Acoustic, Mechanical and Thermal Properties of Green Composites Reinforced with Natural Fibers Waste
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministry of Education, Youth and Sports of the Czech Republic and the European Union (European Structural and Investment Funds - Operational Programme Research, Development and Education) in the frames of the project "Modular platform for autonomous chass
PubMed
32183033
PubMed Central
PMC7183085
DOI
10.3390/polym12030654
PII: polym12030654
Knihovny.cz E-zdroje
- Klíčová slova
- bio-composite, coefficient of thermal expansion, flexural strength, impact strength, sound absorption coefficient,
- Publikační typ
- časopisecké články MeSH
The use of acoustic panels is one of the most important methods for sound insulation in buildings. Moreover, it has become increasingly important to use green/natural origin materials in this area to reduce environmental impact. This study focuses on the investigation of acoustic, mechanical and thermal properties of natural fiber waste reinforced green epoxy composites. Three different types of fiber wastes were used, e.g., cotton, coconut and sugarcane with epoxy as the resin. Different fiber volume fractions, i.e., 10%, 15% and 20% for each fiber were used with a composite thickness of 3 mm. The sound absorption coefficient, impact strength, flexural strength, thermal conductivity, diffusivity, coefficient of thermal expansion and thermogravimetric properties of all samples were investigated. It has been found that by increasing the fiber content, the sound absorption coefficient also increases. The coconut fiber-based composites show a higher sound absorption coefficient than in the other fiber-reinforced composites. The impact and flexural strength of the cotton fiber-reinforced composite samples are higher than in other samples. The coefficient of thermal expansion of the cotton fiber-based composite is also higher than the other composites. Thermogravimetric analysis revealed that all the natural fiber-reinforced composites can sustain till 300 °C with a minor weight loss. The natural fiber-based composites can be used in building interiors, automotive body parts and household furniture. Such composite development is an ecofriendly approach to the acoustic world.
Faculty of Textile Engineering National Textile University Faisalabad 37610 Pakistan
Protective Textile Group National Textile University Faisalabad 37610 Pakistan
Zobrazit více v PubMed
Yang W., Li Y. Sound absorption performance of natural fibers and their composites. Sci. China Technol. Sci. 2012;55:2278–2283. doi: 10.1007/s11431-012-4943-1. DOI
Yilmaz N.D., Powell N.B., Banks-Lee P., Michielsen S. Hemp-fiber based nonwoven composites: Effects of alkalization on sound absorption performance. Fibers Polym. 2012;13:915–922. doi: 10.1007/s12221-012-0915-0. DOI
Verma D., Gope P. Coir fiber reinforcement and application in polymer composites: A review. J. Mater. Environ. Sci. 2013;4:263–276.
Bell L., Bell D. Industrial Noise Control: Fundamentals and Applications. 2nd ed. Volume 1 CRC Press; Boca Raton, FL, USA: 1994.
Sargianis J., Kim H., Andres E., Suhr J. Sound and vibration damping characteristics in natural material based sandwich composites. Compos. Struct. 2013;96:538–544. doi: 10.1016/j.compstruct.2012.09.006. DOI
Mohanty A., Misra M., Drzal L. Natural Fibers, Biopolymers, and Biocomposites. Volume 1 CRC Press; Boca Raton, FL, USA: 2005.
Nagendra M., Sowjanya M., Kumar S. Development of Noise Absorbing Composite Materials Using Agro Waste Products. Volume 1. Jain University; Bengaluru, India: 2000. pp. 1–6. Project Reference # 40S-BE-1595.
Zulkifli R., Nor M.M., Tahir M.M., Ismail A.R., Nuawi M.Z. Acoustic properties of multi-layer coir fibres sound absorption panel. J. Appl. Sci. 2006;8:3709–3714. doi: 10.3923/jas.2008.3709.3714. DOI
Zhou H., Li B., Huang G. Sound absorption characteristics of polymer microparticle. J. Appl. Polym. Sci. 2006;101:2675–2679. doi: 10.1002/app.23911. DOI
Jayamani E. Ph.D. Thesis. University of Malaysia Sarawak; Kota Samarahan, Sarawak, Malaysia: 2015. Sound Absorption and Impedance Study of Lignocellulosic Fibre Based Composites for Acoustical Applications.
ASTM C423—17 . Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method. ASTM; Washington, DC, USA: 2017.
Joserph P., Joseph K., Thomas S. Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos. Sci. Technol. 1999;59:1625–1640. doi: 10.1016/S0266-3538(99)00024-X. DOI
Danihelová A., Němec M., Gergel T., Gejdoš M., Gordanová J., Sčensný P. Usage of recycled technical textiles as thermal insulation and an acoustic absorber. Sustainability. 2019;11:2968. doi: 10.3390/su11102968. DOI
Němec M., Igaz R., Gergel T., Danihelová A., Ondrejka V., Krišťák L., Gejdoš M., Kminiak R. Acoustic and thermophysical properties of insulation materials based on wood wool. Akustika. 2019;33:115–123.
Roy S., Bhowmik S., Davim J.P., Kumar K. Green Approaches to Biocomposite Materials Science and Engineering. Volume 1 IGI Global Publishers; Hershey, PA, USA: 2016. Estimation of mechanical and tribological properties of epoxy-based green composites.
Jadhav A.C., Pandit P., Gayatri T.N., Chavan P.P., Jadhav N.C. Production of Green Composites from Various Sustainable Raw Materials. Springer; Singapore: 2018. pp. 1–24. Green Composites.
Seddeq H. Factors influencing acoustic performance of sound absorptive materials. Aust. J. Basic Appl. Sci. 2009;3:4610–4617.
Chen D., Li J., Ren J. Study on sound absorption property of ramie fiber-reinforced poly (L-lactic acid) composites: Morphology and properties. Compos. Part A Appl. Sci. Manuf. 2010;41:1012–1018. doi: 10.1016/j.compositesa.2010.04.007. DOI
Wang C., Torng J. Experimental study of the absorption characteristics of some porous fibrous materials. Appl. Acoust. 2001;62:447–459. doi: 10.1016/S0003-682X(00)00043-8. DOI
Khusairy M., Jayamani E., Heng S., Hamdan S., Kakar A. An experimental and simulation studies on sound absorption coefficients of banana fibers and their reinforced composites. Nano Hybrids Compos. 2017;12:9–20.
Bratu M., Vasile O., Dumitrescu O. Sound-absorbing properties of composite materials reinforced with various wastes. Environ. Eng. Manag. 2011;10:1046–1051. doi: 10.30638/eemj.2011.152. DOI
Abdullah F., Azharia A. Sound absorption cofficient of natural fibers hybrid reinforced polyester composites. J. Teknol. 2015;76:31–36.
Jayamani E., Hamdan S., Heng S., Rahman R. Sound absorption property of agricultural lignocellulosic residue fiber-reinforced polymer matrix composites. Appl. Mech. Mater. 2014;663:464–468. doi: 10.4028/www.scientific.net/AMM.663.464. DOI
Moretti E., Belloni E., Agosti F. Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization. Appl. Energy. 2016;169:421–432. doi: 10.1016/j.apenergy.2016.02.048. DOI
Jayamani E., Hamdan S., Rahman M.R., Bakri M.K.B., Kakar A. An investigation of sound absorption coefficient on sisal fiber poly lactic acid bio-composites. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.42470. DOI
Jayamani E., Heng S.K., bin Bakri M.K., Hamdan S. Comparative study of sound absorption coefficients of coir/kenaf /sugarcane bagasse fiber-reinforced epoxy composites. Key Eng. Mater. 2017;730:48–53. doi: 10.4028/www.scientific.net/KEM.730.48. DOI
Ricciardi P., Belloni E., Cotana F. Innovative panels with recycled materials: Thermal and acoustic performance and life cycle assessment. Appl. Energy. 2014;134:150–162. doi: 10.1016/j.apenergy.2014.07.112. DOI
Jiang S., Xu Y.Y., Zhang H.P., White C.B., Yan X. Seven-hole hollow polyester fibers as reinforcement in sound absorption chlorinated polyethylene composites. Appl. Acoust. 2012;73:243–247. doi: 10.1016/j.apacoust.2011.09.006. DOI
Zhang S.P., Li Y., Zheng Z.Y. Effect of physiochemical structure on energy absorption properties of plant fibers reinforced composites: Dielectric, thermal insulation, and sound absorption properties. Compos. Commun. 2018;10:163–167. doi: 10.1016/j.coco.2018.09.006. DOI
Zhang J., Shen Y., Jiang B., Li Y. Sound absorption characterization of natural materials and sandwich structure composites. Aerospace. 2018;5:75. doi: 10.3390/aerospace5030075. DOI
Jayamani E., Hamdan S., Bakri M.K.B., Kok Heng S., Rahman M.R., Kakar A. Analysis of natural fiber polymer composites: Effects of alkaline treatment on sound absorption. J. Reinf. Plast. Compos. 2016;35:703–711. doi: 10.1177/0731684415620046. DOI
Garkhail S., Heijenrath R., Peijs T. Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene. Appl. Compos. Mater. 2000;7:351–372. doi: 10.1023/A:1026590124038. DOI
Rana A.K., Mandal A., Mitra B.C., Jacobson R., Rowell R., Banerjee A.N. Short jute fiber-reinforced polypropylene composites: Effect of compatibilizer. J. Appl. Polym. Sci. 1998;69:329–338. doi: 10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14>3.0.CO;2-R. DOI
Mohanty S., Nayak S., Verma S., Tripathy S. Effect of MAPP as a coupling agent on the performance of jute–PP composites. J. Reinf. Plast. Compos. 2004;23:625–637. doi: 10.1177/0731684404032868. DOI
Alavudeen A., Rajini N., Karthikeyan S., Thiruchitrambalam M., Venkateshwaren N. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Mater. Des. 2015;66:246–257. doi: 10.1016/j.matdes.2014.10.067. DOI
Abdellaoui H., Bensalah H., Echaabi J., Bouhfid R., Qaiss A. Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Mater. Des. 2015;68:104–113. doi: 10.1016/j.matdes.2014.11.059. DOI
Kaur E., Kalra E. Effect on tensile and flexural properties of coconut fiber-reinforced with fresh plus recycled high density polyethylene based natural fiber composites. Int. J. Eng. Pure Appl. Sci. 2016;2:191–195.
Pan N. Theoretical determination of the optimal fiber volume fraction and fiber-matrix property compatibility of short fiber composites. Polym. Compos. 1993;14:85–93. doi: 10.1002/pc.750140202. DOI
Ouensanga A., Picard C. Thermal degradation of sugar cane bagasse. Thermochim. Acta. 1988;5:89–97. doi: 10.1016/0040-6031(88)87213-7. DOI
Nogi M., Ifuku S., Abe K., Handa K., Nakagaito A.N., Yano H. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber-reinforced composites. Appl. Phys. Lett. 2009;5:210–215. doi: 10.1063/1.2191667. DOI
Song Y.S., Lee J.T., Ji D.S., Kim M.W., Lee S.H., Youn J.R. Viscoelastic and thermal behavior of woven hemp fiber-reinforced poly(lactic acid) composites. Compos. Part B Appl. Eng. 2012;43:856–860. doi: 10.1016/j.compositesb.2011.10.021. DOI