Generation of mRx-Cre transgenic mouse line for efficient conditional gene deletion in early retinal progenitors
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23667567
PubMed Central
PMC3646923
DOI
10.1371/journal.pone.0063029
PII: PONE-D-13-03838
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- delece genu * MeSH
- genetické inženýrství metody MeSH
- homeodoménové proteiny genetika MeSH
- integrasy metabolismus MeSH
- kmenové buňky cytologie metabolismus MeSH
- myši transgenní MeSH
- myši MeSH
- oční proteiny genetika MeSH
- rekombinace genetická MeSH
- retina cytologie MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Cre recombinase MeSH Prohlížeč
- homeodoménové proteiny MeSH
- integrasy MeSH
- oční proteiny MeSH
- Rx protein, mouse MeSH Prohlížeč
During mouse eye development, all retinal cell types are generated from the population of retina-committed progenitors originating from the neuroepithelium of the optic vesicle. Conditional gene inactivation provides an efficient tool for studying the genetic basis of the developing retina; however, the number of retina-specific Cre lines is limited. Here we report generation of the mRx-Cre BAC transgenic mouse line in which the expression of Cre recombinase is controlled by regulatory sequences of the mouse Rx gene, one of the earliest determinants of retinal development. When mRx-Cre transgenic mice were crossbred with the ROSA26R or ROSA26R-EYFP reporter lines, the Cre activity was observed in the optic sulcus from embryonic day 8.5 onwards and later in all progenitors residing in the neuroepithelium of the optic cup. Our results suggest that mRx-Cre provides a unique tool for functional genetic studies in very early stages of retinal development. Moreover, since eye organogenesis is dependent on the inductive signals between the optic vesicle and head surface ectoderm, the inductive ability of the optic vesicle can be analyzed using mRx-Cre transgenic mice.
Zobrazit více v PubMed
Chow RL, Lang RA (2001) Early eye development in vertebrates. Annu Rev Cell Dev Biol 17: 255–296. PubMed
Fuhrmann S (2010) Eye Morphogenesis and Patterning of the Optic Vesicle. Curr Top in Dev Biol 93: 61–84. PubMed PMC
Graw J (2010) Eye Development. Curr Top in Dev Biol 90: 343–386. PubMed
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R (2012) Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 5: 351–76. PubMed
Hogan BL, Horsburgh G, Cohen J, Hetherington CM, Fisher G, et al. (1986) Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J Embryol Exp Morphol 97: 95–110. PubMed
Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, et al. (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354: 522–525. PubMed
Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265: 103–106. PubMed
Furuta Y, Lagutin O, Hogan B, Oliver GC (2000) Retina- and Ventral Forebrain-Specific Cre Recombinase Activity in Transgenic Mice. Genesis 26: 130–132. PubMed
Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, et al. (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105: 43–55. PubMed
Rowan S, Cepko CL (2004) Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev Biol 271: 388–402. PubMed
Sato S, Inoue T, Terada K, Matsuo I, Aizawa S, et al. (2007) Dkk3-Cre BAC Transgenic Mouse Line: A Tool for Highly Efficient Gene Deletion in Retinal Progenitor Cells. Genesis 45: 502–507. PubMed
Swindell EC, Bailey TJ, Loosli F, Liu C, Amaya-Manzanares F, et al. (2006) Rx-Cre, a Tool for Inactivation of Gene Expression in the Developing Retina. Genesis 44: 361–363. PubMed
Kreslova J, Machon O, Ruzickova J, Lachova J, Wawrousek EF, et al. (2007) Abnormal lens morphogenesis and ectopic lens formation in the absence of beta-catenin function. Genesis 45(4): 157–68. PubMed
Mathers PH, Grinberg A, Mahon KA, Jamrich M (1997) The Rx homeobox gene is essential for vertebrate eye development. Nature 387: 603–607. PubMed
Furukawa T, Kozak CA, Cepko CL (1997) Rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci USA 94: 3088–3093. PubMed PMC
Casarosa S, Andreazzoli M, Simeone A, Barsacchi G (1997) Xrx1, a novel Xenopus Homeobox gene expressed during eye and pineal gland development. Mech Dev 61: 187–198. PubMed
Loosli F, Winkler S, Burgtorf C, Wurmbach E, Ansorge W, et al. (2001) Medaka eyeless is the key factor linking retinal determinativ and eye growth. Development 128: 4035–4044. PubMed
Loosli F, Staub W, Finger-Baier KC, Ober EA, Verkade H, et al. (2003) Loss of eyes in zebrafish caused by mutation of chokh/rx3. EMBO Rep 4: 894–899. PubMed PMC
Voronina VA, Kozhemyakina EA, O’Kernick CM, Kahn ND, Wenger SL, et al. (2004) Mutations in the human RAX homeobox gene in a patient with anophthalmia and sclerocornea. Hum Mol Genet 13: 315–322. PubMed
Bailey TJ, El-Hodiri H, Zhang L, Shah R, Mathers EH, et al. (2004) Regulation of vertebrate eye development by Rx genes. Int J Dev Biol 48: 761–770. PubMed
Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21: 70–71. PubMed
Srinivas S, Watanabe T, Lin C, William CM, Tanabe Y, et al. (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1: 4. PubMed PMC
Lee Ch, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, et al. (2001) A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA. Genomics 73: 56–65. PubMed
Lakowski J, Majumder A, Lauderdale JD (2007) Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals. Dev Biol 307: 498–520. PubMed
Conditional knockout of hephaestin in the neural retina disrupts retinal iron homeostasis
Meis homeobox genes control progenitor competence in the retina
Dose-dependent regulation of horizontal cell fate by Onecut family of transcription factors
An opsin 5-dopamine pathway mediates light-dependent vascular development in the eye