Paralogous Genes Involved in Embryonic Development: Lessons from the Eye and Other Tissues

. 2022 Nov 09 ; 13 (11) : . [epub] 20221109

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36360318

During evolution, gene duplications lead to a naturally increased gene dosage. Duplicated genes can be further retained or eliminated over time by purifying selection pressure. The retention probability is increased by functional diversification and by the acquisition of novel functions. Interestingly, functionally diverged paralogous genes can maintain a certain level of functional redundancy and at least a partial ability to replace each other. In such cases, diversification probably occurred at the level of transcriptional regulation. Nevertheless, some duplicated genes can maintain functional redundancy after duplication and the ability to functionally compensate for the loss of each other. Many of them are involved in proper embryonic development. The development of particular tissues/organs and developmental processes can be more or less sensitive to the overall gene dosage. Alterations in the gene dosage or a decrease below a threshold level may have dramatic phenotypic consequences or even lead to embryonic lethality. The number of functional alleles of particular paralogous genes and their mutual cooperation and interactions influence the gene dosage, and therefore, these factors play a crucial role in development. This review will discuss individual interactions between paralogous genes and gene dosage sensitivity during development. The eye was used as a model system, but other tissues are also included.

Zobrazit více v PubMed

Liu W., Li L., Ye H., Chen H., Shen W., Zhong Y., Tian T., He H. From Saccharomyces cerevisiae to human: The important gene co-expression modules. Biomed Rep. 2017;7:153–158. doi: 10.3892/br.2017.941. PubMed DOI PMC

Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F., et al. The Genome Sequence of Drosophila melanogaster. Science. 2000;287:2185–2195. doi: 10.1126/science.287.5461.2185. PubMed DOI

International Chicken Genome Sequencing Consortium Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716. doi: 10.1038/nature03154. PubMed DOI

Ostrander E.A., Wayne R.K. The canine genome. Genome Res. 2005;15:1706–1716. doi: 10.1101/gr.3736605. PubMed DOI

Karlsson M., Sjöstedt E., Oksvold P., Sivertsson Å., Huang J., Álvez M.B., Arif M., Li X., Lin L., Yu J., et al. Genome-wide annotation of protein-coding genes in pig. BMC Biol. 2022;20:25. doi: 10.1186/s12915-022-01229-y. PubMed DOI PMC

Weitzman J.B. The mouse genome. Genome Biol. 2002;3:spotlight-20021205–20021202. doi: 10.1186/gb-spotlight-20021205-02. DOI

Kuzmin E., Taylor J.S., Boone C. Retention of duplicated genes in evolution. Trends Genet. 2022;38:59–72. doi: 10.1016/j.tig.2021.06.016. PubMed DOI PMC

Koonin E.V. Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 2005;39:309–338. doi: 10.1146/annurev.genet.39.073003.114725. PubMed DOI

Grimwood J., Gordon L.A., Olsen A., Terry A., Schmutz J., Lamerdin J., Hellsten U., Goodstein D., Couronne O., Tran-Gyamfi M., et al. The DNA sequence and biology of human chromosome 19. Nature. 2004;428:529–535. doi: 10.1038/nature02399. PubMed DOI

Fredriksson R., Lagerström M.C., Lundin L.-G., Schiöth H.B. The G-Protein-Coupled Receptors in the Human Genome Form Five Main Families. Phylogenetic Analysis, Paralogon Groups, and Fingerprints. Mol. Pharmacol. 2003;63:1256–1272. doi: 10.1124/mol.63.6.1256. PubMed DOI

Heit C., Jackson B.C., McAndrews M., Wright M.W., Thompson D.C., Silverman G.A., Nebert D.W., Vasiliou V. Update of the human and mouse SERPIN gene superfamily. Hum. Genom. 2013;7:22. doi: 10.1186/1479-7364-7-22. PubMed DOI PMC

Hill R.E., Hastie N.D. Accelerated evolution in the reactive centre regions of serine protease inhibitors. Nature. 1987;326:96–99. doi: 10.1038/326096a0. PubMed DOI

Itoh N., Ornitz D.M. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–569. doi: 10.1016/j.tig.2004.08.007. PubMed DOI

Young J.M., Friedman C., Williams E.M., Ross J.A., Tonnes-Priddy L., Trask B.J. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum. Mol. Genet. 2002;11:535–546. doi: 10.1093/hmg/11.5.535. PubMed DOI

Zhang X., Firestein S. The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 2002;5:124–133. doi: 10.1038/nn800. PubMed DOI

Dehal P., Boore J.L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3:e314. doi: 10.1371/journal.pbio.0030314. PubMed DOI PMC

Amores A., Force A., Yan Y.L., Joly L., Amemiya C., Fritz A., Ho R.K., Langeland J., Prince V., Wang Y.L., et al. Zebrafish HOX clusters and vertebrate genome evolution. Science. 1998;282:1711–1714. doi: 10.1126/science.282.5394.1711. PubMed DOI

Christoffels A., Koh E.G., Chia J.M., Brenner S., Aparicio S., Venkatesh B. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol. Biol. Evol. 2004;21:1146–1151. doi: 10.1093/molbev/msh114. PubMed DOI

Holland P.W., Garcia-Fernàndez J., Williams N.A., Sidow A. Gene duplications and the origins of vertebrate development. Dev. Suppl. 1994;1994:125–133. doi: 10.1242/dev.1994.Supplement.125. PubMed DOI

Nowak M.A., Boerlijst M.C., Cooke J., Smith J.M. Evolution of genetic redundancy. Nature. 1997;388:167–171. doi: 10.1038/40618. PubMed DOI

Ohno S. Evolution by Gene Duplication. Springer; Berlin/Heidelberg, Germany: 1970.

Cooke J., Nowak M.A., Boerlijst M., Maynard-Smith J. Evolutionary origins and maintenance of redundant gene expression during metazoan development. Trends Genet. 1997;13:360–364. doi: 10.1016/S0168-9525(97)01233-X. PubMed DOI

Force A., Lynch M., Pickett F.B., Amores A., Yan Y.L., Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151:1531–1545. doi: 10.1093/genetics/151.4.1531. PubMed DOI PMC

Duarte J.M., Cui L., Wall P.K., Zhang Q., Zhang X., Leebens-Mack J., Ma H., Altman N., dePamphilis C.W. Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol. Biol. Evol. 2006;23:469–478. doi: 10.1093/molbev/msj051. PubMed DOI

Khoriaty R., Hesketh G.G., Bernard A., Weyand A.C., Mellacheruvu D., Zhu G., Hoenerhoff M.J., McGee B., Everett L., Adams E.J., et al. Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc. Natl. Acad. Sci. USA. 2018;115:E7748–E7757. doi: 10.1073/pnas.1805784115. PubMed DOI PMC

Malynn B.A., de Alboran I.M., O’Hagan R.C., Bronson R., Davidson L., DePinho R.A., Alt F.W. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev. 2000;14:1390–1399. doi: 10.1101/gad.14.11.1390. PubMed DOI PMC

Shew C.J., Carmona-Mora P., Soto D.C., Mastoras M., Roberts E., Rosas J., Jagannathan D., Kaya G., O’Geen H., Dennis M.Y. Diverse Molecular Mechanisms Contribute to Differential Expression of Human Duplicated Genes. Mol. Biol. Evol. 2021;38:3060–3077. doi: 10.1093/molbev/msab131. PubMed DOI PMC

Etheridge S.L., Ray S., Li S., Hamblet N.S., Lijam N., Tsang M., Greer J., Kardos N., Wang J., Sussman D.J., et al. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet. 2008;4:e1000259. doi: 10.1371/journal.pgen.1000259. PubMed DOI PMC

Henseleit K.D., Nelson S.B., Kuhlbrodt K., Hennings J.C., Ericson J., Sander M. NKX6 transcription factor activity is required for α- and β-cell development in the pancreas. Development. 2005;132:3139–3149. doi: 10.1242/dev.01875. PubMed DOI

Nelson S.B., Schaffer A.E., Sander M. The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting β-cell fate specification in Pdx1+ pancreatic progenitor cells. Development. 2007;134:2491–2500. doi: 10.1242/dev.002691. PubMed DOI

Preuße K., Tveriakhina L., Schuster-Gossler K., Gaspar C., Rosa A.I., Henrique D., Gossler A., Stauber M. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015;11:e1005328. doi: 10.1371/journal.pgen.1005328. PubMed DOI PMC

Vanhorenbeeck V., Jenny M., Cornut J.F., Gradwohl G., Lemaigre F.P., Rousseau G.G., Jacquemin P. Role of the Onecut transcription factors in pancreas morphogenesis and in pancreatic and enteric endocrine differentiation. Dev. Biol. 2007;305:685–694. doi: 10.1016/j.ydbio.2007.02.027. PubMed DOI

Wu F., Sapkota D., Li R., Mu X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J. Comp. Neurol. 2012;520:952–969. doi: 10.1002/cne.22741. PubMed DOI PMC

Bochkis I.M., Schug J., Ye D.Z., Kurinna S., Stratton S.A., Barton M.C., Kaestner K.H. Genome-wide location analysis reveals distinct transcriptional circuitry by paralogous regulators Foxa1 and Foxa2. PLoS Genet. 2012;8:e1002770. doi: 10.1371/journal.pgen.1002770. PubMed DOI PMC

Kathiriya I.S., Rao K.S., Iacono G., Devine W.P., Blair A.P., Hota S.K., Lai M.H., Garay B.I., Thomas R., Gong H.Z., et al. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Dev. Cell. 2021;56:292–309.e299. doi: 10.1016/j.devcel.2020.11.020. PubMed DOI PMC

Chowdhury F., Wang L., Al-Raqad M., Amor D.J., Baxová A., Bendová Š., Biamino E., Brusco A., Caluseriu O., Cox N.J., et al. Haploinsufficiency of PRR12 causes a spectrum of neurodevelopmental, eye, and multisystem abnormalities. Genet. Med. 2021;23:1234–1245. doi: 10.1038/s41436-021-01129-6. PubMed DOI

Yi F., Danko T., Botelho S.C., Patzke C., Pak C., Wernig M., Südhof T.C. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science. 2016;352:aaf2669. doi: 10.1126/science.aaf2669. PubMed DOI PMC

Kummeling J., Stremmelaar D.E., Raun N., Reijnders M.R.F., Willemsen M.H., Ruiterkamp-Versteeg M., Schepens M., Man C.C.O., Gilissen C., Cho M.T., et al. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol. Psychiatry. 2021;26:2013–2024. doi: 10.1038/s41380-020-0725-5. PubMed DOI

Zawerton A., Mignot C., Sigafoos A., Blackburn P.R., Haseeb A., McWalter K., Ichikawa S., Nava C., Keren B., Charles P., et al. Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency. Genet. Med. 2020;22:524–537. doi: 10.1038/s41436-019-0657-0. PubMed DOI PMC

Lalli M.A., Jang J., Park J.H., Wang Y., Guzman E., Zhou H., Audouard M., Bridges D., Tovar K.R., Papuc S.M., et al. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum. Mol. Genet. 2016;25:1294–1306. doi: 10.1093/hmg/ddw010. PubMed DOI

Gennarino V.A., Palmer E.E., McDonell L.M., Wang L., Adamski C.J., Koire A., See L., Chen C.A., Schaaf C.P., Rosenfeld J.A., et al. A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures. Cell. 2018;172:924–936.e911. doi: 10.1016/j.cell.2018.02.006. PubMed DOI PMC

Hanks M., Wurst W., Anson-Cartwright L., Auerbach A.B., Joyner A.L. Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science. 1995;269:679–682. doi: 10.1126/science.7624797. PubMed DOI

Chia I.V., Costantini F. Mouse axin and axin2/conductin proteins are functionally equivalent in vivo. Mol. Cell Biol. 2005;25:4371–4376. doi: 10.1128/MCB.25.11.4371-4376.2005. PubMed DOI PMC

Adams E.J., Khoriaty R., Kiseleva A., Cleuren A.C.A., Tomberg K., van der Ent M.A., Gergics P., Tang V.T., Zhu G., Hoenerhoff M.J., et al. Murine SEC24D can substitute functionally for SEC24C during embryonic development. Sci. Rep. 2021;11:21100. doi: 10.1038/s41598-021-00579-x. PubMed DOI PMC

Bouchard M., Pfeffer P., Busslinger M. Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development. 2000;127:3703–3713. doi: 10.1242/dev.127.17.3703. PubMed DOI

Savory J.G., Pilon N., Grainger S., Sylvestre J.R., Béland M., Houle M., Oh K., Lohnes D. Cdx1 and Cdx2 are functionally equivalent in vertebral patterning. Dev. Biol. 2009;330:114–122. doi: 10.1016/j.ydbio.2009.03.016. PubMed DOI

Suda Y., Nakabayashi J., Matsuo I., Aizawa S. Functional equivalency between Otx2 and Otx1 in development of the rostral head. Development. 1999;126:743–757. doi: 10.1242/dev.126.4.743. PubMed DOI

Acampora D., Avantaggiato V., Tuorto F., Barone P., Perera M., Choo D., Wu D., Corte G., Simeone A. Differential transcriptional control as the major molecular event in generating Otx1-/- and Otx2-/- divergent phenotypes. Development. 1999;126:1417–1426. doi: 10.1242/dev.126.7.1417. PubMed DOI

Acampora D., Annino A., Puelles E., Alfano I., Tuorto F., Simeone A. OTX1 compensates for OTX2 requirement in regionalisation of anterior neuroectoderm. Gene Expr. Patterns. 2003;3:497–501. doi: 10.1016/S1567-133X(03)00056-5. PubMed DOI

Relaix F., Rocancourt D., Mansouri A., Buckingham M. Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev. 2004;18:1088–1105. doi: 10.1101/gad.301004. PubMed DOI PMC

Yang L.T., Kaartinen V. Tgfb1 expressed in the Tgfb3 locus partially rescues the cleft palate phenotype of Tgfb3 null mutants. Dev. Biol. 2007;312:384–395. doi: 10.1016/j.ydbio.2007.09.034. PubMed DOI PMC

Carbe C., Garg A., Cai Z., Li H., Powers A., Zhang X. An allelic series at the paired box gene 6 (Pax6) locus reveals the functional specificity of Pax genes. J. Biol. Chem. 2013;288:12130–12141. doi: 10.1074/jbc.M112.436865. PubMed DOI PMC

Wolf L., Harrison W., Huang J., Xie Q., Xiao N., Sun J., Kong L., Lachke S.A., Kuracha M.R., Govindarajan V., et al. Histone posttranslational modifications and cell fate determination: Lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Res. 2013;41:10199–10214. doi: 10.1093/nar/gkt824. PubMed DOI PMC

Rocha S.F., Lopes S.S., Gossler A., Henrique D. Dll1 and Dll4 function sequentially in the retina and pV2 domain of the spinal cord to regulate neurogenesis and create cell diversity. Dev. Biol. 2009;328:54–65. doi: 10.1016/j.ydbio.2009.01.011. PubMed DOI

Zhao H., Yang T., Madakashira B.P., Thiels C.A., Bechtle C.A., Garcia C.M., Zhang H., Yu K., Ornitz D.M., Beebe D.C., et al. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev. Biol. 2008;318:276–288. doi: 10.1016/j.ydbio.2008.03.028. PubMed DOI PMC

Munroe R.J., Prabhu V., Acland G.M., Johnson K.R., Harris B.S., O’Brien T.P., Welsh I.C., Noden D.M., Schimenti J.C. Mouse H6 Homeobox 1 (Hmx1) mutations cause cranial abnormalities and reduced body mass. BMC Dev. Biol. 2009;9:27. doi: 10.1186/1471-213X-9-27. PubMed DOI PMC

Schorderet D.F., Nichini O., Boisset G., Polok B., Tiab L., Mayeur H., Raji B., de la Houssaye G., Abitbol M.M., Munier F.L. Mutation in the human homeobox gene NKX5-3 causes an oculo-auricular syndrome. Am. J. Hum. Genet. 2008;82:1178–1184. doi: 10.1016/j.ajhg.2008.03.007. PubMed DOI PMC

Fujimoto M., Izu H., Seki K., Fukuda K., Nishida T., Yamada S., Kato K., Yonemura S., Inouye S., Nakai A. HSF4 is required for normal cell growth and differentiation during mouse lens development. Embo J. 2004;23:4297–4306. doi: 10.1038/sj.emboj.7600435. PubMed DOI PMC

Somasundaram T., Bhat S.P. Developmentally dictated expression of heat shock factors: Exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter. J. Biol. Chem. 2004;279:44497–44503. doi: 10.1074/jbc.M405813200. PubMed DOI

Antosova B., Smolikova J., Klimova L., Lachova J., Bendova M., Kozmikova I., Machon O., Kozmik Z. The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6. PLoS Genet. 2016;12:e1006441. doi: 10.1371/journal.pgen.1006441. PubMed DOI PMC

Dupacova N., Antosova B., Paces J., Kozmik Z. Meis homeobox genes control progenitor competence in the retina. Proc. Natl. Acad. Sci. USA. 2021;118:e2013136118. doi: 10.1073/pnas.2013136118. PubMed DOI PMC

Kreplova M., Kuzelova A., Antosova B., Zilova L., Jägle H., Kozmik Z. Dose-dependent regulation of horizontal cell fate by Onecut family of transcription factors. PLoS ONE. 2020;15:e0237403. doi: 10.1371/journal.pone.0237403. PubMed DOI PMC

Zhang Y., Deng W.-T., Du W., Zhu P., Li J., Xu F., Sun J., Gerstner C.D., Baehr W., Boye S.L., et al. Gene-based Therapy in a Mouse Model of Blue Cone Monochromacy. Sci. Rep. 2017;7:6690. doi: 10.1038/s41598-017-06982-7. PubMed DOI PMC

Michaelides M., Johnson S., Simunovic M.P., Bradshaw K., Holder G., Mollon J.D., Moore A.T., Hunt D.M. Blue cone monochromatism: A phenotype and genotype assessment with evidence of progressive loss of cone function in older individuals. Eye. 2005;19:2–10. doi: 10.1038/sj.eye.6701391. PubMed DOI

Neitz J., Neitz M. The genetics of normal and defective color vision. Vis. Res. 2011;51:633–651. doi: 10.1016/j.visres.2010.12.002. PubMed DOI PMC

Bosze B., Suarez-Navarro J., Soofi A., Lauderdale J.D., Dressler G.R., Brown N.L. Multiple roles for Pax2 in the embryonic mouse eye. Dev. Biol. 2021;472:18–29. doi: 10.1016/j.ydbio.2020.12.020. PubMed DOI PMC

Diacou R., Zhao Y., Zheng D., Cvekl A., Liu W. Six3 and Six6 Are Jointly Required for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative Regulation. Cell Rep. 2018;25:2510–2523.e2514. doi: 10.1016/j.celrep.2018.10.106. PubMed DOI PMC

Fromental-Ramain C., Warot X., Lakkaraju S., Favier B., Haack H., Birling C., Dierich A., Doll e P., Chambon P. Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development. 1996;122:461–472. doi: 10.1242/dev.122.2.461. PubMed DOI

Gerner-Mauro K.N., Akiyama H., Chen J. Redundant and additive functions of the four Lef/Tcf transcription factors in lung epithelial progenitors. Proc. Natl. Acad. Sci. USA. 2020;117:12182–12191. doi: 10.1073/pnas.2002082117. PubMed DOI PMC

Hagelkruys A., Lagger S., Krahmer J., Leopoldi A., Artaker M., Pusch O., Zezula J., Weissmann S., Xie Y., Schöfer C., et al. A single allele of Hdac2 but not Hdac1 is sufficient for normal mouse brain development in the absence of its paralog. Development. 2014;141:604–616. doi: 10.1242/dev.100487. PubMed DOI PMC

Böhm J., Buck A., Borozdin W., Mannan A.U., Matysiak-Scholze U., Adham I., Schulz-Schaeffer W., Floss T., Wurst W., Kohlhase J., et al. Sall1, sall2, and sall4 are required for neural tube closure in mice. Am. J. Pathol. 2008;173:1455–1463. doi: 10.2353/ajpath.2008.071039. PubMed DOI PMC

Schmitz-Rohmer D., Probst S., Yang Z.Z., Laurent F., Stadler M.B., Zuniga A., Zeller R., Hynx D., Hemmings B.A., Hergovich A. NDR Kinases Are Essential for Somitogenesis and Cardiac Looping during Mouse Embryonic Development. PLoS ONE. 2015;10:e0136566. doi: 10.1371/journal.pone.0136566. PubMed DOI PMC

Carlisle F.A., Pearson S., Steel K.P., Lewis M.A. Pitpnm1 is expressed in hair cells during development but is not required for hearing. Neuroscience. 2013;248:620–625. doi: 10.1016/j.neuroscience.2013.06.045. PubMed DOI PMC

Jin J.Z., Ding J. Strain-dependent effects of transforming growth factor-β1 and 2 during mouse secondary palate development. Reprod Toxicol. 2014;50:129–133. doi: 10.1016/j.reprotox.2014.10.018. PubMed DOI

Gómez-Redondo I., Ramos-Ibeas P., Pericuesta E., Fernández-González R., Laguna-Barraza R., Gutiérrez-Adán A. Minor Splicing Factors Zrsr1 and Zrsr2 Are Essential for Early Embryo Development and 2-Cell-Like Conversion. Int. J. Mol. Sci. 2020;21:14115. doi: 10.3390/ijms21114115. PubMed DOI PMC

Wang G., Ying Z., Jin X., Tu N., Zhang Y., Phillips M., Moskophidis D., Mivechi N.F. Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis. 2004;38:66–80. doi: 10.1002/gene.20005. PubMed DOI

Collette N.M., Yee C.S., Murugesh D., Sebastian A., Taher L., Gale N.W., Economides A.N., Harland R.M., Loots G.G. Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner. Dev. Biol. 2013;383:90–105. doi: 10.1016/j.ydbio.2013.08.015. PubMed DOI PMC

Gao Y., Lan Y., Liu H., Jiang R. The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation. Dev. Biol. 2011;352:83–91. doi: 10.1016/j.ydbio.2011.01.018. PubMed DOI PMC

Yoshida T., Miyoshi J., Takai Y., Thesleff I. Cooperation of nectin-1 and nectin-3 is required for normal ameloblast function and crown shape development in mouse teeth. Dev. Dyn. 2010;239:2558–2569. doi: 10.1002/dvdy.22395. PubMed DOI

Batrakou D.G., de Las Heras J.I., Czapiewski R., Mouras R., Schirmer E.C. TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation. PLoS ONE. 2015;10:e0127712. doi: 10.1371/journal.pone.0127712. PubMed DOI PMC

Boucherat O., Montaron S., Bérubé-Simard F.A., Aubin J., Philippidou P., Wellik D.M., Dasen J.S., Jeannotte L. Partial functional redundancy between Hoxa5 and Hoxb5 paralog genes during lung morphogenesis. Am. J. Physiol. Lung Cell Mol. Physiol. 2013;304:L817–L830. doi: 10.1152/ajplung.00006.2013. PubMed DOI PMC

Larsen B.M., Hrycaj S.M., Newman M., Li Y., Wellik D.M. Mesenchymal Hox6 function is required for mouse pancreatic endocrine cell differentiation. Development. 2015;142:3859–3868. doi: 10.1242/dev.126888. PubMed DOI PMC

Wang X., Gerber A., Chen W.Y., Roeder R.G. Functions of paralogous RNA polymerase III subunits POLR3G and POLR3GL in mouse development. Proc. Natl. Acad. Sci. USA. 2020;117:15702–15711. doi: 10.1073/pnas.1922821117. PubMed DOI PMC

Bendall A.J. Direct evidence of allele equivalency at the Dlx5/6 locus. Genesis. 2016;54:272–276. doi: 10.1002/dvg.22934. PubMed DOI

Yallowitz A.R., Hrycaj S.M., Short K.M., Smyth I.M., Wellik D.M. Hox10 genes function in kidney development in the differentiation and integration of the cortical stroma. PLoS ONE. 2011;6:e23410. doi: 10.1371/journal.pone.0023410. PubMed DOI PMC

Fujimoto M., Hayashida N., Katoh T., Oshima K., Shinkawa T., Prakasam R., Tan K., Inouye S., Takii R., Nakai A. A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol. Biol. Cell. 2010;21:106–116. doi: 10.1091/mbc.e09-07-0639. PubMed DOI PMC

Peters H., Wilm B., Sakai N., Imai K., Maas R., Balling R. Pax1 and Pax9 synergistically regulate vertebral column development. Development. 1999;126:5399–5408. doi: 10.1242/dev.126.23.5399. PubMed DOI

Manley N.R., Capecchi M.R. HOX group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev. Biol. 1997;192:274–288. doi: 10.1006/dbio.1997.8765. PubMed DOI

Boulet A.M., Capecchi M.R. Targeted disruption of hoxc-4 causes esophageal defects and vertebral transformations. Dev. Biol. 1996;177:232–249. doi: 10.1006/dbio.1996.0159. PubMed DOI

Wahba G.M., Hostikka S.L., Carpenter E.M. The paralogous HOX genes Hoxa10 and Hoxd10 interact to pattern the mouse hindlimb peripheral nervous system and skeleton. Dev. Biol. 2001;231:87–102. doi: 10.1006/dbio.2000.0130. PubMed DOI

Ashokkumar D., Zhang Q., Much C., Bledau A.S., Naumann R., Alexopoulou D., Dahl A., Goveas N., Fu J., Anastassiadis K., et al. MLL4 is required after implantation, whereas MLL3 becomes essential during late gestation. Development. 2020;147:dev186999. doi: 10.1242/dev.186999. PubMed DOI

Kobayashi K., Endo T., Matsumura T., Lu Y., Yu Z., Matzuk M.M., Ikawa M. Prss55 but not Prss51 is required for male fertility in mice. Biol. Reprod. 2020;103:223–234. doi: 10.1093/biolre/ioaa041. PubMed DOI PMC

Devlin D.J., Nozawa K., Ikawa M., Matzuk M.M. Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in mice†. Biol. Reprod. 2020;103:205–222. doi: 10.1093/biolre/ioaa082. PubMed DOI PMC

Bledau A.S., Schmidt K., Neumann K., Hill U., Ciotta G., Gupta A., Torres D.C., Fu J., Kranz A., Stewart A.F., et al. The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development. 2014;141:1022–1035. doi: 10.1242/dev.098152. PubMed DOI

Bahat A., Kedmi R., Gazit K., Richardo-Lax I., Ainbinder E., Dikstein R. TAF4b and TAF4 differentially regulate mouse embryonic stem cells maintenance and proliferation. Genes Cells. 2013;18:225–237. doi: 10.1111/gtc.12030. PubMed DOI

Messiaen S., Guiard J., Aigueperse C., Fliniaux I., Tourpin S., Barroca V., Allemand I., Fouchet P., Livera G., Vernet M. Loss of the histone chaperone ASF1B reduces female reproductive capacity in mice. Reproduction. 2016;151:477–489. doi: 10.1530/REP-15-0327. PubMed DOI

Wang X., Wang L., Dou J., Yu T., Cao P., Fan N., Borjigin U., Nashun B. Distinct role of histone chaperone Asf1a and Asf1b during fertilization and pre-implantation embryonic development in mice. Epigenetics Chromatin. 2021;14:55. doi: 10.1186/s13072-021-00430-7. PubMed DOI PMC

Akbas G.E., Taylor H.S. HOXC and HOXD gene expression in human endometrium: Lack of redundancy with HOXA paralogs. Biol. Reprod. 2004;70:39–45. doi: 10.1095/biolreprod.102.014969. PubMed DOI

Winderickx J., Battisti L., Motulsky A.G., Deeb S.S. Selective expression of human X chromosome-linked green opsin genes. Proc. Natl. Acad. Sci. USA. 1992;89:9710–9714. doi: 10.1073/pnas.89.20.9710. PubMed DOI PMC

Yamaguchi T., Motulsky A.G., Deeb S.S. Visual Pigment Gene Structure and Expression in Human Retinae. Hum. Mol. Genet. 1997;6:981–990. doi: 10.1093/hmg/6.7.981. PubMed DOI

Applebury M.L., Antoch M.P., Baxter L.C., Chun L.L.Y., Falk J.D., Farhangfar F., Kage K., Krzystolik M.G., Lyass L.A., Robbins J.T. The Murine Cone Photoreceptor: A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning. Neuron. 2000;27:513–523. doi: 10.1016/S0896-6273(00)00062-3. PubMed DOI

Stamboulian M., Guerrero R.F., Hahn M.W., Radivojac P. The ortholog conjecture revisited: The value of orthologs and paralogs in function prediction. Bioinformatics. 2020;36:i219–i226. doi: 10.1093/bioinformatics/btaa468. PubMed DOI PMC

Dandage R., Landry C.R. Paralog dependency indirectly affects the robustness of human cells. Mol. Syst. Biol. 2019;15:e8871. doi: 10.15252/msb.20198871. PubMed DOI PMC

Diss G., Ascencio D., DeLuna A., Landry C.R. Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J. Exp. Zool B Mol. Dev. Evol. 2014;322:488–499. doi: 10.1002/jez.b.22555. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...