth NR, van Breemen RB, Bolton JL. Comparison of the in vitro estrogenic activities of compounds from hops (Humulus lupulus) and red clover (Trifolium pratense) J Agric Food Chem. 2005;53(16):6246–6253. doi: 10.1021/jf050448p. PubMed DOI PMC
Franco L, Sánchez CL, Bravo R, Rodríguez AB, Barriga C, Cubero J. The sedative effects of hops (Humulus lupulus), a component of beer, on the activity/rest rhythm. Acta Physiol Hung. 2012;99(2):133–139. doi: 10.1556/APhysiol.99.2012.2.6. PubMed DOI
Rozalski M, Micota B, Sadowska B, Stochmal A, Jedrejek D, Wieckowska-Szakiel M, Rozalska B. Antiadherent and Antibiofilm activity of Humulus lupulus L. derived products: new pharmacological properties. Biomed Res Int. 2013;2013:101089. doi: 10.1155/2013/101089. PubMed DOI PMC
Liu Y, Gu X, Tang J, Liu K. Antioxidant activities of hops (Humulus lupulus) and their products. J Am Soc Brew Chem. 2007;65(2):116–121.
Roberts TR, Wilson RJH. Handbook of brewing. In: Priest FJ, Stewart GG, editors. 2nd edn. Boca Raton: Hops. Taylor & Francis; 2006. pp. 177–280.
Patzak J, Krofta K, Henychová A, Nesvadba V. Number and size of lupulin glands, glandular trichomes of hop (Humulus lupulus L.) play key-role in contents of bitter acids and polyphenols in hop cone. Int J Food Sci Technol. 2015;50(9):1864–1872. doi: 10.1111/ijfs.12825. DOI
De Keukeleire J, Ooms G, Heyerick A, Roldan-Ruiz I, Van Bockstaele E, De Keukeleire D. Formation and accumulation of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol during flowering of hops (Humulus lupulus L.) J Agric Food Chem. 2003;51(15):4436–4441. doi: 10.1021/jf034263z. PubMed DOI
Wang G, Tian L, Aziz N, Broun P, Dai X, He J, King A, Zhao PX, Dixon RA. Terpene biosynthesis in glandular trichomes of hop. Plant Physiol. 2008;148(3):1254–1266. doi: 10.1104/pp.108.125187. PubMed DOI PMC
Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE. EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell. 2008;20(1):186–200. doi: 10.1105/tpc.107.055178. PubMed DOI PMC
Sägesser M, Deinzer M. HPLC-ion spray tandem mass spectrometry of flavonol glycosides in hops. J Am Soc Brew Chem. 1996;54(3):129–134.
McAdam EL, Vaillancourt RE, Koutoulis A, Whittock SP. Quantitative genetic parameters for yield, plant growth and cone chemical traits in hop (Humulus lupulus L.) BMC Genet. 2014;15(2):1–18. PubMed PMC
Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010;3(1):2–20. doi: 10.1093/mp/ssp106. PubMed DOI
Matoušek Jaroslav, Vrba Lukáš, Škopek Josef, Orctová Lidmila, Pešina Karel, Heyerick Arne, Baulcombe David, De Keukeleire Denis. Sequence Analysis of a “True” Chalcone Synthase (chs_H1) Oligofamily from hop (Humulus lupulusL.) and PAP1 Activation ofchs_H1 in Heterologous Systems. Journal of Agricultural and Food Chemistry. 2006;54(20):7606–7615. doi: 10.1021/jf061785g. PubMed DOI
Tsurumaru Y, Sasaki K, Miyawaki T, Momma T, Umemoto N, Yazaki K. An aromatic prenyltransferase-like gene HlPT-1 preferentially expressed in lupulin glands of hop. Plant Biotech. 2010;27(2):199–204. doi: 10.5511/plantbiotechnology.27.199. DOI
Matoušek J, Kocábek T, Patzak J, Stehlík J, Füssy Z, Krofta K, Heyerick A, Roldán-Ruiz I, Maloukh L, De-Keukeleire D. Cloning and molecular analysis of HlbZip1 and HlbZip2 transcription factors putatively involved in the regulation of the lupulin metabolome in hops (Humulus lupulus L.) J Agric Food Chem. 2010;58(2):902–912. doi: 10.1021/jf9043106. PubMed DOI
Matoušek J, Kocábek T, Patzak J, Füssy Z, Procházková J, Heyerick A. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus lupulus L.) BMC Plant Biol. 2012;20(12):27. doi: 10.1186/1471-2229-12-27. PubMed DOI PMC
Matoušek J, Kocábek T, Patzak J, Bříza J, Siglová K, Mishra AK, Duraisamy GS, Týcová A, Ono E, Krofta K. The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonoid and bitter acids biosynthesis in hop (Humulus lupulus L.) Plant Mol Biol. 2016;92(3):263–277. doi: 10.1007/s11103-016-0510-7. PubMed DOI
Kocábek T, Mishra AK, Matoušek J, Patzak J, Lomnická A, Khare M, Krofta K. The R2R3 transcription factor HlMYB8 and its role in flavonoid biosynthesis in hop (Humulus lupulus L.) Plant Sci. 2018;269:32–46. doi: 10.1016/j.plantsci.2018.01.004. PubMed DOI
Devaiah BN, Karthikeyan AS, Raghothama KG. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 2007;143(4):1789–1801. doi: 10.1104/pp.106.093971. PubMed DOI PMC
Zhang B, Schrader A. TRANSPARENT TESTA GLABRA 1-dependent regulation of flavonoid biosynthesis. Plants (Basel) 2017;6(4):E65. doi: 10.3390/plants6040065. PubMed DOI PMC
Jakše J, Kindlhofer K, Javornik B. Assessment of genetic variation and differentiation of hop genotypes by microsatellite and AFLP markers. Genome. 2001;44(5):773–782. doi: 10.1139/gen-44-5-773. PubMed DOI
Murakami A, Darby P, Javornik B, Pais MS, Seigner E, Lutz A, Svoboda P. Molecular phylogeny of wild hops, (Humulus lupulus L.) Heredity. 2006;97(1):66–74. doi: 10.1038/sj.hdy.6800839. PubMed DOI
Gatica-Arias A, Stanke M, Hantzschel KR, Matousek J, Weber G. Over-expression of the transcription factor HlMYB3 in transgenic hop (Humulus lupulus L. cv. Tettnanger) modulates the expression of genes involved in the biosynthesis of flavonoids and phloroglucinols. Plant Cell Tiss Org. 2013;113:279–289. doi: 10.1007/s11240-012-0268-9. DOI
Zhong GY. Genetic issues and pitfalls in transgenic plant breeding. Euphytica. 2001;118(2):137–144. doi: 10.1023/A:1004048019670. DOI
Koetle MJ, Finnie JF, Balázs E, Van Staden J. A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. S Afr J Bot. 2015;98:37–44. doi: 10.1016/j.sajb.2015.02.001. DOI
Luo J, Butelli E, Hill L, Par A, Niggeweg R, Bailey P, Weisshaar B, et al. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenols. Plant J. 2008;56(2):316–326. doi: 10.1111/j.1365-313X.2008.03597.x. PubMed DOI
Pandey A, Misra P, Bhambhani S, Bhatia C, Trivedi PK. Expression of Arabidopsis MYB transcription factor, AtMYB111, in tobacco requires light to modulate flavonol content. Sci Rep. 2014;21(4):5018. PubMed PMC
Pandey A, Misra P, Choudhary D, Yadav R, Goel R, Bhambhani S, Sanyal I, Trivedi I, Trivedi PK. AtMYB12 expression in tomato leads to large-scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues. Sci Rep. 2015;24(5):12412. doi: 10.1038/srep12412. PubMed DOI PMC
Lambirth KC, Whaley AM, Blakley IC, Schlueter JA, Bost KL, Loraine AE, Piller KJ. A comparison of transgenic and wild-type soybean seeds: analysis of transcriptome profiles using RNA-Seq. BMC Biotechnol. 2015;1(15):89. doi: 10.1186/s12896-015-0207-z. PubMed DOI PMC
Ricroch AE, Berge JB, Kuntz M. Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. Plant Physiol. 2011;155(4):1752–1761. doi: 10.1104/pp.111.173609. PubMed DOI PMC
Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11(1):31–46. doi: 10.1038/nrg2626. PubMed DOI
Alagna F, D'Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, et al. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics. 2009;26(10):399–414. doi: 10.1186/1471-2164-10-399. PubMed DOI PMC
Guo S, Zheng Y, Joung JG, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z. Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics. 2010;17(11):384. doi: 10.1186/1471-2164-11-384. PubMed DOI PMC
Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M. Gene discovery and tissue-specific transcriptome analysis in chickpea with passively parallel pyrosequencing and web resource development. Plant Physiol. 2011;156(4):1661–1678. doi: 10.1104/pp.111.178616. PubMed DOI PMC
Alba R, Payton P, Fei Z, Mc Quinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell. 2005;17(11):2954–2965. doi: 10.1105/tpc.105.036053. PubMed DOI PMC
Massa AN, Childs KL, Lin H, Bryan GJ, Giuliano G, Buell CR. The transcriptome of the reference potato genome Solanum tuberosum group Phureja clone DM1-3 516R44. PLoS One. 2011;6(10):e26801. doi: 10.1371/journal.pone.0026801. PubMed DOI PMC
Li R, Zhai H, Kang C, Liu D, He S, Liu Q. De Novo transcriptome sequencing of the orange-fleshed sweet potato and analysis of differentially expressed genes related to carotenoid biosynthesis. Int J Genomics. 2015;2015:843802. doi: 10.1155/2015/843802. PubMed DOI PMC
Dunwell JM, Moya-León MA, Herrera R. Transcriptome analysis and crop improvement (a review) Biol Res. 2001;34(3–4):153–164. PubMed
Pérez-de-Castro AM, Vilanova S, Canizares J, Pascual L, Blanca JM, Diez MJ, Prohens J, Picó B. Application of genomic tools in plant breeding. Curr Genomics. 2012;13(3):179–195. doi: 10.2174/138920212800543084. PubMed DOI PMC
Ward JA, Ponnala L, Weber CA. Strategies for transcriptome analysis in non- model plants. Am J Bot. 2012;99(2):267–276. doi: 10.3732/ajb.1100334. PubMed DOI
Coll A, Nadal A, Collado R, Capellades G, Kubista M, Messeguer J, Pla M. Natural variation explains most transcriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices. Plant Mol Biol. 2010;73(3):349–362. doi: 10.1007/s11103-010-9624-5. PubMed DOI
Abdeen A, Schnell J, Miki B. Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics. 2010;11:69. doi: 10.1186/1471-2164-11-69. PubMed DOI PMC
Vojta P, Kokáš F, Husičková A, Grúz J, Bergougnoux V, Marchetti CF, Jiskrová E, Ježilová E, Mik V, Ikeda Y, Galuszka P. Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. New Biotechnol. 2016;33(5):676–691. doi: 10.1016/j.nbt.2016.01.010. PubMed DOI
Jiang Q, Niu F, Sun X, Hu Z, Li X, Ma Y, Zhang H. RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1. Crop J. 2017;5(3):207–218. doi: 10.1016/j.cj.2016.12.001. DOI
Shen WJ, Forde BG. Efficient transformation of Agrobacterium sp. by high voltage electroporation. Nucleic Acids Res. 1989;17(20):8385. doi: 10.1093/nar/17.20.8385. PubMed DOI PMC
Roy AT, Leggett G, Koutoulis A. Development of a shoot multiplication system for hop (Humulus lupulus L.) In vitro Cell Dev Biol. 2001;37(1):79–83. doi: 10.1007/s11627-001-0015-0. DOI
Tai TH, Tanksley SD. A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep. 1990;8(4):297–303. doi: 10.1007/BF02668766. DOI
Church GM, Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984;81(2):1991–1995. doi: 10.1073/pnas.81.7.1991. PubMed DOI PMC
Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;11:591–592. doi: 10.1042/bst0110591. DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106. PubMed DOI PMC
Natsume S, Takagi H, Shiraishi A, Murata J, Toyonaga H, Patzak J, Takagi M, Yaegashi H, Uemura A, Mitsuoka C, Yoshida K, Krofta K, Satake H, Terauchi R, Ono E. The draft genome of hop (Humulus lupulus), an essence for brewing. Plant Cell Physiol. 2014;56(3):428–441. doi: 10.1093/pcp/pcu169. PubMed DOI
Iwata H, Gotoh O. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features. Nucleic Acids Res. 2012;40(20):e161. doi: 10.1093/nar/gks708. PubMed DOI PMC
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Conesa A, Gotz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832. doi: 10.1155/2008/619832. PubMed DOI PMC
Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28(1):33–36. doi: 10.1093/nar/28.1.33. PubMed DOI PMC
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2006;35(Web Server issue):182–185. PubMed PMC
Dai X, Sinharoy S, Udvardi M, Zhao PX. PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool. BMC Bioinformatics. 2013;12(14):321. doi: 10.1186/1471-2105-14-321. PubMed DOI PMC
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Zhao S, Guo Y, Sheng Q, Shyr Y. Advanced heat map and clustering analysis using heatmap3. Biomed Res Int. 2014;2014:986048. PubMed PMC
Du Z, Zhou X, Ling Y, Zhang ZH, Su Z. AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38:W64–W70. doi: 10.1093/nar/gkq310. PubMed DOI PMC
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37(6):914–939. doi: 10.1111/j.1365-313X.2004.02016.x. PubMed DOI
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC
Maloukh L, Matousek J, Van-Bockstaele E, Roldán-Ruiz I. Housekeeping gene selection for real time-PCR normalization in female hop (Humulus lupulus L) tissues. J Plant Biochem Biotechnol. 2009;18(1):53–58. doi: 10.1007/BF03263295. DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Matoušek J, Vrba L, Škopek J, Orctová L, Pešina K, Heyerick A, Baulcombe D, De Keukeleire D. Sequence analysis of a ‘true’ chalcone synthase (chs_H1) oligofamily from hop (Humulus lupulus L.) and PAP1 activation of chs_H1 in heterologous systems. J Agric Food Chem. 2006;54:7606–7615. doi: 10.1021/jf061785g. PubMed DOI
Gupta P, Goel R, Pathak S, Srivastava A, Singh SP, Sangwan RS, Asif MH, Trivedi PK. De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS One. 2013;8(5):62714. doi: 10.1371/journal.pone.0062714. PubMed DOI PMC
Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas) BMC Genomics. 2010;24(11):726. doi: 10.1186/1471-2164-11-726. PubMed DOI PMC
Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics. 2008;30(9):312–310. doi: 10.1186/1471-2164-9-312. PubMed DOI PMC
Garzón-Martínez GA, Zhu ZI, Landsman D, Barrero LS, Mariño-Ramírez L. The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. BMC Genomics. 2012;25(13):151–110. doi: 10.1186/1471-2164-13-151. PubMed DOI PMC
Han R, Takahashi H, Nakamura M, Bunsupa S, Yoshimoto N, Yamamoto H, Suzuki H, Shibata D, Yamazaki M, Saito K. Transcriptome analysis of nine tissues to discover genes involved in the biosynthesis of active ingredients in Sophora flavescens. Biol Pharm Bull. 2015;38(6):876–883. doi: 10.1248/bpb.b14-00834. PubMed DOI
Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.) Plant J. 2013;74(5):715–729. doi: 10.1111/tpj.12173. PubMed DOI
Xu C, Jiao C, Zheng Y, Sun H, Liu W, Cai X, Wang X, Liu S, Xu Y, Mou B, Dai S, Fei Z, Wang Q. De novo and comparative transcriptome analysis of cultivated and wild spinach. Sci Rep. 2015;5:17706. doi: 10.1038/srep17706. PubMed DOI PMC
Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ. RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol. 2010;10:160. doi: 10.1186/1471-2229-10-160. PubMed DOI PMC
Pokorn T, Radišek S, Javornik B, Štajner N, Jakše J. Development of hop transcriptome to support research into host-viroid interactions. PLoS One. 2017;12(9):e0184528. doi: 10.1371/journal.pone.0184528. PubMed DOI PMC
Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Lv H, Zhang X. Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics. 2011;12:451. doi: 10.1186/1471-2164-12-451. PubMed DOI PMC
Goyal E, Amit SK, Singh RS, Mahato AK, Chand S, Kanika K. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local Sci Rep. 2016;13(6):27752. doi: 10.1038/srep27752. PubMed DOI PMC
Čeh B, Kač M, Košir IJ, Abram V. Relationships between Xanthohumol and polyphenol content in hop leaves and hop cones with regard to water supply and cultivar. Int J Mol Sci. 2007;8:989–1000. doi: 10.3390/i8090989. DOI
Prencipe FP, Brighenti V, Rodolfi M, Mongelli A, dall'Asta C, Ganino T, Bruni R, Pellati F. Development of a new high-performance liquid chromatography method with diode array and electrospray ionization-mass spectrometry detection for the metabolite fingerprinting of bioactive compounds in Humulus lupulus L. J Chromatogr A. 2014;1349:50–59. doi: 10.1016/j.chroma.2014.04.097. PubMed DOI
Krause E, Yuan Y, Hajirahimkhan A, Dong H, Dietz BM, Nikolic D, Pauli GF, Bolton JL, van Breemen RB. Biological and chemical standardization of a hop (Humulus lupulus) botanical dietary supplement. Biomed Chromatogr. 2014;28(6):729–734. doi: 10.1002/bmc.3177. PubMed DOI PMC
Jackowski J, Hurej M, Roj E, Poplonski J, Kosny L, Huszcza E. Antifeedant activity of xanthohumol and supercritical carbon dioxide extract of spent hops against stored product pests. Bull Entomol Res. 2015;105(4):456–461. doi: 10.1017/S0007485315000255. PubMed DOI
Gatica-Arias A, Farag MA, Stanke M, Matoušek J, Wessjohann L, Weber G. Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L. Plant Cell Rep. 2012;31(1):111–119. doi: 10.1007/s00299-011-1144-5. PubMed DOI
Kavalier AR, Ma CH, Figueroa M, Kincaid D, Matthews PD, Kennelly EJ. Targeted analysis of polyphenol metabolism during development of hop (Humulus lupulus L) cones following treatment with prohexadione-calcium. Food Chem. 2014;15(145):254–263. doi: 10.1016/j.foodchem.2013.08.023. PubMed DOI
Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol. 2008;26:1301–1308. doi: 10.1038/nbt.1506. PubMed DOI
Leonard E, Lim KH, Saw PN, Koffas MA. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol. 2007;73(12):3877–3886. doi: 10.1128/AEM.00200-07. PubMed DOI PMC
Zhang YHP. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv. 2011;29(6):715–725. doi: 10.1016/j.biotechadv.2011.05.020. PubMed DOI
Reddy PM, Rendón-Anaya M, de los Dolores Soto del Rio M, Khandual S. Flavonoids as signaling molecules and regulators of root nodule development. Dynamic Soil Dynamic Plant 2007;1:83–94.
Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K. Enhancement of oxidative and drought tolerance in Arabidopsis by over-accumulation of antioxidant flavonoids. Plant J. 2014;77:367–379. doi: 10.1111/tpj.12388. PubMed DOI PMC
Bourque S, Dutartre A, Hammoudi V, Blanc S, Dahan J, Jeandroz S, Pichereaux C, Rossignol M, Wendehenne D. Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants. New Phytol. 2011;192(1):127–139. doi: 10.1111/j.1469-8137.2011.03788.x. PubMed DOI
Latrasse D, Jégu T, Li H, de Zelicourt A, Raynaud C, Legras S, Gust A, Samajova O, Veluchamy A, Rayapuram N, Ramirez-Prado JS, Kulikova O, Colcombet J, Bigeard J, Genot B, Bisseling T, Benhamed M, Hirt H. MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity. Genome Biol. 2017;18(1):131. doi: 10.1186/s13059-017-1261-8. PubMed DOI PMC
Zhao Y. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol. 2010;61:49–64. doi: 10.1146/annurev-arplant-042809-112308. PubMed DOI PMC
Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MC, Thevelein JM, Maaheimo H, Oksman-Caldentey KM, Rodriguez PL, Rischer H, Goossens A. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci U S A. 2011;108(14):5891–5896. doi: 10.1073/pnas.1103010108. PubMed DOI PMC
Hemm MR, Rider SD, Ogas J, Murry DJ, Chapple C. Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J. 2004;38(5):765–778. doi: 10.1111/j.1365-313X.2004.02089.x. PubMed DOI
Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L. Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci. 2014;9(5):534. PubMed PMC
Wade HK, Bibikova TN, Valentine WJ, Jenkins GI. Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J. 2001;25(6):675–685. doi: 10.1046/j.1365-313x.2001.01001.x. PubMed DOI
Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 2005;137(1):199–208. doi: 10.1104/pp.104.051987. PubMed DOI PMC
Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci. 2010;15(5):247–258. doi: 10.1016/j.tplants.2010.02.006. PubMed DOI
Duraisamy GS, Mishra AK, Kocabek T, Matoušek J. Identification and characterization of promoters and cis-regulatory elements of genes involved in secondary metabolites production in hop (Humulus lupulus. L) Comput Biol Chem. 2016;64:346–352. doi: 10.1016/j.compbiolchem.2016.07.010. PubMed DOI
Wegner A, Meiser J, Weindl D, Hiller K. How metabolites modulate metabolic flux. Curr Opin Biotechnol. 2015;34:16–22. doi: 10.1016/j.copbio.2014.11.008. PubMed DOI
Phukan UJ, Jeena GS, Shukla RK. WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci. 2016;7:760. doi: 10.3389/fpls.2016.00760. PubMed DOI PMC
Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 2011;66(1):94–116. doi: 10.1111/j.1365-313X.2010.04459.x. PubMed DOI