Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation

. 2016 Jun 01 ; 143 (11) : 1937-47.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27246713

Grantová podpora
R01 EY012200 NEI NIH HHS - United States
R01 CA079057 NCI NIH HHS - United States
R01 DK096266 NIDDK NIH HHS - United States
R01 GM116143 NIGMS NIH HHS - United States
R01 EY013022 NEI NIH HHS - United States
R01 CA076329 NCI NIH HHS - United States
T32 GM007491 NIGMS NIH HHS - United States
R56 CA079057 NCI NIH HHS - United States
R01 EY014237 NEI NIH HHS - United States
001 World Health Organization - International
R01 EY022645 NEI NIH HHS - United States

Ocular lens morphogenesis is a model for investigating mechanisms of cellular differentiation, spatial and temporal gene expression control, and chromatin regulation. Brg1 (Smarca4) and Snf2h (Smarca5) are catalytic subunits of distinct ATP-dependent chromatin remodeling complexes implicated in transcriptional regulation. Previous studies have shown that Brg1 regulates both lens fiber cell differentiation and organized degradation of their nuclei (denucleation). Here, we employed a conditional Snf2h(flox) mouse model to probe the cellular and molecular mechanisms of lens formation. Depletion of Snf2h induces premature and expanded differentiation of lens precursor cells forming the lens vesicle, implicating Snf2h as a key regulator of lens vesicle polarity through spatial control of Prox1, Jag1, p27(Kip1) (Cdkn1b) and p57(Kip2) (Cdkn1c) gene expression. The abnormal Snf2h(-/-) fiber cells also retain their nuclei. RNA profiling of Snf2h(-/) (-) and Brg1(-/-) eyes revealed differences in multiple transcripts, including prominent downregulation of those encoding Hsf4 and DNase IIβ, which are implicated in the denucleation process. In summary, our data suggest that Snf2h is essential for the establishment of lens vesicle polarity, partitioning of prospective lens epithelial and fiber cell compartments, lens fiber cell differentiation, and lens fiber cell nuclear degradation.

Zobrazit více v PubMed

Alvarez-Saavedra M., De Repentigny Y., Lagali P. S., Raghu Ram E. V. S., Yan K., Hashem E., Ivanochko D., Huh M. S., Yang D., Mears A. J. et al. (2014). Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nat. Commun. 5, 4181 10.1038/ncomms5181 PubMed DOI PMC

Arancio W., Onorati M. C., Burgio G., Collesano M., Ingrassia A. M. R., Genovese S. I., Fanto M. and Corona D. F. (2010). The nucleosome remodeling factor ISWI functionally interacts with an evolutionarily conserved network of cellular factors. Genetics 185, 129-140. 10.1534/genetics.110.114256 PubMed DOI PMC

Ashery-Padan R., Marquardt T., Zhou X. and Gruss P. (2000). Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 14, 2701-2711. 10.1101/gad.184000 PubMed DOI PMC

Bassnett S. (2009). On the mechanism of organelle degradation in the vertebrate lens. Exp. Eye Res. 88, 133-139. 10.1016/j.exer.2008.08.017 PubMed DOI PMC

Bassnett S. and Beebe D. C. (1992). Coincident loss of mitochondria and nuclei during lens fiber cell differentiation. Dev. Dyn. 194, 85-93. 10.1002/aja.1001940202 PubMed DOI

Bassnett S., Shi Y. and Vrensen G. F. J. M. (2011). Biological glass: structural determinants of eye lens transparency. Philos. Trans. R. Soc. B Biol. Sci. 366, 1250-1264. 10.1098/rstb.2010.0302 PubMed DOI PMC

Basu S., Rajakaruna S., Reyes B., Van Bockstaele E. and Menko A. S. (2014). Suppression of MAPK/JNK-MTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells. Autophagy 10, 1193-1211. 10.4161/auto.28768 PubMed DOI PMC

Blixt A., Mahlapuu M., Aitola M., Pelto-Huikko M., Enerback S. and Carlsson P. (2000). A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev. 14, 245-254. PubMed PMC

Blixt Å., Landgren H., Johansson B. R. and Carlsson P. (2007). Foxe3 is required for morphogenesis and differentiation of the anterior segment of the eye and is sensitive to Pax6 gene dosage. Dev. Biol. 302, 218-229. 10.1016/j.ydbio.2006.09.021 PubMed DOI

Brownell I., Dirksen M. and Jamrich M. (2000). Forkhead Foxe3 maps to the dysgenetic lens locus and is critical in lens development and differentiation. Genesis 27, 81-93. 10.1002/1526-968X(200006)27:2<81::AID-GENE50>3.0.CO;2-N PubMed DOI

Bultman S., Gebuhr T., Yee D., La Mantia C., Nicholson J., Gilliam A., Randazzo F., Metzger D., Chambon P., Crabtree G. et al. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287-1295. 10.1016/S1097-2765(00)00127-1 PubMed DOI

Bultman S. J., Gebuhr T. C. and Magnuson T. (2005). A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in β-globin expression and erythroid development. Genes Dev. 19, 2849-2861. 10.1101/gad.1364105 PubMed DOI PMC

Caceres A., Shang F., Wawrousek E., Liu Q., Avidan O., Cvekl A., Yang Y., Haririnia A., Storaska A., Fushman D. et al. (2010). Perturbing the ubiquitin pathway reveals how mitosis is hijacked to denucleate and regulate cell proliferation and differentiation in vivo. PLoS ONE 5, e13331 10.1371/journal.pone.0013331 PubMed DOI PMC

Cairns B. R. (2007). Chromatin remodeling: insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol. 14, 989-996. 10.1038/nsmb1333 PubMed DOI PMC

Cang Y., Zhang J., Nicholas S. A., Bastien J., Li B., Zhou P. and Goff S. P. (2006). Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells. Cell 127, 929-940. 10.1016/j.cell.2006.09.045 PubMed DOI

Chaffee B. R., Shang F., Chang M.-L., Clement T. M., Eddy E. M., Wagner B. D., Nakahara M., Nagata S., Robinson M. L. and Taylor A. (2014). Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: Appropriating mitosis-related nuclear disassembly. Development 141, 3388-3398. 10.1242/dev.106005 PubMed DOI PMC

Chen Q., Hung F. C., Fromm L. and Overbeek P. A. (2000). Induction of cell cycle entry and cell death in postmitotic lens fiber cells by overexpression of E2F1 or E2F2. Invest. Ophthalmol. Vis. Sci. 41, 4223-4231. PubMed

Collins N., Poot R. A., Kukimoto I., García-Jiménez C., Dellaire G. and Varga-Weisz P. D. (2002). An ACF1–ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 32, 627-632. 10.1038/ng1046 PubMed DOI

Costello M. J., Brennan L. A., Basu S., Chauss D., Mohamed A., Gilliland K. O., Johnsen S., Menko A. S. and Kantorow M. (2013). Autophagy and mitophagy participate in ocular lens organelle degradation. Exp. Eye Res. 116, 141-150. 10.1016/j.exer.2013.08.017 PubMed DOI PMC

Cui X., Wang L., Zhang J., Du R., Liao S., Li D., Li C., Ke T., Li D. W.-C., Huang H. et al. (2013). HSF4 regulates DLAD expression and promotes lens de-nucleation. Biochim. Biophys. Acta 1832, 1167-1172. 10.1016/j.bbadis.2013.03.007 PubMed DOI

Cvekl A. and Ashery-Padan R. (2014). The cellular and molecular mechanisms of vertebrate lens development. Development 141, 4432-4447. 10.1242/dev.107953 PubMed DOI PMC

de la Serna I. L., Ohkawa Y. and Imbalzano A. N. (2006). Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat. Rev. Genet. 7, 461-473. 10.1038/nrg1882 PubMed DOI

Dirscherl S. S., Henry J. J. and Krebs J. E. (2005). Neural and eye-specific defects associated with loss of the imitation switch (ISWI) chromatin remodeler in Xenopus laevis. Mech. Dev. 122, 1157-1170. 10.1016/j.mod.2005.08.002 PubMed DOI

Duncan M. K., Cui W., Oh D.-J. and Tomarev S. I. (2002). Prox1 is differentially localized during lens development. Mech. Dev. 112, 195-198. 10.1016/S0925-4773(01)00645-1 PubMed DOI

Erdel F. and Rippe K. (2011). Binding kinetics of human ISWI chromatin-remodelers to DNA repair sites elucidate their target location mechanism. Nucleus 2, 105-112. 10.4161/nucl.2.2.15209 PubMed DOI PMC

Fujimoto M., Izu H., Seki K., Fukuda K., Nishida T., Yamada S.-i., Kato K., Yonemura S., Inouye S. and Nakai A. (2004). HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J. 23, 4297-4306. 10.1038/sj.emboj.7600435 PubMed DOI PMC

Gebuhr T. C., Kovalev G. I., Bultman S., Godfrey V., Su L. and Magnuson T. (2003). The role of Brg1, a catalytic subunit of mammalian chromatin-remodeling complexes, in T cell development. J. Exp. Med. 198, 1937-1949. 10.1084/jem.20030714 PubMed DOI PMC

Gregg R. G., Willer G. B., Fadool J. M., Dowling J. E. and Link B. A. (2003). Positional cloning of the young mutation identifies an essential role for the Brahma chromatin remodeling complex in mediating retinal cell differentiation. Proc. Natl. Acad. Sci. USA 100, 6535-6540. 10.1073/pnas.0631813100 PubMed DOI PMC

Griep A. and Zhang P. (2004). Lens cell proliferation: the cell cycle. In Development of the Ocular Lens (ed. Lovicu F. J. and Robinson M. L.), pp. 191-213. New York: Cambridge University Press.

Griffin C. T., Brennan J. and Magnuson T. (2008). The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development. Development 135, 493-500. 10.1242/dev.010090 PubMed DOI PMC

Gunhaga L. (2011). The lens: a classical model of embryonic induction providing new insights into cell determination in early development. Philos. Trans. R. Soc. B Biol. Sci. 366, 1193-1203. 10.1098/rstb.2010.0175 PubMed DOI PMC

Hang C. T., Yang J., Han P., Cheng H.-L., Shang C., Ashley E., Zhou B. and Chang C. P. (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62-67. 10.1038/nature09130 PubMed DOI PMC

He S., Pirity M. K., Wang W.-L., Wolf L., Chauhan B. K., Cveklova K., Tamm E. R., Ashery-Padan R., Metzger D., Nakai A. et al. (2010). Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation. Epigenetics Chromatin 3, 21 10.1186/1756-8935-3-21 PubMed DOI PMC

Ho L. and Crabtree G. R. (2010). Chromatin remodelling during development. Nature 463, 474-484. 10.1038/nature08911 PubMed DOI PMC

Ho H.-Y., Chang K.-H., Nichols J. and Li M. (2009). Homeodomain protein Pitx3 maintains the mitotic activity of lens epithelial cells. Mech. Dev. 126, 18-29. 10.1016/j.mod.2008.10.007 PubMed DOI

Ho L., Miller E. L., Ronan J. L., Ho W. Q., Jothi R. and Crabtree G. R. (2011). esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nat. Cell Biol. 13, 903-913. 10.1038/ncb2285 PubMed DOI PMC

Huang D. W., Sherman B. T. and Lempicki R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57. 10.1038/nprot.2008.211 PubMed DOI

Indra A. K., Dupe V., Bornert J.-M., Messaddeq N., Yaniv M., Mark M., Chambon P. and Metzger D. (2005). Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Development 132, 4533-4544. 10.1242/dev.02019 PubMed DOI

Irizarry R. A., Bolstad B. M., Collin F., Cope L. M., Hobbs B. and Speed T. P. (2003). Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 10.1093/nar/gng015 PubMed DOI PMC

Jia J., Lin M., Zhang L., York J. P. and Zhang P. (2007). The Notch signaling pathway controls the size of the ocular lens by directly suppressing p57Kip2 expression. Mol. Cell. Biol. 27, 7236-7247. 10.1128/MCB.00780-07 PubMed DOI PMC

Kabeya Y., Mizushima N., Ueno T., Yamamoto A., Kirisako T., Noda T., Kominami E., Ohsumi Y. and Yoshimori T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728. 10.1093/emboj/19.21.5720 PubMed DOI PMC

Kadam S. and Emerson B. M. (2003). Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol. Cell 11, 377-389. 10.1016/S1097-2765(03)00034-0 PubMed DOI

Khavari P. A., Peterson C. L., Tamkun J. W., Mendel D. B. and Crabtree G. R. (1993). BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170-174. 10.1038/366170a0 PubMed DOI

Kidder B. L., Palmer S. and Knott J. G. (2009). SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 27, 317-328. 10.1634/stemcells.2008-0710 PubMed DOI

Lans H., Marteijn J. A. and Vermeulen W. (2012). ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 5, 4 10.1186/1756-8935-5-4 PubMed DOI PMC

Le T. T., Conley K. W., Mead T. J., Rowan S., Yutzey K. E. and Brown N. L. (2012). Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens development. Dev. Dyn. 241, 493-504. 10.1002/dvdy.23739 PubMed DOI PMC

Lee H.-S., Park J.-H., Kim S.-J., Kwon S.-J. and Kwon J. (2010). A cooperative activation loop among SWI/SNF, γ-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J. 29, 1434-1445. 10.1038/emboj.2010.27 PubMed DOI PMC

Lippens S., Hoste E., Vandenabeele P., Agostinis P. and Declercq W. (2009). Cell death in the skin. Apoptosis 14, 549-569. 10.1007/s10495-009-0324-z PubMed DOI

Lyu L., Whitcomb E. A., Jiang S., Chang M.-L., Gu Y., Duncan M. K., Cvekl A., Wang W. L., Limi S., Reneker L. W. et al. (2016). Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J. 30, 1087-1095. 10.1096/fj.15-278036 PubMed DOI PMC

Maeda A., Moriguchi T., Hamada M., Kusakabe M., Fujioka Y., Nakano T., Yoh K., Lim K.-C., Engel J. D. and Takahashi S. (2009). Transcription factor GATA-3 is essential for lens development. Dev. Dyn. 238, 2280-2291. 10.1002/dvdy.22035 PubMed DOI PMC

Magdaleno S., Jensen P., Brumwell C. L., Seal A., Lehman K., Asbury A., Cheung T., Cornelius T., Batten D. M., Eden C. et al. (2006). BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol. 4, e86 10.1371/journal.pbio.0040086 PubMed DOI PMC

Martinez G. and de Iongh R. U. (2010). The lens epithelium in ocular health and disease. Int. J. Biochem. Cell Biol. 42, 1945-1963. 10.1016/j.biocel.2010.09.012 PubMed DOI

Matsumoto S., Banine F., Struve J., Xing R. B., Adams C., Liu Y., Metzger D., Chambon P., Rao M. S. and Sherman L. S. (2006). Brg1 is required for murine neural stem cell maintenance and gliogenesis. Dev. Biol. 289, 372-383. 10.1016/j.ydbio.2005.10.044 PubMed DOI

McCaffrey J., Yamasaki L., Dyson N. J., Harlow E. and Griep A. E. (1999). Disruption of retinoblastoma protein family function by human papillomavirus type 16 E7 oncoprotein inhibits lens development in part through E2F-1. Mol. Cell. Biol. 19, 6458-6468. 10.1128/MCB.19.9.6458 PubMed DOI PMC

Medina-Martinez O., Brownell I., Amaya-Manzanares F., Hu Q., Behringer R. R. and Jamrich M. (2005). Severe defects in proliferation and differentiation of lens cells in Foxe3 null mice. Mol. Cell. Biol. 25, 8854-8863. 10.1128/MCB.25.20.8854-8863.2005 PubMed DOI PMC

Medina-Martinez O., Shah R. and Jamrich M. (2009). Pitx3 controls multiple aspects of lens development. Dev. Dyn. 238, 2193-2201. 10.1002/dvdy.21924 PubMed DOI PMC

Morgenbesser S. D., Williams B. O., Jacks T. and DePinho R. A. (1994). p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371, 72-74. 10.1038/371072a0 PubMed DOI

Morishita H. and Mizushima N. (2016). Autophagy in the lens. Exp. Eye Res. 144, 22-28. 10.1016/j.exer.2015.08.019 PubMed DOI

Narlikar G. J., Fan H.-Y. and Kingston R. E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475-487. 10.1016/S0092-8674(02)00654-2 PubMed DOI

Ninkovic J., Steiner-Mezzadri A., Jawerka M., Akinci U., Masserdotti G., Petricca S., Fischer J., von Holst A., Beckers J., Lie C. D. et al. (2013). The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network. Cell Stem Cell 13, 403-418. 10.1016/j.stem.2013.07.002 PubMed DOI PMC

Nishimoto S., Kawane K., Watanabe-Fukunaga R., Fukuyama H., Ohsawa Y., Uchiyama Y., Hashida N., Ohguro N., Tano Y., Morimoto T. et al. (2003). Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens. Nature 424, 1071-1074. 10.1038/nature01895 PubMed DOI

Park J.-H., Park E.-J., Lee H.-S., Kim S. J., Hur S.-K., Imbalzano A. N. and Kwon J. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction. EMBO J. 25, 3986-3997. 10.1038/sj.emboj.7601291 PubMed DOI PMC

Pontoriero G. F., Smith A. N., Miller L.-A. D., Radice G. L., West-Mays J. A. and Lang R. A. (2009). Co-operative roles for E-cadherin and N-cadherin during lens vesicle separation and lens epithelial cell survival. Dev. Biol. 326, 403-417. 10.1016/j.ydbio.2008.10.011 PubMed DOI PMC

Rowan S., Conley K. W., Le T. T., Donner A. L., Maas R. L. and Brown N. L. (2008). Notch signaling regulates growth and differentiation in the mammalian lens. Dev. Biol. 321, 111-122. 10.1016/j.ydbio.2008.06.002 PubMed DOI PMC

Saeed A. I., Sharov V., White J., Li J., Liang W., Bhagabati N., Braisted J., Klapa M., Currier T., Thiagarajan M. et al. (2003). TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374-378. PubMed

Saravanamuthu S. S., Le T. T., Gao C. Y., Cojocaru R. I., Pandiyan P., Liu C., Zhang J., Zelenka P. S. and Brown N. L. (2012). Conditional ablation of the Notch2 receptor in the ocular lens. Dev. Biol. 362, 219-229. 10.1016/j.ydbio.2011.11.011 PubMed DOI PMC

Shaham O., Smith A. N., Robinson M. L., Taketo M. M., Lang R. A. and Ashery-Padan R. (2009). Pax6 is essential for lens fiber cell differentiation. Development 136, 2567-2578. 10.1242/dev.032888 PubMed DOI PMC

Shaham O., Menuchin Y., Farhy C. and Ashery-Padan R. (2012). Pax6: a multi-level regulator of ocular development. Prog. Retin. Eye Res. 31, 351-376. 10.1016/j.preteyeres.2012.04.002 PubMed DOI

Sharma S., Kelly T. K. and Jones P. A. (2010). Epigenetics in cancer. Carcinogenesis 31, 27-36. 10.1093/carcin/bgp220 PubMed DOI PMC

Stopka T. and Skoultchi A. I. (2003). The ISWI ATPase Snf2h is required for early mouse development. Proc. Natl. Acad. Sci. USA 100, 14097-14102. 10.1073/pnas.2336105100 PubMed DOI PMC

Tang L., Nogales E. and Ciferri C. (2010). Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog. Biophys. Mol. Biol. 102, 122-128. 10.1016/j.pbiomolbio.2010.05.001 PubMed DOI PMC

Toiber D., Erdel F., Bouazoune K., Silberman D. M., Zhong L., Mulligan P., Sebastian C., Cosentino C., Martinez-Pastor B., Giacosa S. et al. (2013). SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell 51, 454-468. 10.1016/j.molcel.2013.06.018 PubMed DOI PMC

Wang W.-L., Li Q., Xu J. and Cvekl A. (2010). Lens fiber cell differentiation and denucleation are disrupted through expression of the N-terminal nuclear receptor box of NCOA6 and result in p53-dependent and p53-independent apoptosis. Mol. Biol. Cell 21, 2453-2468. 10.1091/mbc.E09-12-1031 PubMed DOI PMC

Weider M., Küspert M., Bischof M., Vogl M. R., Hornig J., Loy K., Kosian T., Müller J., Hillgärtner S., Tamm E. R. et al. (2012). Chromatin-remodeling factor Brg1 is required for schwann cell differentiation and myelination. Dev. Cell 23, 193-201. 10.1016/j.devcel.2012.05.017 PubMed DOI

Wenzel P. L., Chong J.-L., Sáenz-Robles M. T., Ferrey A., Hagan J. P., Gomez Y. M., Rajmohan R., Sharma N., Chen H. Z., Pipas J. M. et al. (2011). Cell proliferation in the absence of E2F1-3. Dev. Biol. 351, 35-45. 10.1016/j.ydbio.2010.12.025 PubMed DOI PMC

West-Mays J. A., Coyle B. M., Piatigorsky J., Papagiotas S. and Libby D. (2002). Ectopic expression of AP-2α transcription factor in the lens disrupts fiber cell differentiation. Dev. Biol. 245, 13-27. 10.1006/dbio.2002.0624 PubMed DOI

Wigle J. T., Chowdhury K., Gruss P. and Oliver G. (1999). Prox1 function is crucial for mouse lens-fibre elongation. Nat. Genet. 21, 318-322. 10.1038/6844 PubMed DOI

Wiley L. A., Rajagopal R., Dattilo L. K. and Beebe D. C. (2011). The tumor suppressor gene Trp53 protects the mouse lens against posterior subcapsular cataracts and the BMP receptor Acvr1 acts as a tumor suppressor in the lens. Dis. Model. Mech. 4, 484-495. 10.1242/dmm.006593 PubMed DOI PMC

Wolf L. V., Yang Y., Wang J. H., Xie Q., Braunger B., Tamm E. R., Zavadil J. and Cvekl A. (2009). Identification of Pax6-dependent gene regulatory networks in the mouse lens. PLoS ONE 4, e4159 10.1371/journal.pone.0004159 PubMed DOI PMC

Wolf L., Harrison W., Huang J., Xie Q., Xiao N., Sun J., Kong L., Lachke S. A., Kuracha M. R., Govindarajan V. et al. (2013). Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Res. 41, 10199-10214. 10.1093/nar/gkt824 PubMed DOI PMC

Yang Y. and Cvekl A. (2005). Tissue-specific regulation of the mouse αA-crystallin gene in lens via recruitment of Pax6 and c-Maf to its promoter. J. Mol. Biol. 351, 453-469. 10.1016/j.jmb.2005.05.072 PubMed DOI PMC

Yang Y., Stopka T., Golestaneh N., Wang Y., Wu K., Li A., Chauhan B. K., Gao C. Y., Cveklová K., Duncan M. K. et al. (2006). Regulation of αA-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin. EMBO J. 25, 2107-2118. 10.1038/sj.emboj.7601114 PubMed DOI PMC

Yoshida H., Kawane K., Koike M., Mori Y., Uchiyama Y. and Nagata S. (2005). Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 437, 754-758. 10.1038/nature03964 PubMed DOI

Zhang P. M., Wong C., DePinho R. A., Harper J. W. and Elledge S. J. (1998). Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development. Genes Dev. 12, 3162-3167. 10.1101/gad.12.20.3162 PubMed DOI PMC

Zhang L., Zhang Q., Jones K., Patel M. and Gong F. (2009). The chromatin remodeling factor BRG1 stimulates nucleotide excision repair by facilitating recruitment of XPC to sites of DNA damage. Cell Cycle 8, 3953-3959. 10.4161/cc.8.23.10115 PubMed DOI

Zhao H., Yang T., Madakashira B. P., Thiels C. A., Bechtle C. A., Garcia C. M., Zhang H., Yu K., Ornitz D. M., Beebe D. C. et al. (2008). Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev. Biol. 318, 276-288. 10.1016/j.ydbio.2008.03.028 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...