Chromatin Remodeling Enzyme Snf2h Is Essential for Retinal Cell Proliferation and Photoreceptor Maintenance

. 2023 Mar 28 ; 12 (7) : . [epub] 20230328

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37048108

Grantová podpora
R01 GM116143 NIGMS NIH HHS - United States
R01 GM147165 NIGMS NIH HHS - United States

Chromatin remodeling complexes are required for many distinct nuclear processes such as transcription, DNA replication, and DNA repair. However, the contribution of these complexes to the development of complex tissues within an organism is poorly characterized. Imitation switch (ISWI) proteins are among the most evolutionarily conserved ATP-dependent chromatin remodeling factors and are represented by yeast Isw1/Isw2, and their vertebrate counterparts Snf2h (Smarca5) and Snf2l (Smarca1). In this study, we focused on the role of the Snf2h gene during the development of the mammalian retina. We show that Snf2h is expressed in both retinal progenitors and post-mitotic retinal cells. Using Snf2h conditional knockout mice (Snf2h cKO), we found that when Snf2h is deleted, the laminar structure of the adult retina is not retained, the overall thickness of the retina is significantly reduced compared with controls, and the outer nuclear layer (ONL) is completely missing. The depletion of Snf2h did not influence the ability of retinal progenitors to generate all the differentiated retinal cell types. Instead, the Snf2h function is critical for the proliferation of retinal progenitor cells. Cells lacking Snf2h have a defective S-phase, leading to the entire cell division process impairments. Although all retinal cell types appear to be specified in the absence of the Snf2h function, cell-cycle defects and concomitantly increased apoptosis in Snf2h cKO result in abnormal retina lamination, complete destruction of the photoreceptor layer, and consequently, a physiologically non-functional retina.

Před aktualizací

PubMed

Zobrazit více v PubMed

Richmond T.J., Davey C.A. The structure of DNA in the nucleosome core. Nature. 2003;423:145–150. doi: 10.1038/nature01595. PubMed DOI

Narlikar G.J., Fan H.Y., Kingston R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell. 2002;108:475–487. doi: 10.1016/S0092-8674(02)00654-2. PubMed DOI

Jiang D., Li T., Guo C., Tang T.S., Liu H. Small molecule modulators of chromatin remodeling: From neurodevelopment to neurodegeneration. Cell Biosci. 2023;13:10. doi: 10.1186/s13578-023-00953-4. PubMed DOI PMC

Flaus A., Owen-Hughes T. Mechanisms for ATP-dependent chromatin remodelling: The means to the end. FEBS J. 2011;278:3579–3595. doi: 10.1111/j.1742-4658.2011.08281.x. PubMed DOI PMC

Corona D.F., Tamkun J.W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta. 2004;1677:113–119. doi: 10.1016/j.bbaexp.2003.09.018. PubMed DOI

Lazzaro M.A., Picketts D.J. Cloning and characterization of the murine Imitation Switch (ISWI) genes: Differential expression patterns suggest distinct developmental roles for Snf2h and Snf2l. J. Neurochem. 2001;77:1145–1156. doi: 10.1046/j.1471-4159.2001.00324.x. PubMed DOI

Kent N.A., Karabetsou N., Politis P.K., Mellor J. In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. Genes Dev. 2001;15:619–626. doi: 10.1101/gad.190301. PubMed DOI PMC

Wiechens N., Singh V., Gkikopoulos T., Schofield P., Rocha S., Owen-Hughes T. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors. PLoS Genet. 2016;12:e1005940. doi: 10.1371/journal.pgen.1005940. PubMed DOI PMC

Atsumi Y., Minakawa Y., Ono M., Dobashi S., Shinohe K., Shinohara A., Takeda S., Takagi M., Takamatsu N., Nakagama H., et al. ATM and SIRT6/SNF2H Mediate Transient H2AX Stabilization When DSBs Form by Blocking HUWE1 to Allow Efficient gammaH2AX Foci Formation. Cell Rep. 2015;13:2728–2740. doi: 10.1016/j.celrep.2015.11.054. PubMed DOI

Toiber D., Erdel F., Bouazoune K., Silberman D.M., Zhong L., Mulligan P., Sebastian C., Cosentino C., Martinez-Pastor B., Giacosa S., et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell. 2013;51:454–468. doi: 10.1016/j.molcel.2013.06.018. PubMed DOI PMC

Eberharter A., Becker P.B. ATP-dependent nucleosome remodelling: Factors and functions. J. Cell Sci. 2004;117:3707–3711. doi: 10.1242/jcs.01175. PubMed DOI

Kadam S., Emerson B.M. Mechanisms of chromatin assembly and transcription. Curr. Opin. Cell Biol. 2002;14:262–268. doi: 10.1016/S0955-0674(02)00330-7. PubMed DOI

Langst G., Becker P.B. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J. Cell Sci. 2001;114:2561–2568. doi: 10.1242/jcs.114.14.2561. PubMed DOI

Reyes A.A., Marcum R.D., He Y. Structure and Function of Chromatin Remodelers. J. Mol. Biol. 2021;433:166929. doi: 10.1016/j.jmb.2021.166929. PubMed DOI PMC

Erdel F., Rippe K. Chromatin remodelling in mammalian cells by ISWI-type complexes--where, when and why? FEBS J. 2011;278:3608–3618. doi: 10.1111/j.1742-4658.2011.08282.x. PubMed DOI

Acemel R.D., Tena J.J., Irastorza-Azcarate I., Marletaz F., Gomez-Marin C., de la Calle-Mustienes E., Bertrand S., Diaz S.G., Aldea D., Aury J.M., et al. A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat. Genet. 2016;48:336–341. doi: 10.1038/ng.3497. PubMed DOI

Alvarez-Saavedra M., De Repentigny Y., Lagali P.S., Raghu Ram E.V., Yan K., Hashem E., Ivanochko D., Huh M.S., Yang D., Mears A.J., et al. Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nat. Commun. 2014;5:4181. doi: 10.1038/ncomms5181. PubMed DOI PMC

Pessina F., Lowndes N.F. The RSF1 histone-remodelling factor facilitates DNA double-strand break repair by recruiting centromeric and Fanconi Anaemia proteins. PLoS Biol. 2014;12:e1001856. doi: 10.1371/journal.pbio.1001856. PubMed DOI PMC

Sala A., Toto M., Pinello L., Gabriele A., Di Benedetto V., Ingrassia A.M., Lo Bosco G., Di Gesu V., Giancarlo R., Corona D.F. Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI. EMBO J. 2011;30:1766–1777. doi: 10.1038/emboj.2011.98. PubMed DOI PMC

Alenghat T., Yu J., Lazar M.A. The N-CoR complex enables chromatin remodeler SNF2H to enhance repression by thyroid hormone receptor. EMBO J. 2006;25:3966–3974. doi: 10.1038/sj.emboj.7601280. PubMed DOI PMC

Dirscherl S.S., Henry J.J., Krebs J.E. Neural and eye-specific defects associated with loss of the imitation switch (ISWI) chromatin remodeler in Xenopus laevis. Mech. Dev. 2005;122:1157–1170. doi: 10.1016/j.mod.2005.08.002. PubMed DOI

Stopka T., Skoultchi A.I. The ISWI ATPase Snf2h is required for early mouse development. Proc. Natl. Acad. Sci. USA. 2003;100:14097–14102. doi: 10.1073/pnas.2336105100. PubMed DOI PMC

Deuring R., Fanti L., Armstrong J.A., Sarte M., Papoulas O., Prestel M., Daubresse G., Verardo M., Moseley S.L., Berloco M., et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell. 2000;5:355–365. doi: 10.1016/S1097-2765(00)80430-X. PubMed DOI

He S., Limi S., McGreal R.S., Xie Q., Brennan L.A., Kantorow W.L., Kokavec J., Majumdar R., Hou H., Jr., Edelmann W., et al. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation. Development. 2016;143:1937–1947. doi: 10.1242/dev.135285. PubMed DOI PMC

Cepko C.L. The patterning and onset of opsin expression in vertebrate retinae. Curr. Opin. Neurobiol. 1996;6:542–546. doi: 10.1016/S0959-4388(96)80062-6. PubMed DOI

Turner D.L., Cepko C.L. A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987;328:131–136. doi: 10.1038/328131a0. PubMed DOI

Turner D.L., Snyder E.Y., Cepko C.L. Lineage-independent determination of cell type in the embryonic mouse retina. Neuron. 1990;4:833–845. doi: 10.1016/0896-6273(90)90136-4. PubMed DOI

Rapaport D.H., Wong L.L., Wood E.D., Yasumura D., LaVail M.M. Timing and topography of cell genesis in the rat retina. J. Comp. Neurol. 2004;474:304–324. doi: 10.1002/cne.20134. PubMed DOI

Young R.W. Cell differentiation in the retina of the mouse. Anat. Rec. 1985;212:199–205. doi: 10.1002/ar.1092120215. PubMed DOI

Young R.W. Cell proliferation during postnatal development of the retina in the mouse. Brain Res. 1985;353:229–239. doi: 10.1016/0165-3806(85)90211-1. PubMed DOI

Masland R.H. Neuronal diversity in the retina. Curr. Opin. Neurobiol. 2001;11:431–436. doi: 10.1016/S0959-4388(00)00230-0. PubMed DOI

Wassle H., Boycott B.B. Functional architecture of the mammalian retina. Physiol. Rev. 1991;71:447–480. doi: 10.1152/physrev.1991.71.2.447. PubMed DOI

Zagozewski J.L., Zhang Q., Eisenstat D.D. Genetic regulation of vertebrate eye development. Clin. Genet. 2014;86:453–460. doi: 10.1111/cge.12493. PubMed DOI

Hong Y.K., Kim I.J., Sanes J.R. Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J. Comp. Neurol. 2011;519:1691–1711. doi: 10.1002/cne.22595. PubMed DOI PMC

Cherry T.J., Trimarchi J.M., Stadler M.B., Cepko C.L. Development and diversification of retinal amacrine interneurons at single cell resolution. Proc. Natl. Acad. Sci. USA. 2009;106:9495–9500. doi: 10.1073/pnas.0903264106. PubMed DOI PMC

Livesey F.J., Cepko C.L. Vertebrate neural cell-fate determination: Lessons from the retina. Nat. Rev. Neurosci. 2001;2:109–118. doi: 10.1038/35053522. PubMed DOI

Brown N.L., Kanekar S., Vetter M.L., Tucker P.K., Gemza D.L., Glaser T. Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development. 1998;125:4821–4833. doi: 10.1242/dev.125.23.4821. PubMed DOI

Cepko C.L., Austin C.P., Yang X., Alexiades M., Ezzeddine D. Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. USA. 1996;93:589–595. doi: 10.1073/pnas.93.2.589. PubMed DOI PMC

Carter-Dawson L.D., LaVail M.M. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J. Comp. Neurol. 1979;188:245–262. doi: 10.1002/cne.901880204. PubMed DOI

Ohsawa R., Kageyama R. Regulation of retinal cell fate specification by multiple transcription factors. Brain Res. 2008;1192:90–98. doi: 10.1016/j.brainres.2007.04.014. PubMed DOI

Bringmann A., Iandiev I., Pannicke T., Wurm A., Hollborn M., Wiedemann P., Osborne N.N., Reichenbach A. Cellular signaling and factors involved in Muller cell gliosis: Neuroprotective and detrimental effects. Prog. Retin. Eye Res. 2009;28:423–451. doi: 10.1016/j.preteyeres.2009.07.001. PubMed DOI

Fu Y., Yau K.W. Phototransduction in mouse rods and cones. Pflug. Arch. Eur. J. Physiol. 2007;454:805–819. doi: 10.1007/s00424-006-0194-y. PubMed DOI PMC

Brzezinski J.A., Reh T.A. Photoreceptor cell fate specification in vertebrates. Development. 2015;142:3263–3273. doi: 10.1242/dev.127043. PubMed DOI PMC

Du J., Rountree A., Cleghorn W.M., Contreras L., Lindsay K.J., Sadilek M., Gu H., Djukovic D., Raftery D., Satrustegui J., et al. Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina. J. Biol. Chem. 2016;291:4698–4710. doi: 10.1074/jbc.M115.698985. PubMed DOI PMC

Brzezinski J.A.T., Kim E.J., Johnson J.E., Reh T.A. Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development. 2011;138:3519–3531. doi: 10.1242/dev.064006. PubMed DOI PMC

Brzezinski J.A.T., Lamba D.A., Reh T.A. Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development. 2010;137:619–629. doi: 10.1242/dev.043968. PubMed DOI PMC

Katoh K., Omori Y., Onishi A., Sato S., Kondo M., Furukawa T. Blimp1 suppresses Chx10 expression in differentiating retinal photoreceptor precursors to ensure proper photoreceptor development. J. Neurosci. Off. J. Soc. Neurosci. 2010;30:6515–6526. doi: 10.1523/JNEUROSCI.0771-10.2010. PubMed DOI PMC

Liu H., Etter P., Hayes S., Jones I., Nelson B., Hartman B., Forrest D., Reh T.A. NeuroD1 regulates expression of thyroid hormone receptor 2 and cone opsins in the developing mouse retina. J. Neurosci. Off. J. Soc. Neurosci. 2008;28:749–756. doi: 10.1523/JNEUROSCI.4832-07.2008. PubMed DOI PMC

Livne-Bar I., Pacal M., Cheung M.C., Hankin M., Trogadis J., Chen D., Dorval K.M., Bremner R. Chx10 is required to block photoreceptor differentiation but is dispensable for progenitor proliferation in the postnatal retina. Proc. Natl. Acad. Sci. USA. 2006;103:4988–4993. doi: 10.1073/pnas.0600083103. PubMed DOI PMC

Nishida A., Furukawa A., Koike C., Tano Y., Aizawa S., Matsuo I., Furukawa T. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat. Neurosci. 2003;6:1255–1263. doi: 10.1038/nn1155. PubMed DOI

Bessant D.A., Payne A.M., Mitton K.P., Wang Q.L., Swain P.K., Plant C., Bird A.C., Zack D.J., Swaroop A., Bhattacharya S.S. A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nat. Genet. 1999;21:355–356. doi: 10.1038/7678. PubMed DOI

Rehemtulla A., Warwar R., Kumar R., Ji X., Zack D.J., Swaroop A. The basic motif-leucine zipper transcription factor Nrl can positively regulate rhodopsin gene expression. Proc. Natl. Acad. Sci. USA. 1996;93:191–195. doi: 10.1073/pnas.93.1.191. PubMed DOI PMC

Mears A.J., Kondo M., Swain P.K., Takada Y., Bush R.A., Saunders T.L., Sieving P.A., Swaroop A. Nrl is required for rod photoreceptor development. Nat. Genet. 2001;29:447–452. doi: 10.1038/ng774. PubMed DOI

Swaroop A., Xu J.Z., Pawar H., Jackson A., Skolnick C., Agarwal N. A conserved retina-specific gene encodes a basic motif/leucine zipper domain. Proc. Natl. Acad. Sci. USA. 1992;89:266–270. doi: 10.1073/pnas.89.1.266. PubMed DOI PMC

Swaroop A., Kim D., Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat. Rev. Neurosci. 2010;11:563–576. doi: 10.1038/nrn2880. PubMed DOI PMC

Swain P.K., Chen S., Wang Q.L., Affatigato L.M., Coats C.L., Brady K.D., Fishman G.A., Jacobson S.G., Swaroop A., Stone E., et al. Mutations in the cone-rod homeobox gene are associated with the cone-rod dystrophy photoreceptor degeneration. Neuron. 1997;19:1329–1336. doi: 10.1016/S0896-6273(00)80423-7. PubMed DOI

Hardwick L.J., Ali F.R., Azzarelli R., Philpott A. Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell Tissue Res. 2015;359:187–200. doi: 10.1007/s00441-014-1895-8. PubMed DOI PMC

Dyer M.A., Cepko C.L. Regulating proliferation during retinal development. Nat. Rev. Neurosci. 2001;2:333–342. doi: 10.1038/35072555. PubMed DOI

Diacou R., Nandigrami P., Fiser A., Liu W., Ashery-Padan R., Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog. Retin. Eye Res. 2022;91:101093. doi: 10.1016/j.preteyeres.2022.101093. PubMed DOI PMC

Zhang J., Taylor R.J., La Torre A., Wilken M.S., Cox K.E., Reh T.A., Vetter M.L. Ezh2 maintains retinal progenitor proliferation, transcriptional integrity, and the timing of late differentiation. Dev. Biol. 2015;403:128–138. doi: 10.1016/j.ydbio.2015.05.010. PubMed DOI PMC

Popova E.Y., Grigoryev S.A., Fan Y., Skoultchi A.I., Zhang S.S., Barnstable C.J. Developmentally regulated linker histone H1c promotes heterochromatin condensation and mediates structural integrity of rod photoreceptors in mouse retina. J. Biol. Chem. 2013;288:17895–17907. doi: 10.1074/jbc.M113.452144. PubMed DOI PMC

Popova E.Y., Barnstable C.J., Zhang S.S. Cell type-specific epigenetic signatures accompany late stages of mouse retina development. Adv. Exp. Med. Biol. 2014;801:3–8. doi: 10.1007/978-1-4614-3209-8_1. PubMed DOI

Merbs S.L., Khan M.A., Hackler L., Jr., Oliver V.F., Wan J., Qian J., Zack D.J. Cell-specific DNA methylation patterns of retina-specific genes. PLoS ONE. 2012;7:e32602. doi: 10.1371/journal.pone.0032602. PubMed DOI PMC

Lagali P.S., Picketts D.J. Matters of life and death: The role of chromatin remodeling proteins in retinal neuron survival. J. Ocul. Biol. Dis. Inform. 2011;4:111–120. doi: 10.1007/s12177-012-9080-3. PubMed DOI PMC

Fujimura N., Kuzelova A., Ebert A., Strnad H., Lachova J., Machon O., Busslinger M., Kozmik Z. Polycomb repression complex 2 is required for the maintenance of retinal progenitor cells and balanced retinal differentiation. Dev. Biol. 2018;433:47–60. doi: 10.1016/j.ydbio.2017.11.004. PubMed DOI

Klimova L., Lachova J., Machon O., Sedlacek R., Kozmik Z. Generation of mRx-Cre transgenic mouse line for efficient conditional gene deletion in early retinal progenitors. PLoS ONE. 2013;8:e63029. doi: 10.1371/journal.pone.0063029. PubMed DOI PMC

Aldiri I., Xu B., Wang L., Chen X., Hiler D., Griffiths L., Valentine M., Shirinifard A., Thiagarajan S., Sablauer A., et al. The Dynamic Epigenetic Landscape of the Retina During Development, Reprogramming, and Tumorigenesis. Neuron. 2017;94:550–568. doi: 10.1016/j.neuron.2017.04.022. PubMed DOI PMC

Kim D., Paggi J.M., Park C., Bennett C., Salzberg S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC

Goodwin L.R., Picketts D.J. The role of ISWI chromatin remodeling complexes in brain development and neurodevelopmental disorders. Mol. Cell Neurosci. 2018;87:55–64. doi: 10.1016/j.mcn.2017.10.008. PubMed DOI

Tsitsiridis G., Steinkamp R., Giurgiu M., Brauner B., Fobo G., Frishman G., Montrone C., Ruepp A. CORUM: The comprehensive resource of mammalian protein complexes—2022. Nucleic Acids Res. 2023;51:D539–D545. doi: 10.1093/nar/gkac1015. PubMed DOI PMC

Applebury M.L., Antoch M.P., Baxter L.C., Chun L.L., Falk J.D., Farhangfar F., Kage K., Krzystolik M.G., Lyass L.A., Robbins J.T. The murine cone photoreceptor: A single cone type expresses both S and M opsins with retinal spatial patterning. Neuron. 2000;27:513–523. doi: 10.1016/S0896-6273(00)00062-3. PubMed DOI

Poot R.A., Bozhenok L., van den Berg D.L., Steffensen S., Ferreira F., Grimaldi M., Gilbert N., Ferreira J., Varga-Weisz P.D. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat. Cell Biol. 2004;6:1236–1244. doi: 10.1038/ncb1196. PubMed DOI

Poot R.A., Dellaire G., Hulsmann B.B., Grimaldi M.A., Corona D.F., Becker P.B., Bickmore W.A., Varga-Weisz P.D. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 2000;19:3377–3387. doi: 10.1093/emboj/19.13.3377. PubMed DOI PMC

Bozhenok L., Wade P.A., Varga-Weisz P. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J. 2002;21:2231–2241. doi: 10.1093/emboj/21.9.2231. PubMed DOI PMC

Collins N., Poot R.A., Kukimoto I., Garcia-Jimenez C., Dellaire G., Varga-Weisz P.D. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 2002;32:627–632. doi: 10.1038/ng1046. PubMed DOI

Eberharter A., Ferrari S., Langst G., Straub T., Imhof A., Varga-Weisz P., Wilm M., Becker P.B. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J. 2001;20:3781–3788. doi: 10.1093/emboj/20.14.3781. PubMed DOI PMC

Ito T., Levenstein M.E., Fyodorov D.V., Kutach A.K., Kobayashi R., Kadonaga J.T. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 1999;13:1529–1539. doi: 10.1101/gad.13.12.1529. PubMed DOI PMC

Zhang J., Gray J., Wu L., Leone G., Rowan S., Cepko C.L., Zhu X., Craft C.M., Dyer M.A. Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nat. Genet. 2004;36:351–360. doi: 10.1038/ng1318. PubMed DOI

Alexiades M.R., Cepko C. Quantitative analysis of proliferation and cell cycle length during development of the rat retina. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 1996;205:293–307. doi: 10.1002/(SICI)1097-0177(199603)205:3<293::AID-AJA9>3.0.CO;2-D. PubMed DOI

O’Keefe R.T., Henderson S.C., Spector D.L. Dynamic organization of DNA replication in mammalian cell nuclei: Spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J. Cell Biol. 1992;116:1095–1110. doi: 10.1083/jcb.116.5.1095. PubMed DOI PMC

Bernard P., Allshire R. Centromeres become unstuck without heterochromatin. Trends Cell Biol. 2002;12:419–424. doi: 10.1016/S0962-8924(02)02344-9. PubMed DOI

Taddei A., Maison C., Roche D., Almouzni G. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat. Cell Biol. 2001;3:114–120. doi: 10.1038/35055010. PubMed DOI

Wallrath L.L. Unfolding the mysteries of heterochromatin. Curr. Opin. Genet. Dev. 1998;8:147–153. doi: 10.1016/S0959-437X(98)80135-4. PubMed DOI

Perpelescu M., Nozaki N., Obuse C., Yang H., Yoda K. Active establishment of centromeric CENP-A chromatin by RSF complex. J. Cell Biol. 2009;185:397–407. doi: 10.1083/jcb.200903088. PubMed DOI PMC

Perpelescu M., Hori T., Toyoda A., Misu S., Monma N., Ikeo K., Obuse C., Fujiyama A., Fukagawa T. HJURP is involved in the expansion of centromeric chromatin. Mol. Biol. Cell. 2015;26:2742–2754. doi: 10.1091/mbc.E15-02-0094. PubMed DOI PMC

Tachiwana H., Muller S., Blumer J., Klare K., Musacchio A., Almouzni G. HJURP involvement in de novo CenH3(CENP-A) and CENP-C recruitment. Cell Rep. 2015;11:22–32. doi: 10.1016/j.celrep.2015.03.013. PubMed DOI

Bassett E.A., DeNizio J., Barnhart-Dailey M.C., Panchenko T., Sekulic N., Rogers D.J., Foltz D.R., Black B.E. HJURP uses distinct CENP-A surfaces to recognize and to stabilize CENP-A/histone H4 for centromere assembly. Dev. Cell. 2012;22:749–762. doi: 10.1016/j.devcel.2012.02.001. PubMed DOI PMC

Foltz D.R., Jansen L.E., Bailey A.O., Yates J.R., 3rd, Bassett E.A., Wood S., Black B.E., Cleveland D.W. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell. 2009;137:472–484. doi: 10.1016/j.cell.2009.02.039. PubMed DOI PMC

Klimova L., Kozmik Z. Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development. 2014;141:1292–1302. doi: 10.1242/dev.098822. PubMed DOI

Dupacova N., Antosova B., Paces J., Kozmik Z. Meis homeobox genes control progenitor competence in the retina. Proc. Natl. Acad. Sci. USA. 2021;118:e2013136118. doi: 10.1073/pnas.2013136118. PubMed DOI PMC

Housset M., Samuel A., Ettaiche M., Bemelmans A., Beby F., Billon N., Lamonerie T. Loss of Otx2 in the adult retina disrupts retinal pigment epithelium function, causing photoreceptor degeneration. J. Neurosci. Off. J. Soc. Neurosci. 2013;33:9890–9904. doi: 10.1523/JNEUROSCI.1099-13.2013. PubMed DOI PMC

Sonntag S., Dedek K., Dorgau B., Schultz K., Schmidt K.F., Cimiotti K., Weiler R., Lowel S., Willecke K., Janssen-Bienhold U. Ablation of retinal horizontal cells from adult mice leads to rod degeneration and remodeling in the outer retina. J. Neurosci. Off. J. Soc. Neurosci. 2012;32:10713–10724. doi: 10.1523/JNEUROSCI.0442-12.2012. PubMed DOI PMC

Pacione L.R., Szego M.J., Ikeda S., Nishina P.M., McInnes R.R. Progress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations. Annu. Rev. Neurosci. 2003;26:657–700. doi: 10.1146/annurev.neuro.26.041002.131416. PubMed DOI

Blanks J.C., Adinolfi A.M., Lolley R.N. Photoreceptor degeneration and synaptogenesis in retinal-degenerative (rd) mice. J. Comp. Neurol. 1974;156:95–106. doi: 10.1002/cne.901560108. PubMed DOI

Jones B.W., Watt C.B., Frederick J.M., Baehr W., Chen C.K., Levine E.M., Milam A.H., Lavail M.M., Marc R.E. Retinal remodeling triggered by photoreceptor degenerations. J. Comp. Neurol. 2003;464:1–16. doi: 10.1002/cne.10703. PubMed DOI

Jones B.W., Marc R.E. Retinal remodeling during retinal degeneration. Exp. Eye Res. 2005;81:123–137. doi: 10.1016/j.exer.2005.03.006. PubMed DOI

Escher P., Cottet S., Aono S., Oohira A., Schorderet D.F. Differential neuroglycan C expression during retinal degeneration in Rpe65-/- mice. Mol. Vis. 2008;14:2126–2135. PubMed PMC

Inatani M., Honjo M., Otori Y., Oohira A., Kido N., Tano Y., Honda Y., Tanihara H. Inhibitory effects of neurocan and phosphacan on neurite outgrowth from retinal ganglion cells in culture. Investig. Ophthalmol. Vis. Sci. 2001;42:1930–1938. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...