Dose-dependent regulation of horizontal cell fate by Onecut family of transcription factors
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32790713
PubMed Central
PMC7425962
DOI
10.1371/journal.pone.0237403
PII: PONE-D-20-10191
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- amakrinní buňky metabolismus patologie MeSH
- bipolární buňky sítnice metabolismus patologie MeSH
- čípky retiny metabolismus patologie MeSH
- ependymální buňky metabolismus patologie MeSH
- genetické lokusy MeSH
- genotyp MeSH
- hepatocytární jaderný faktor 6 genetika metabolismus MeSH
- homeodoménové proteiny genetika metabolismus MeSH
- myši transgenní MeSH
- myši MeSH
- oči růst a vývoj patologie MeSH
- retina cytologie patologie fyziologie MeSH
- retinální gangliové buňky cytologie metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hepatocytární jaderný faktor 6 MeSH
- homeodoménové proteiny MeSH
- Onecut1 protein, mouse MeSH Prohlížeč
- ONECUT2 protein, mouse MeSH Prohlížeč
- transkripční faktory MeSH
Genome duplication leads to an emergence of gene paralogs that are essentially free to undergo the process of neofunctionalization, subfunctionalization or degeneration (gene loss). Onecut1 (Oc1) and Onecut2 (Oc2) transcription factors, encoded by paralogous genes in mammals, are expressed in precursors of horizontal cells (HCs), retinal ganglion cells and cone photoreceptors. Previous studies have shown that ablation of either Oc1 or Oc2 gene in the mouse retina results in a decreased number of HCs, while simultaneous deletion of Oc1 and Oc2 leads to a complete loss of HCs. Here we study the genetic redundancy between Oc1 and Oc2 paralogs and focus on how the dose of Onecut transcription factors influences abundance of individual retinal cell types and overall retina physiology. Our data show that reducing the number of functional Oc alleles in the developing retina leads to a gradual decrease in the number of HCs, progressive thinning of the outer plexiform layer and diminished electrophysiology responses. Taken together, these observations indicate that in the context of HC population, the alleles of Oc1/Oc2 paralogous genes are mutually interchangeable, function additively to support proper retinal function and their molecular evolution does not follow one of the typical routes after gene duplication.
Zobrazit více v PubMed
Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D. Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A. 1996;93(2):589–95. Epub 1996/01/23. 10.1073/pnas.93.2.589 PubMed DOI PMC
Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P. Pax6 is required for the multipotent state of retinal progenitor cells. Cell. 2001;105(1):43–55. Epub 2001/04/13. 10.1016/s0092-8674(01)00295-1 . PubMed DOI
Ohsawa R, Kageyama R. Regulation of retinal cell fate specification by multiple transcription factors. Brain Res. 2008;1192:90–8. Epub 2007/05/10. 10.1016/j.brainres.2007.04.014 . PubMed DOI
Cepko C. Intrinsically different retinal progenitor cells produce specific types of progeny. Nature reviews Neuroscience. 2014;15(9):615–27. Epub 2014/08/07. 10.1038/nrn3767 . PubMed DOI
Heavner W, Pevny L. Eye development and retinogenesis. Cold Spring Harb Perspect Biol. 2012;4(12). Epub 2012/10/17. 10.1101/cshperspect.a008391 PubMed DOI PMC
Wassle H, Boycott BB. Functional architecture of the mammalian retina. Physiol Rev. 1991;71(2):447–80. Epub 1991/04/01. 10.1152/physrev.1991.71.2.447 . PubMed DOI
Wu F, Li R, Umino Y, Kaczynski TJ, Sapkota D, Li S, et al. Onecut1 is essential for horizontal cell genesis and retinal integrity. J Neurosci. 2013;33(32):13053–65, 65a. Epub 2013/08/09. 10.1523/JNEUROSCI.0116-13.2013 PubMed DOI PMC
Dedek K, Breuninger T, de Sevilla Muller LP, Maxeiner S, Schultz K, Janssen-Bienhold U, et al. A novel type of interplexiform amacrine cell in the mouse retina. Eur J Neurosci. 2009;30(2):217–28. Epub 2009/07/21. 10.1111/j.1460-9568.2009.06808.x . PubMed DOI
Cepko CL. The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr Opin Neurobiol. 1999;9(1):37–46. Epub 1999/03/11. 10.1016/s0959-4388(99)80005-1 . PubMed DOI
Xiang M. Intrinsic control of mammalian retinogenesis. Cell Mol Life Sci. 2013;70(14):2519–32. Epub 2012/10/16. 10.1007/s00018-012-1183-2 PubMed DOI PMC
Klimova L, Antosova B, Kuzelova A, Strnad H, Kozmik Z. Onecut1 and Onecut2 transcription factors operate downstream of Pax6 to regulate horizontal cell development. Dev Biol. 2015;402(1):48–60. Epub 2015/03/22. 10.1016/j.ydbio.2015.02.023 . PubMed DOI
Livesey FJ, Cepko CL. Vertebrate neural cell-fate determination: lessons from the retina. Nature reviews Neuroscience. 2001;2(2):109–18. Epub 2001/03/17. 10.1038/35053522 . PubMed DOI
Young RW. Cell differentiation in the retina of the mouse. The Anatomical record. 1985;212(2):199–205. Epub 1985/06/01. 10.1002/ar.1092120215 . PubMed DOI
Klimova L, Kozmik Z. Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development (Cambridge, England). 2014;141(6):1292–302. Epub 2014/02/14. 10.1242/dev.098822 . PubMed DOI
Farhy C, Elgart M, Shapira Z, Oron-Karni V, Yaron O, Menuchin Y, et al. Pax6 is required for normal cell-cycle exit and the differentiation kinetics of retinal progenitor cells. PLoS One. 2013;8(9):e76489 Epub 2013/09/28. 10.1371/journal.pone.0076489 PubMed DOI PMC
Jacquemin P, Lannoy VJ, Rousseau GG, Lemaigre FP. OC-2, a novel mammalian member of the ONECUT class of homeodomain transcription factors whose function in liver partially overlaps with that of hepatocyte nuclear factor-6. The Journal of biological chemistry. 1999;274(5):2665–71. Epub 1999/01/23. 10.1074/jbc.274.5.2665 . PubMed DOI
Lannoy VJ, Bürglin TR, Rousseau GG, Lemaigre FP. Isoforms of hepatocyte nuclear factor-6 differ in DNA-binding properties, contain a bifunctional homeodomain, and define the new ONECUT class of homeodomain proteins. The Journal of biological chemistry. 1998;273(22):13552–62. Epub 1998/06/05. 10.1074/jbc.273.22.13552 . PubMed DOI
Vanhorenbeeck V, Jacquemin P, Lemaigre FP, Rousseau GG. OC-3, a novel mammalian member of the ONECUT class of transcription factors. Biochem Biophys Res Commun. 2002;292(4):848–54. Epub 2002/04/12. 10.1006/bbrc.2002.6760 . PubMed DOI
Landry C, Clotman F, Hioki T, Oda H, Picard JJ, Lemaigre FP, et al. HNF-6 is expressed in endoderm derivatives and nervous system of the mouse embryo and participates to the cross-regulatory network of liver-enriched transcription factors. Dev Biol. 1997;192(2):247–57. Epub 1998/01/27. 10.1006/dbio.1997.8757 . PubMed DOI
Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol. 2000;20(12):4445–54. Epub 2000/05/29. 10.1128/mcb.20.12.4445-4454.2000 PubMed DOI PMC
Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development (Cambridge, England). 2002;129(8):1819–28. Epub 2002/04/06. . PubMed
Bouzin C, Clotman F, Renauld JC, Lemaigre FP, Rousseau GG. The onecut transcription factor hepatocyte nuclear factor-6 controls B lymphopoiesis in fetal liver. J Immunol. 2003;171(3):1297–303. Epub 2003/07/23. 10.4049/jimmunol.171.3.1297 . PubMed DOI
Clotman F, Jacquemin P, Plumb-Rudewiez N, Pierreux CE, Van der Smissen P, Dietz HC, et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev. 2005;19(16):1849–54. Epub 2005/08/17. 10.1101/gad.340305 PubMed DOI PMC
Francius C, Clotman F. Dynamic expression of the Onecut transcription factors HNF-6, OC-2 and OC-3 during spinal motor neuron development. Neuroscience. 2010;165(1):116–29. Epub 2009/10/06. 10.1016/j.neuroscience.2009.09.076 . PubMed DOI
Audouard E, Schakman O, Ginion A, Bertrand L, Gailly P, Clotman F. The Onecut transcription factor HNF-6 contributes to proper reorganization of Purkinje cells during postnatal cerebellum development. Mol Cell Neurosci. 2013;56:159–68. Epub 2013/05/15. 10.1016/j.mcn.2013.05.001 . PubMed DOI
Lemaigre FP, Durviaux SM, Truong O, Lannoy VJ, Hsuan JJ, Rousseau GG. Hepatocyte nuclear factor 6, a transcription factor that contains a novel type of homeodomain and a single cut domain. Proc Natl Acad Sci U S A. 1996;93(18):9460–4. 10.1073/pnas.93.18.9460 . PubMed DOI PMC
Tan Y, Yoshida Y, Hughes DE, Costa RH. Increased expression of hepatocyte nuclear factor 6 stimulates hepatocyte proliferation during mouse liver regeneration. Gastroenterology. 2006;130(4):1283–300. Epub 2006/04/19. 10.1053/j.gastro.2006.01.010 PubMed DOI PMC
Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol. 2000;20(12):4445–54. 10.1128/mcb.20.12.4445-4454.2000 . PubMed DOI PMC
Wu F, Sapkota D, Li R, Mu X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J Comp Neurol. 2012;520(5):952–69. Epub 2011/08/11. 10.1002/cne.22741 PubMed DOI PMC
Sapkota D, Mu X. Onecut transcription factors in retinal development and maintenance. Neural Regen Res. 2015;10(6):899–900. Epub 2015/07/23. 10.4103/1673-5374.158350 PubMed DOI PMC
Sapkota D, Chintala H, Wu F, Fliesler SJ, Hu Z, Mu X. Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development. Proc Natl Acad Sci U S A. 2014;111(39):E4086–95. Epub 2014/09/18. 10.1073/pnas.1405354111 PubMed DOI PMC
Goetz JJ, Martin GM, Chowdhury R, Trimarchi JM. Onecut1 and Onecut2 play critical roles in the development of the mouse retina. PLoS One. 2014;9(10):e110194 Epub 2014/10/15. 10.1371/journal.pone.0110194 PubMed DOI PMC
Emerson MM, Surzenko N, Goetz JJ, Trimarchi J, Cepko CL. Otx2 and Onecut1 promote the fates of cone photoreceptors and horizontal cells and repress rod photoreceptors. Dev Cell. 2013;26(1):59–72. Epub 2013/07/23. 10.1016/j.devcel.2013.06.005 PubMed DOI PMC
Li S, Mo Z, Yang X, Price SM, Shen MM, Xiang M. Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron. 2004;43(6):795–807. Epub 2004/09/15. 10.1016/j.neuron.2004.08.041 . PubMed DOI
Fujitani Y, Fujitani S, Luo H, Qiu F, Burlison J, Long Q, et al. Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development (Cambridge, England). 2006;133(22):4439–50. Epub 2006/11/01. 10.1242/dev.02598 . PubMed DOI
Klimova L, Lachova J, Machon O, Sedlacek R, Kozmik Z. Generation of mRx-Cre transgenic mouse line for efficient conditional gene deletion in early retinal progenitors. PLoS One. 2013;8(5):e63029 Epub 2013/05/15. 10.1371/journal.pone.0063029 PubMed DOI PMC
Zhang H, Ables ET, Pope CF, Washington MK, Hipkens S, Means AL, et al. Multiple, temporal-specific roles for HNF6 in pancreatic endocrine and ductal differentiation. Mech Dev. 2009;126(11–12):958–73. Epub 2009/09/22. 10.1016/j.mod.2009.09.006 PubMed DOI PMC
Leopold SA, Zeilbeck LF, Weber G, Seitz R, Bosl MR, Jagle H, et al. Norrin protects optic nerve axons from degeneration in a mouse model of glaucoma. Scientific reports. 2017;7(1):14274 Epub 2017/10/29. 10.1038/s41598-017-14423-8 PubMed DOI PMC
Mages K, Grassmann F, Jagle H, Rupprecht R, Weber BHF, Hauck SM, et al. The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia. Journal of neuroinflammation. 2019;16(1):43 Epub 2019/02/20. 10.1186/s12974-019-1424-5 PubMed DOI PMC
Ko H, Cossell L, Baragli C, Antolik J, Clopath C, Hofer SB, et al. The emergence of functional microcircuits in visual cortex. Nature. 2013;496(7443):96–100. Epub 2013/04/05. 10.1038/nature12015 PubMed DOI PMC
Yates D. Visual processing: eye-opening reorganization. Nature reviews Neuroscience. 2013;14(5):309 Epub 2013/04/20. 10.1038/nrn3501 . PubMed DOI
Mao C-A, Li H, Zhang Z, Kiyama T, Panda S, Hattar S, et al. T-box transcription regulator Tbr2 is essential for the formation and maintenance of Opn4/melanopsin-expressing intrinsically photosensitive retinal ganglion cells. J Neurosci. 2014;34(39):13083–95. 10.1523/JNEUROSCI.1027-14.2014 . PubMed DOI PMC
Ajioka I, Martins RA, Bayazitov IT, Donovan S, Johnson DA, Frase S, et al. Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell. 2007;131(2):378–90. Epub 2007/10/25. 10.1016/j.cell.2007.09.036 PubMed DOI PMC
Masland RH. The neuronal organization of the retina. Neuron. 2012;76(2):266–80. 10.1016/j.neuron.2012.10.002 PubMed DOI PMC
Poche RA, Reese BE. Retinal horizontal cells: challenging paradigms of neural development and cancer biology. Development (Cambridge, England). 2009;136(13):2141–51. Epub 2009/06/09. 10.1242/dev.033175 PubMed DOI PMC
Sonntag S, Dedek K, Dorgau B, Schultz K, Schmidt KF, Cimiotti K, et al. Ablation of retinal horizontal cells from adult mice leads to rod degeneration and remodeling in the outer retina. J Neurosci. 2012;32(31):10713–24. Epub 2012/08/03. 10.1523/JNEUROSCI.0442-12.2012 . PubMed DOI PMC
Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3(10):e314 10.1371/journal.pbio.0030314 PubMed DOI PMC
Taylor JS, Raes J. Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet. 2004;38:615–43. 10.1146/annurev.genet.38.072902.092831 . PubMed DOI
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531–45. PubMed PMC
Vanhorenbeeck V, Jenny M, Cornut J-F, Gradwohl G, Lemaigre FP, Rousseau GG, et al. Role of the Onecut transcription factors in pancreas morphogenesis and in pancreatic and enteric endocrine differentiation. Developmental Biology. 2007;305(2):685–94. 10.1016/j.ydbio.2007.02.027 PubMed DOI