Paralogous Genes Involved in Embryonic Development: Lessons from the Eye and Other Tissues
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36360318
PubMed Central
PMC9690401
DOI
10.3390/genes13112082
PII: genes13112082
Knihovny.cz E-zdroje
- Klíčová slova
- duplication, embryonic development, eye, gene dosage, paralogous genes,
- MeSH
- duplikace genu * MeSH
- genová dávka MeSH
- molekulární evoluce * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
During evolution, gene duplications lead to a naturally increased gene dosage. Duplicated genes can be further retained or eliminated over time by purifying selection pressure. The retention probability is increased by functional diversification and by the acquisition of novel functions. Interestingly, functionally diverged paralogous genes can maintain a certain level of functional redundancy and at least a partial ability to replace each other. In such cases, diversification probably occurred at the level of transcriptional regulation. Nevertheless, some duplicated genes can maintain functional redundancy after duplication and the ability to functionally compensate for the loss of each other. Many of them are involved in proper embryonic development. The development of particular tissues/organs and developmental processes can be more or less sensitive to the overall gene dosage. Alterations in the gene dosage or a decrease below a threshold level may have dramatic phenotypic consequences or even lead to embryonic lethality. The number of functional alleles of particular paralogous genes and their mutual cooperation and interactions influence the gene dosage, and therefore, these factors play a crucial role in development. This review will discuss individual interactions between paralogous genes and gene dosage sensitivity during development. The eye was used as a model system, but other tissues are also included.
Zobrazit více v PubMed
Liu W., Li L., Ye H., Chen H., Shen W., Zhong Y., Tian T., He H. From Saccharomyces cerevisiae to human: The important gene co-expression modules. Biomed Rep. 2017;7:153–158. doi: 10.3892/br.2017.941. PubMed DOI PMC
Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F., et al. The Genome Sequence of Drosophila melanogaster. Science. 2000;287:2185–2195. doi: 10.1126/science.287.5461.2185. PubMed DOI
International Chicken Genome Sequencing Consortium Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716. doi: 10.1038/nature03154. PubMed DOI
Ostrander E.A., Wayne R.K. The canine genome. Genome Res. 2005;15:1706–1716. doi: 10.1101/gr.3736605. PubMed DOI
Karlsson M., Sjöstedt E., Oksvold P., Sivertsson Å., Huang J., Álvez M.B., Arif M., Li X., Lin L., Yu J., et al. Genome-wide annotation of protein-coding genes in pig. BMC Biol. 2022;20:25. doi: 10.1186/s12915-022-01229-y. PubMed DOI PMC
Weitzman J.B. The mouse genome. Genome Biol. 2002;3:spotlight-20021205–20021202. doi: 10.1186/gb-spotlight-20021205-02. DOI
Kuzmin E., Taylor J.S., Boone C. Retention of duplicated genes in evolution. Trends Genet. 2022;38:59–72. doi: 10.1016/j.tig.2021.06.016. PubMed DOI PMC
Koonin E.V. Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 2005;39:309–338. doi: 10.1146/annurev.genet.39.073003.114725. PubMed DOI
Grimwood J., Gordon L.A., Olsen A., Terry A., Schmutz J., Lamerdin J., Hellsten U., Goodstein D., Couronne O., Tran-Gyamfi M., et al. The DNA sequence and biology of human chromosome 19. Nature. 2004;428:529–535. doi: 10.1038/nature02399. PubMed DOI
Fredriksson R., Lagerström M.C., Lundin L.-G., Schiöth H.B. The G-Protein-Coupled Receptors in the Human Genome Form Five Main Families. Phylogenetic Analysis, Paralogon Groups, and Fingerprints. Mol. Pharmacol. 2003;63:1256–1272. doi: 10.1124/mol.63.6.1256. PubMed DOI
Heit C., Jackson B.C., McAndrews M., Wright M.W., Thompson D.C., Silverman G.A., Nebert D.W., Vasiliou V. Update of the human and mouse SERPIN gene superfamily. Hum. Genom. 2013;7:22. doi: 10.1186/1479-7364-7-22. PubMed DOI PMC
Hill R.E., Hastie N.D. Accelerated evolution in the reactive centre regions of serine protease inhibitors. Nature. 1987;326:96–99. doi: 10.1038/326096a0. PubMed DOI
Itoh N., Ornitz D.M. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–569. doi: 10.1016/j.tig.2004.08.007. PubMed DOI
Young J.M., Friedman C., Williams E.M., Ross J.A., Tonnes-Priddy L., Trask B.J. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum. Mol. Genet. 2002;11:535–546. doi: 10.1093/hmg/11.5.535. PubMed DOI
Zhang X., Firestein S. The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 2002;5:124–133. doi: 10.1038/nn800. PubMed DOI
Dehal P., Boore J.L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3:e314. doi: 10.1371/journal.pbio.0030314. PubMed DOI PMC
Amores A., Force A., Yan Y.L., Joly L., Amemiya C., Fritz A., Ho R.K., Langeland J., Prince V., Wang Y.L., et al. Zebrafish HOX clusters and vertebrate genome evolution. Science. 1998;282:1711–1714. doi: 10.1126/science.282.5394.1711. PubMed DOI
Christoffels A., Koh E.G., Chia J.M., Brenner S., Aparicio S., Venkatesh B. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol. Biol. Evol. 2004;21:1146–1151. doi: 10.1093/molbev/msh114. PubMed DOI
Holland P.W., Garcia-Fernàndez J., Williams N.A., Sidow A. Gene duplications and the origins of vertebrate development. Dev. Suppl. 1994;1994:125–133. doi: 10.1242/dev.1994.Supplement.125. PubMed DOI
Nowak M.A., Boerlijst M.C., Cooke J., Smith J.M. Evolution of genetic redundancy. Nature. 1997;388:167–171. doi: 10.1038/40618. PubMed DOI
Ohno S. Evolution by Gene Duplication. Springer; Berlin/Heidelberg, Germany: 1970.
Cooke J., Nowak M.A., Boerlijst M., Maynard-Smith J. Evolutionary origins and maintenance of redundant gene expression during metazoan development. Trends Genet. 1997;13:360–364. doi: 10.1016/S0168-9525(97)01233-X. PubMed DOI
Force A., Lynch M., Pickett F.B., Amores A., Yan Y.L., Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151:1531–1545. doi: 10.1093/genetics/151.4.1531. PubMed DOI PMC
Duarte J.M., Cui L., Wall P.K., Zhang Q., Zhang X., Leebens-Mack J., Ma H., Altman N., dePamphilis C.W. Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol. Biol. Evol. 2006;23:469–478. doi: 10.1093/molbev/msj051. PubMed DOI
Khoriaty R., Hesketh G.G., Bernard A., Weyand A.C., Mellacheruvu D., Zhu G., Hoenerhoff M.J., McGee B., Everett L., Adams E.J., et al. Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc. Natl. Acad. Sci. USA. 2018;115:E7748–E7757. doi: 10.1073/pnas.1805784115. PubMed DOI PMC
Malynn B.A., de Alboran I.M., O’Hagan R.C., Bronson R., Davidson L., DePinho R.A., Alt F.W. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev. 2000;14:1390–1399. doi: 10.1101/gad.14.11.1390. PubMed DOI PMC
Shew C.J., Carmona-Mora P., Soto D.C., Mastoras M., Roberts E., Rosas J., Jagannathan D., Kaya G., O’Geen H., Dennis M.Y. Diverse Molecular Mechanisms Contribute to Differential Expression of Human Duplicated Genes. Mol. Biol. Evol. 2021;38:3060–3077. doi: 10.1093/molbev/msab131. PubMed DOI PMC
Etheridge S.L., Ray S., Li S., Hamblet N.S., Lijam N., Tsang M., Greer J., Kardos N., Wang J., Sussman D.J., et al. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet. 2008;4:e1000259. doi: 10.1371/journal.pgen.1000259. PubMed DOI PMC
Henseleit K.D., Nelson S.B., Kuhlbrodt K., Hennings J.C., Ericson J., Sander M. NKX6 transcription factor activity is required for α- and β-cell development in the pancreas. Development. 2005;132:3139–3149. doi: 10.1242/dev.01875. PubMed DOI
Nelson S.B., Schaffer A.E., Sander M. The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting β-cell fate specification in Pdx1+ pancreatic progenitor cells. Development. 2007;134:2491–2500. doi: 10.1242/dev.002691. PubMed DOI
Preuße K., Tveriakhina L., Schuster-Gossler K., Gaspar C., Rosa A.I., Henrique D., Gossler A., Stauber M. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015;11:e1005328. doi: 10.1371/journal.pgen.1005328. PubMed DOI PMC
Vanhorenbeeck V., Jenny M., Cornut J.F., Gradwohl G., Lemaigre F.P., Rousseau G.G., Jacquemin P. Role of the Onecut transcription factors in pancreas morphogenesis and in pancreatic and enteric endocrine differentiation. Dev. Biol. 2007;305:685–694. doi: 10.1016/j.ydbio.2007.02.027. PubMed DOI
Wu F., Sapkota D., Li R., Mu X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J. Comp. Neurol. 2012;520:952–969. doi: 10.1002/cne.22741. PubMed DOI PMC
Bochkis I.M., Schug J., Ye D.Z., Kurinna S., Stratton S.A., Barton M.C., Kaestner K.H. Genome-wide location analysis reveals distinct transcriptional circuitry by paralogous regulators Foxa1 and Foxa2. PLoS Genet. 2012;8:e1002770. doi: 10.1371/journal.pgen.1002770. PubMed DOI PMC
Kathiriya I.S., Rao K.S., Iacono G., Devine W.P., Blair A.P., Hota S.K., Lai M.H., Garay B.I., Thomas R., Gong H.Z., et al. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Dev. Cell. 2021;56:292–309.e299. doi: 10.1016/j.devcel.2020.11.020. PubMed DOI PMC
Chowdhury F., Wang L., Al-Raqad M., Amor D.J., Baxová A., Bendová Š., Biamino E., Brusco A., Caluseriu O., Cox N.J., et al. Haploinsufficiency of PRR12 causes a spectrum of neurodevelopmental, eye, and multisystem abnormalities. Genet. Med. 2021;23:1234–1245. doi: 10.1038/s41436-021-01129-6. PubMed DOI
Yi F., Danko T., Botelho S.C., Patzke C., Pak C., Wernig M., Südhof T.C. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science. 2016;352:aaf2669. doi: 10.1126/science.aaf2669. PubMed DOI PMC
Kummeling J., Stremmelaar D.E., Raun N., Reijnders M.R.F., Willemsen M.H., Ruiterkamp-Versteeg M., Schepens M., Man C.C.O., Gilissen C., Cho M.T., et al. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol. Psychiatry. 2021;26:2013–2024. doi: 10.1038/s41380-020-0725-5. PubMed DOI
Zawerton A., Mignot C., Sigafoos A., Blackburn P.R., Haseeb A., McWalter K., Ichikawa S., Nava C., Keren B., Charles P., et al. Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency. Genet. Med. 2020;22:524–537. doi: 10.1038/s41436-019-0657-0. PubMed DOI PMC
Lalli M.A., Jang J., Park J.H., Wang Y., Guzman E., Zhou H., Audouard M., Bridges D., Tovar K.R., Papuc S.M., et al. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum. Mol. Genet. 2016;25:1294–1306. doi: 10.1093/hmg/ddw010. PubMed DOI
Gennarino V.A., Palmer E.E., McDonell L.M., Wang L., Adamski C.J., Koire A., See L., Chen C.A., Schaaf C.P., Rosenfeld J.A., et al. A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures. Cell. 2018;172:924–936.e911. doi: 10.1016/j.cell.2018.02.006. PubMed DOI PMC
Hanks M., Wurst W., Anson-Cartwright L., Auerbach A.B., Joyner A.L. Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science. 1995;269:679–682. doi: 10.1126/science.7624797. PubMed DOI
Chia I.V., Costantini F. Mouse axin and axin2/conductin proteins are functionally equivalent in vivo. Mol. Cell Biol. 2005;25:4371–4376. doi: 10.1128/MCB.25.11.4371-4376.2005. PubMed DOI PMC
Adams E.J., Khoriaty R., Kiseleva A., Cleuren A.C.A., Tomberg K., van der Ent M.A., Gergics P., Tang V.T., Zhu G., Hoenerhoff M.J., et al. Murine SEC24D can substitute functionally for SEC24C during embryonic development. Sci. Rep. 2021;11:21100. doi: 10.1038/s41598-021-00579-x. PubMed DOI PMC
Bouchard M., Pfeffer P., Busslinger M. Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development. 2000;127:3703–3713. doi: 10.1242/dev.127.17.3703. PubMed DOI
Savory J.G., Pilon N., Grainger S., Sylvestre J.R., Béland M., Houle M., Oh K., Lohnes D. Cdx1 and Cdx2 are functionally equivalent in vertebral patterning. Dev. Biol. 2009;330:114–122. doi: 10.1016/j.ydbio.2009.03.016. PubMed DOI
Suda Y., Nakabayashi J., Matsuo I., Aizawa S. Functional equivalency between Otx2 and Otx1 in development of the rostral head. Development. 1999;126:743–757. doi: 10.1242/dev.126.4.743. PubMed DOI
Acampora D., Avantaggiato V., Tuorto F., Barone P., Perera M., Choo D., Wu D., Corte G., Simeone A. Differential transcriptional control as the major molecular event in generating Otx1-/- and Otx2-/- divergent phenotypes. Development. 1999;126:1417–1426. doi: 10.1242/dev.126.7.1417. PubMed DOI
Acampora D., Annino A., Puelles E., Alfano I., Tuorto F., Simeone A. OTX1 compensates for OTX2 requirement in regionalisation of anterior neuroectoderm. Gene Expr. Patterns. 2003;3:497–501. doi: 10.1016/S1567-133X(03)00056-5. PubMed DOI
Relaix F., Rocancourt D., Mansouri A., Buckingham M. Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev. 2004;18:1088–1105. doi: 10.1101/gad.301004. PubMed DOI PMC
Yang L.T., Kaartinen V. Tgfb1 expressed in the Tgfb3 locus partially rescues the cleft palate phenotype of Tgfb3 null mutants. Dev. Biol. 2007;312:384–395. doi: 10.1016/j.ydbio.2007.09.034. PubMed DOI PMC
Carbe C., Garg A., Cai Z., Li H., Powers A., Zhang X. An allelic series at the paired box gene 6 (Pax6) locus reveals the functional specificity of Pax genes. J. Biol. Chem. 2013;288:12130–12141. doi: 10.1074/jbc.M112.436865. PubMed DOI PMC
Wolf L., Harrison W., Huang J., Xie Q., Xiao N., Sun J., Kong L., Lachke S.A., Kuracha M.R., Govindarajan V., et al. Histone posttranslational modifications and cell fate determination: Lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Res. 2013;41:10199–10214. doi: 10.1093/nar/gkt824. PubMed DOI PMC
Rocha S.F., Lopes S.S., Gossler A., Henrique D. Dll1 and Dll4 function sequentially in the retina and pV2 domain of the spinal cord to regulate neurogenesis and create cell diversity. Dev. Biol. 2009;328:54–65. doi: 10.1016/j.ydbio.2009.01.011. PubMed DOI
Zhao H., Yang T., Madakashira B.P., Thiels C.A., Bechtle C.A., Garcia C.M., Zhang H., Yu K., Ornitz D.M., Beebe D.C., et al. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev. Biol. 2008;318:276–288. doi: 10.1016/j.ydbio.2008.03.028. PubMed DOI PMC
Munroe R.J., Prabhu V., Acland G.M., Johnson K.R., Harris B.S., O’Brien T.P., Welsh I.C., Noden D.M., Schimenti J.C. Mouse H6 Homeobox 1 (Hmx1) mutations cause cranial abnormalities and reduced body mass. BMC Dev. Biol. 2009;9:27. doi: 10.1186/1471-213X-9-27. PubMed DOI PMC
Schorderet D.F., Nichini O., Boisset G., Polok B., Tiab L., Mayeur H., Raji B., de la Houssaye G., Abitbol M.M., Munier F.L. Mutation in the human homeobox gene NKX5-3 causes an oculo-auricular syndrome. Am. J. Hum. Genet. 2008;82:1178–1184. doi: 10.1016/j.ajhg.2008.03.007. PubMed DOI PMC
Fujimoto M., Izu H., Seki K., Fukuda K., Nishida T., Yamada S., Kato K., Yonemura S., Inouye S., Nakai A. HSF4 is required for normal cell growth and differentiation during mouse lens development. Embo J. 2004;23:4297–4306. doi: 10.1038/sj.emboj.7600435. PubMed DOI PMC
Somasundaram T., Bhat S.P. Developmentally dictated expression of heat shock factors: Exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter. J. Biol. Chem. 2004;279:44497–44503. doi: 10.1074/jbc.M405813200. PubMed DOI
Antosova B., Smolikova J., Klimova L., Lachova J., Bendova M., Kozmikova I., Machon O., Kozmik Z. The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6. PLoS Genet. 2016;12:e1006441. doi: 10.1371/journal.pgen.1006441. PubMed DOI PMC
Dupacova N., Antosova B., Paces J., Kozmik Z. Meis homeobox genes control progenitor competence in the retina. Proc. Natl. Acad. Sci. USA. 2021;118:e2013136118. doi: 10.1073/pnas.2013136118. PubMed DOI PMC
Kreplova M., Kuzelova A., Antosova B., Zilova L., Jägle H., Kozmik Z. Dose-dependent regulation of horizontal cell fate by Onecut family of transcription factors. PLoS ONE. 2020;15:e0237403. doi: 10.1371/journal.pone.0237403. PubMed DOI PMC
Zhang Y., Deng W.-T., Du W., Zhu P., Li J., Xu F., Sun J., Gerstner C.D., Baehr W., Boye S.L., et al. Gene-based Therapy in a Mouse Model of Blue Cone Monochromacy. Sci. Rep. 2017;7:6690. doi: 10.1038/s41598-017-06982-7. PubMed DOI PMC
Michaelides M., Johnson S., Simunovic M.P., Bradshaw K., Holder G., Mollon J.D., Moore A.T., Hunt D.M. Blue cone monochromatism: A phenotype and genotype assessment with evidence of progressive loss of cone function in older individuals. Eye. 2005;19:2–10. doi: 10.1038/sj.eye.6701391. PubMed DOI
Neitz J., Neitz M. The genetics of normal and defective color vision. Vis. Res. 2011;51:633–651. doi: 10.1016/j.visres.2010.12.002. PubMed DOI PMC
Bosze B., Suarez-Navarro J., Soofi A., Lauderdale J.D., Dressler G.R., Brown N.L. Multiple roles for Pax2 in the embryonic mouse eye. Dev. Biol. 2021;472:18–29. doi: 10.1016/j.ydbio.2020.12.020. PubMed DOI PMC
Diacou R., Zhao Y., Zheng D., Cvekl A., Liu W. Six3 and Six6 Are Jointly Required for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative Regulation. Cell Rep. 2018;25:2510–2523.e2514. doi: 10.1016/j.celrep.2018.10.106. PubMed DOI PMC
Fromental-Ramain C., Warot X., Lakkaraju S., Favier B., Haack H., Birling C., Dierich A., Doll e P., Chambon P. Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development. 1996;122:461–472. doi: 10.1242/dev.122.2.461. PubMed DOI
Gerner-Mauro K.N., Akiyama H., Chen J. Redundant and additive functions of the four Lef/Tcf transcription factors in lung epithelial progenitors. Proc. Natl. Acad. Sci. USA. 2020;117:12182–12191. doi: 10.1073/pnas.2002082117. PubMed DOI PMC
Hagelkruys A., Lagger S., Krahmer J., Leopoldi A., Artaker M., Pusch O., Zezula J., Weissmann S., Xie Y., Schöfer C., et al. A single allele of Hdac2 but not Hdac1 is sufficient for normal mouse brain development in the absence of its paralog. Development. 2014;141:604–616. doi: 10.1242/dev.100487. PubMed DOI PMC
Böhm J., Buck A., Borozdin W., Mannan A.U., Matysiak-Scholze U., Adham I., Schulz-Schaeffer W., Floss T., Wurst W., Kohlhase J., et al. Sall1, sall2, and sall4 are required for neural tube closure in mice. Am. J. Pathol. 2008;173:1455–1463. doi: 10.2353/ajpath.2008.071039. PubMed DOI PMC
Schmitz-Rohmer D., Probst S., Yang Z.Z., Laurent F., Stadler M.B., Zuniga A., Zeller R., Hynx D., Hemmings B.A., Hergovich A. NDR Kinases Are Essential for Somitogenesis and Cardiac Looping during Mouse Embryonic Development. PLoS ONE. 2015;10:e0136566. doi: 10.1371/journal.pone.0136566. PubMed DOI PMC
Carlisle F.A., Pearson S., Steel K.P., Lewis M.A. Pitpnm1 is expressed in hair cells during development but is not required for hearing. Neuroscience. 2013;248:620–625. doi: 10.1016/j.neuroscience.2013.06.045. PubMed DOI PMC
Jin J.Z., Ding J. Strain-dependent effects of transforming growth factor-β1 and 2 during mouse secondary palate development. Reprod Toxicol. 2014;50:129–133. doi: 10.1016/j.reprotox.2014.10.018. PubMed DOI
Gómez-Redondo I., Ramos-Ibeas P., Pericuesta E., Fernández-González R., Laguna-Barraza R., Gutiérrez-Adán A. Minor Splicing Factors Zrsr1 and Zrsr2 Are Essential for Early Embryo Development and 2-Cell-Like Conversion. Int. J. Mol. Sci. 2020;21:14115. doi: 10.3390/ijms21114115. PubMed DOI PMC
Wang G., Ying Z., Jin X., Tu N., Zhang Y., Phillips M., Moskophidis D., Mivechi N.F. Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis. 2004;38:66–80. doi: 10.1002/gene.20005. PubMed DOI
Collette N.M., Yee C.S., Murugesh D., Sebastian A., Taher L., Gale N.W., Economides A.N., Harland R.M., Loots G.G. Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner. Dev. Biol. 2013;383:90–105. doi: 10.1016/j.ydbio.2013.08.015. PubMed DOI PMC
Gao Y., Lan Y., Liu H., Jiang R. The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation. Dev. Biol. 2011;352:83–91. doi: 10.1016/j.ydbio.2011.01.018. PubMed DOI PMC
Yoshida T., Miyoshi J., Takai Y., Thesleff I. Cooperation of nectin-1 and nectin-3 is required for normal ameloblast function and crown shape development in mouse teeth. Dev. Dyn. 2010;239:2558–2569. doi: 10.1002/dvdy.22395. PubMed DOI
Batrakou D.G., de Las Heras J.I., Czapiewski R., Mouras R., Schirmer E.C. TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation. PLoS ONE. 2015;10:e0127712. doi: 10.1371/journal.pone.0127712. PubMed DOI PMC
Boucherat O., Montaron S., Bérubé-Simard F.A., Aubin J., Philippidou P., Wellik D.M., Dasen J.S., Jeannotte L. Partial functional redundancy between Hoxa5 and Hoxb5 paralog genes during lung morphogenesis. Am. J. Physiol. Lung Cell Mol. Physiol. 2013;304:L817–L830. doi: 10.1152/ajplung.00006.2013. PubMed DOI PMC
Larsen B.M., Hrycaj S.M., Newman M., Li Y., Wellik D.M. Mesenchymal Hox6 function is required for mouse pancreatic endocrine cell differentiation. Development. 2015;142:3859–3868. doi: 10.1242/dev.126888. PubMed DOI PMC
Wang X., Gerber A., Chen W.Y., Roeder R.G. Functions of paralogous RNA polymerase III subunits POLR3G and POLR3GL in mouse development. Proc. Natl. Acad. Sci. USA. 2020;117:15702–15711. doi: 10.1073/pnas.1922821117. PubMed DOI PMC
Bendall A.J. Direct evidence of allele equivalency at the Dlx5/6 locus. Genesis. 2016;54:272–276. doi: 10.1002/dvg.22934. PubMed DOI
Yallowitz A.R., Hrycaj S.M., Short K.M., Smyth I.M., Wellik D.M. Hox10 genes function in kidney development in the differentiation and integration of the cortical stroma. PLoS ONE. 2011;6:e23410. doi: 10.1371/journal.pone.0023410. PubMed DOI PMC
Fujimoto M., Hayashida N., Katoh T., Oshima K., Shinkawa T., Prakasam R., Tan K., Inouye S., Takii R., Nakai A. A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol. Biol. Cell. 2010;21:106–116. doi: 10.1091/mbc.e09-07-0639. PubMed DOI PMC
Peters H., Wilm B., Sakai N., Imai K., Maas R., Balling R. Pax1 and Pax9 synergistically regulate vertebral column development. Development. 1999;126:5399–5408. doi: 10.1242/dev.126.23.5399. PubMed DOI
Manley N.R., Capecchi M.R. HOX group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev. Biol. 1997;192:274–288. doi: 10.1006/dbio.1997.8765. PubMed DOI
Boulet A.M., Capecchi M.R. Targeted disruption of hoxc-4 causes esophageal defects and vertebral transformations. Dev. Biol. 1996;177:232–249. doi: 10.1006/dbio.1996.0159. PubMed DOI
Wahba G.M., Hostikka S.L., Carpenter E.M. The paralogous HOX genes Hoxa10 and Hoxd10 interact to pattern the mouse hindlimb peripheral nervous system and skeleton. Dev. Biol. 2001;231:87–102. doi: 10.1006/dbio.2000.0130. PubMed DOI
Ashokkumar D., Zhang Q., Much C., Bledau A.S., Naumann R., Alexopoulou D., Dahl A., Goveas N., Fu J., Anastassiadis K., et al. MLL4 is required after implantation, whereas MLL3 becomes essential during late gestation. Development. 2020;147:dev186999. doi: 10.1242/dev.186999. PubMed DOI
Kobayashi K., Endo T., Matsumura T., Lu Y., Yu Z., Matzuk M.M., Ikawa M. Prss55 but not Prss51 is required for male fertility in mice. Biol. Reprod. 2020;103:223–234. doi: 10.1093/biolre/ioaa041. PubMed DOI PMC
Devlin D.J., Nozawa K., Ikawa M., Matzuk M.M. Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in mice†. Biol. Reprod. 2020;103:205–222. doi: 10.1093/biolre/ioaa082. PubMed DOI PMC
Bledau A.S., Schmidt K., Neumann K., Hill U., Ciotta G., Gupta A., Torres D.C., Fu J., Kranz A., Stewart A.F., et al. The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development. 2014;141:1022–1035. doi: 10.1242/dev.098152. PubMed DOI
Bahat A., Kedmi R., Gazit K., Richardo-Lax I., Ainbinder E., Dikstein R. TAF4b and TAF4 differentially regulate mouse embryonic stem cells maintenance and proliferation. Genes Cells. 2013;18:225–237. doi: 10.1111/gtc.12030. PubMed DOI
Messiaen S., Guiard J., Aigueperse C., Fliniaux I., Tourpin S., Barroca V., Allemand I., Fouchet P., Livera G., Vernet M. Loss of the histone chaperone ASF1B reduces female reproductive capacity in mice. Reproduction. 2016;151:477–489. doi: 10.1530/REP-15-0327. PubMed DOI
Wang X., Wang L., Dou J., Yu T., Cao P., Fan N., Borjigin U., Nashun B. Distinct role of histone chaperone Asf1a and Asf1b during fertilization and pre-implantation embryonic development in mice. Epigenetics Chromatin. 2021;14:55. doi: 10.1186/s13072-021-00430-7. PubMed DOI PMC
Akbas G.E., Taylor H.S. HOXC and HOXD gene expression in human endometrium: Lack of redundancy with HOXA paralogs. Biol. Reprod. 2004;70:39–45. doi: 10.1095/biolreprod.102.014969. PubMed DOI
Winderickx J., Battisti L., Motulsky A.G., Deeb S.S. Selective expression of human X chromosome-linked green opsin genes. Proc. Natl. Acad. Sci. USA. 1992;89:9710–9714. doi: 10.1073/pnas.89.20.9710. PubMed DOI PMC
Yamaguchi T., Motulsky A.G., Deeb S.S. Visual Pigment Gene Structure and Expression in Human Retinae. Hum. Mol. Genet. 1997;6:981–990. doi: 10.1093/hmg/6.7.981. PubMed DOI
Applebury M.L., Antoch M.P., Baxter L.C., Chun L.L.Y., Falk J.D., Farhangfar F., Kage K., Krzystolik M.G., Lyass L.A., Robbins J.T. The Murine Cone Photoreceptor: A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning. Neuron. 2000;27:513–523. doi: 10.1016/S0896-6273(00)00062-3. PubMed DOI
Stamboulian M., Guerrero R.F., Hahn M.W., Radivojac P. The ortholog conjecture revisited: The value of orthologs and paralogs in function prediction. Bioinformatics. 2020;36:i219–i226. doi: 10.1093/bioinformatics/btaa468. PubMed DOI PMC
Dandage R., Landry C.R. Paralog dependency indirectly affects the robustness of human cells. Mol. Syst. Biol. 2019;15:e8871. doi: 10.15252/msb.20198871. PubMed DOI PMC
Diss G., Ascencio D., DeLuna A., Landry C.R. Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J. Exp. Zool B Mol. Dev. Evol. 2014;322:488–499. doi: 10.1002/jez.b.22555. PubMed DOI