Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation

. 2014 Jun 20 ; 5 () : 4181. [epub] 20140620

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24946904

Grantová podpora
R01 CA079057 NCI NIH HHS - United States
MOP97764 CIHR - Canada
MOP84412 CIHR - Canada

Chromatin compaction mediates progenitor to post-mitotic cell transitions and modulates gene expression programs, yet the mechanisms are poorly defined. Snf2h and Snf2l are ATP-dependent chromatin remodelling proteins that assemble, reposition and space nucleosomes, and are robustly expressed in the brain. Here we show that mice conditionally inactivated for Snf2h in neural progenitors have reduced levels of histone H1 and H2A variants that compromise chromatin fluidity and transcriptional programs within the developing cerebellum. Disorganized chromatin limits Purkinje and granule neuron progenitor expansion, resulting in abnormal post-natal foliation, while deregulated transcriptional programs contribute to altered neural maturation, motor dysfunction and death. However, mice survive to young adulthood, in part from Snf2l compensation that restores Engrailed-1 expression. Similarly, Purkinje-specific Snf2h ablation affects chromatin ultrastructure and dendritic arborization, but alters cognitive skills rather than motor control. Our studies reveal that Snf2h controls chromatin organization and histone H1 dynamics for the establishment of gene expression programs underlying cerebellar morphogenesis and neural maturation.

] Department of Biochemistry Microbiology and Immunology University of Ottawa Ottawa Ontario Canada K1H 8M5 [2] Institute of Systems Biology University of Ottawa Ottawa Ontario Canada K1H 8M5

] Department of Biochemistry Microbiology and Immunology University of Ottawa Ottawa Ontario Canada K1H 8M5 [2] Vision Program Ottawa Hospital Research Institute Ottawa Ontario Canada K1H 8L6

] Regenerative Medicine Program Ottawa Hospital Research Institute Ottawa Ontario Canada K1H 8L6 [2] Department of Biochemistry Microbiology and Immunology University of Ottawa Ottawa Ontario Canada K1H 8M5

] Regenerative Medicine Program Ottawa Hospital Research Institute Ottawa Ontario Canada K1H 8L6 [2] Department of Cellular and Molecular Medicine University of Ottawa Ottawa Ontario Canada K1H 8M5

] Regenerative Medicine Program Ottawa Hospital Research Institute Ottawa Ontario Canada K1H 8L6 [2] Department of Cellular and Molecular Medicine University of Ottawa Ottawa Ontario Canada K1H 8M5 [3] Department of Biochemistry Microbiology and Immunology University of Ottawa Ottawa Ontario Canada K1H 8M5

Department of Biochemistry Microbiology and Immunology University of Ottawa Ottawa Ontario Canada K1H 8M5

Department of Cell Biology Albert Einstein College of Medicine Bronx New York 10461 USA

Department of Genetics The Alexander Silberman Institute of Life Sciences The Hebrew University of Jerusalem Jerusalem 91904 Israel

Institute of Pathologic Physiology 1st Faculty of Medicine Charles University Prague Prague 12853 Czech Republic

Regenerative Medicine Program Ottawa Hospital Research Institute Ottawa Ontario Canada K1H 8L6

Vision Program Ottawa Hospital Research Institute Ottawa Ontario Canada K1H 8L6

Zobrazit více v PubMed

Lasalle J. M., Powell W. T. & Yasui D. H. Epigenetic layers and players underlying neurodevelopment. Trends Neurosci. 36, 460–470 (2013). PubMed PMC

Xie W. et al.. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013). PubMed PMC

Hawkins R. D. et al.. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem cell 6, 479–491 (2010). PubMed PMC

Creyghton M. P. et al.. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 135, 649–661 (2008). PubMed PMC

Hattori N., Niwa T., Kimura K., Helin K. & Ushijima T. Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells. Nucleic Acids. Res. 41, 7231–7239 (2013). PubMed PMC

Robinson P. J. et al.. 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J. Mol. Biol. 381, 816–825 (2008). PubMed PMC

Routh A., Sandin S. & Rhodes D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl Acad. Sci. USA 105, 8872–8877 (2008). PubMed PMC

Hauk G. & Bowman G. D. Structural insights into regulation and action of SWI2/SNF2 ATPases. Curr. Opin. Struct. Biol. 21, 719–727 (2011). PubMed PMC

Elfring L. K., Deuring R., McCallum C. M., Peterson C. L. & Tamkun J. W. Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol. Cell Biol. 14, 2225–2234 (1994). PubMed PMC

Lazzaro M. A. & Picketts D. J. Cloning and characterization of the murine Imitation Switch (ISWI) genes: differential expression patterns suggest distinct developmental roles for Snf2h and Snf2l. J. Neurochem. 77, 1145–1156 (2001). PubMed

Erdel F. & Rippe K. Chromatin remodelling in mammalian cells by ISWI-type complexes—where, when and why? FEBS J. 278, 3608–3618 (2011). PubMed

Deuring R. et al.. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000). PubMed

Yip D. J. et al.. Snf2l regulates Foxg1-dependent progenitor cell expansion in the developing brain. Dev. Cell 22, 871–878 (2012). PubMed PMC

Stopka T. & Skoultchi A. I. The ISWI ATPase Snf2h is required for early mouse development. Proc. Natl Acad. Sci. USA 100, 14097–14102 (2003). PubMed PMC

Corona D. F. et al.. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell 3, 239–245 (1999). PubMed

Berube N. G. et al.. The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J. Clin. Invest. 115, 258–267 (2005). PubMed PMC

Barski J. J., Dethleffsen K. & Meyer M. Cre recombinase expression in cerebellar Purkinje cells. Genesis 28, 93–98 (2000). PubMed

Maren S. Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 24, 897–931 (2001). PubMed

Poot R. A. et al.. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 19, 3377–3387 (2000). PubMed PMC

Bozhenok L., Wade P. A. & Varga-Weisz P. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J. 21, 2231–2241 (2002). PubMed PMC

Wallace V. A. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr. Biol. 9, 445–448 (1999). PubMed

Wechsler-Reya R. J. & Scott M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999). PubMed

Dahmane N. & Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126, 3089–3100 (1999). PubMed

Sillitoe R. V. & Joyner A. L. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu. Rev. Cell Dev. Biol. 23, 549–577 (2007). PubMed

Sala A. et al.. Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI. EMBO J. 30, 1766–1777 (2011). PubMed PMC

Mellen M., Ayata P., Dewell S., Kriaucionis S. & Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 1417–1430 (2012). PubMed PMC

Sillitoe R. V., Vogel M. W. & Joyner A. L. Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. J. Neurosci. 30, 10015–10024 (2010). PubMed PMC

Wilson S. L., Kalinovsky A., Orvis G. D. & Joyner A. L. Spatially restricted and developmentally dynamic expression of engrailed genes in multiple cerebellar cell types. Cerebellum 10, 356–372 (2011). PubMed PMC

Wurst W., Auerbach A. B. & Joyner A. L. Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120, 2065–2075 (1994). PubMed

Corona D. F. et al.. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo. PLoS Biol. 5, e232 (2007). PubMed PMC

Siriaco G., Deuring R., Chioda M., Becker P. B. & Tamkun J. W. Drosophila ISWI regulates the association of histone H1 with interphase chromosomes in vivo. Genetics 182, 661–669 (2009). PubMed PMC

Vogler C. et al.. Histone H2A C-terminus regulates chromatin dynamics, remodeling, and histone H1 binding. PLoS Genet. 6, e1001234 (2010). PubMed PMC

Melcer S. et al.. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation. Nat. Commun. 3, 910 (2012). PubMed PMC

Gerlitz G. et al.. Migration cues induce chromatin alterations. Traffic 8, 1521–1529 (2007). PubMed

Collins N. et al.. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 32, 627–632 (2002). PubMed

Huh M. S. et al.. Compromised genomic integrity impedes muscle growth after Atrx inactivation. J. Clin. Invest. 122, 4412–4423 (2012). PubMed PMC

Sanchez-Molina S. et al.. Role for hACF1 in the G2/M damage checkpoint. Nucleic Acids Res. 39, 8445–8456 (2011). PubMed PMC

Eckey M. et al.. Nucleosome remodeler SNF2L suppresses cell proliferation and migration and attenuates Wnt signaling. Mol. Cell Biol. 32, 2359–2371 (2012). PubMed PMC

Gossett A. J. & Lieb J. D. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet. 8, e1002771 (2012). PubMed PMC

Cho J. H. & Tsai M. J. Preferential posterior cerebellum defect in BETA2/NeuroD1 knockout mice is the result of differential expression of BETA2/NeuroD1 along anterior-posterior axis. Dev. Biol. 290, 125–138 (2006). PubMed

Ben-Arie N. et al.. Math1 is essential for genesis of cerebellar granule neurons. Nature 390, 169–172 (1997). PubMed

Engelkamp D., Rashbass P., Seawright A. & van Heyningen V. Role of Pax6 in development of the cerebellar system. Development 126, 3585–3596 (1999). PubMed

Joyner A. L., Herrup K., Auerbach B. A., Davis C. A. & Rossant J. Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 251, 1239–1243 (1991). PubMed

Tsai P. T. et al.. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488, 647–651 (2012). PubMed PMC

Nogami T. et al.. Reduced expression of the ATRX gene, a chromatin-remodeling factor, causes hippocampal dysfunction in mice. Hippocampus 21, 678–687 (2011). PubMed

Shioda N. et al.. Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain. J. Neurosci. 31, 346–358 (2011). PubMed PMC

Vogel-Ciernia A. et al.. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat. Neurosci. 16, 552–561 (2013). PubMed PMC

Morris S. A. et al.. Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat. Struct. Mol. Biol. 21, 73–81 (2014). PubMed PMC

Dirscherl S. S., Henry J. J. & Krebs J. E. Neural and eye-specific defects associated with loss of the imitation switch (ISWI) chromatin remodeler in Xenopus laevis. Mech. Dev. 122, 1157–1170 (2005). PubMed

Landry J. et al.. Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells. PLoS Genet. 4, e1000241 (2008). PubMed PMC

Siegenthaler J. A., Tremper-Wells B. A. & Miller M. W. Foxg1 haploinsufficiency reduces the population of cortical intermediate progenitor cells: effect of increased p21 expression. Cereb. Cortex 18, 1865–1875 (2008). PubMed PMC

Yu Y. et al.. Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell 152, 248–261 (2013). PubMed PMC

Postepska-Igielska A. et al.. The chromatin remodelling complex NoRC safeguards genome stability by heterochromatin formation at telomeres and centromeres. EMBO Rep. 14, 704–710 (2013). PubMed PMC

Fan Y. et al.. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol. Cell Biol. 23, 4559–4572 (2003). PubMed PMC

Lu X. et al.. Drosophila H1 regulates the genetic activity of heterochromatin by recruitment of Su(var)3-9. Science 340, 78–81 (2013). PubMed PMC

Misteli T., Gunjan A., Hock R., Bustin M. & Brown D. T. Dynamic binding of histone H1 to chromatin in living cells. Nature 408, 877–881 (2000). PubMed

Stasevich T. J., Mueller F., Brown D. T. & McNally J. G. Dissecting the binding mechanism of the linker histone in live cells: an integrated FRAP analysis. EMBO J. 29, 1225–1234 (2010). PubMed PMC

Higashi T. et al.. Histone H2A mobility is regulated by its tails and acetylation of core histone tails. Biochem. Biophys. Res. Commun. 357, 627–632 (2007). PubMed

Meshorer E. et al.. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006). PubMed PMC

Efroni S. et al.. Global transcription in pluripotent embryonic stem cells. Cell stem cell 2, 437–447 (2008). PubMed PMC

Raymond C. S. & Soriano P. ROSA26Flpo deleter mice promote efficient inversion of conditional gene traps in vivo. Genesis 48, 603–606 (2010). PubMed PMC

Lewandoski M., Wassarman K. M. & Martin G. R. Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr. Biol. 7, 148–151 (1997). PubMed

Barak O. et al.. Isolation of human NURF: a regulator of Engrailed gene expression. EMBO. J. 22, 6089–6100 (2003). PubMed PMC

Lazzaro M. A. et al.. Characterization of novel isoforms and evaluation of SNF2L/SMARCA1 as a candidate gene for X-linked mental retardation in 12 families linked to Xq25-26. BMC Med. Genet. 9, 11 (2008). PubMed PMC

Todd M. A. & Picketts D. J. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex. J. Proteome Res. 11, 4326–4337 (2012). PubMed

Rapsomaniki M. A. et al.. easyFRAP: an interactive, easy-to-use tool for qualitative and quantitative analysis of FRAP data. Bioinformatics 28, 1800–1801 (2012). PubMed

Phair R. D., Gorski S. A. & Misteli T. Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods Enzymol. 375, 393–414 (2004). PubMed

Ellenberg J. et al.. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997). PubMed PMC

Nissim-Rafinia M. & Meshorer E. Photobleaching assays (FRAP & FLIP) to measure chromatin protein dynamics in living embryonic stem cells. J. Vis. Exp. 52, 2696 (2011). PubMed PMC

Visel A., Thaller C. & Eichele G. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res. 32, D552–D556 (2004). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...