Durability and Accelerated Ageing of Natural Fibers in Concrete as a Sustainable Construction Material

. 2023 Oct 27 ; 16 (21) : . [epub] 20231027

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37959502

Grantová podpora
2023:31140/1312/3111 Internal Grant Agency of the Faculty of Engineering, Czech University of Life Sciences Prague, project "Numerical and experimental analysis of hybrid composites partially reinforced with bio-fibers and fillers", (no. 2023:31140/1312/3111)
20233108 Integral Grant Agency of the Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, project "Appropriate technologies in waste and water management" [no. 20233108].

This paper presents an experimental study on the influence of alkaline environments on natural fibers of plant and mineral origin in concretes. The durability of concrete-based composite materials is influenced by the properties of the reinforcing fiber, and the serviceability of concrete is dependent on its durability. The aim of the present study is to investigate the strength, weight loss %, and surface degradation of jute, sugarcane, coconut, sisal, as well as basalt fibers through an accelerated aging method when used as reinforcements in concrete. The samples were immersed in an alkaline environment of sodium and calcium hydroxide at two different levels of pH for one week. Further, the fibers were immersed in NaOH and Ca(OH)2 solutions of 1 M, 2 M, 4 M, and 6 M concentrations for 48 h in order to investigate the gradual effect of an alkaline environment on the mechanical properties of the fiber. It was concluded that the weight loss % was greatest for jute fibers when used in concrete composite, while there was no significant effect on the basalt fiber samples. The strength of jute fiber in the concrete sample was also most severely affected by the aging process, compared to other fibers. The strength of basalt fibers in a concrete composite was least affected by the aging process. In some cases, the sisal fiber sample showed an increase in fiber tenacity after the aging process due to fibrillation, which might have increased the interfacial area. The fiber microstructure before and after the aging was evaluated through the use of scanning electron microscopy (SEM). SEM analyses of different fibers were carried out to investigate surface degradation. The fiber pull-out strength was found to be the greatest for basalt fiber, followed by jute and sisal. This is indicative of the excellent adhesion of such fibers with cement in a concrete composite. In these cases, the use of sisal fiber results in defibrillation and increased specific surface area. Sugarcane and coconut fibers ruptured due to their inherent weakness and provided only a small increment in the mechanical performance of the concrete. Basalt fiber-reinforced concrete offered the greatest compressive strength, followed by jute and sisal. These observations provide crucial information regarding the durability and aging of natural fiber-reinforced concrete.

Zobrazit více v PubMed

Hasan K.M.F., Horváth P.G., Alpár T. Lignocellulosic fiber cement compatibility: A state of the art review. J. Nat. Fibers. 2022;19:5409–5434. doi: 10.1080/15440478.2021.1875380. DOI

Torgal F.P., Jalali S. Natural Fiber Reinforced Concrete, No. 1994. Volume 1. Woodhead Publishing Limited; Sawston, UK: 2011. pp. 24–39.

Silveira D., Varum H., Costa A., Martins T., Pereira H., Almeida J. Mechanical properties of adobe bricks in ancient constructions. Constr. Build. Mater. 2012;28:36–44. doi: 10.1016/j.conbuildmat.2011.08.046. DOI

Torgal F.P., Jalali S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012;29:512–519. doi: 10.1016/j.conbuildmat.2011.10.054. DOI

Zakaria M., Ahmed M., Hoque M., Islam S. Scope of using jute fiber for the reinforcement of concrete material. Text. Cloth. Sustain. 2016;1:2–11. doi: 10.1186/s40689-016-0022-5. DOI

Bourmaud A., Baley C. Nanoindentation contribution to mechanical characterization of vegetal fibers. Compos. Part B Eng. 2012;43:2861–2866. doi: 10.1016/j.compositesb.2012.04.050. DOI

Chandramohan D., Marimuthu K. A Review on Natural Fibers. Sci. Res. 2011;8:194–206.

Pérez E., Famá L., Pardo S.G., Abad M.J., Bernal C. Tensile and fracture behaviour of PP/wood flour composites. Compos. Part B Eng. 2012;43:2795–2800. doi: 10.1016/j.compositesb.2012.04.041. DOI

Shih Y.F., Cai J.X., Kuan C.S., Hsieh C.F. Plant fibers and wasted fiber/epoxy green composites. Compos. Part B Eng. 2012;43:2817–2821. doi: 10.1016/j.compositesb.2012.04.044. DOI

Jamshaid H., Mishra R.K., Raza A., Hussain U., Rahman M.L., Nazari S., Chandan V., Muller M., Choteborsky R. Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance. Materials. 2022;15:874. doi: 10.3390/ma15030874. PubMed DOI PMC

Milanese A.C., Cioffi M.O.H., Voorwald H.J.C. Thermal and mechanical behaviour of sisal/phenolic composites. Compos. Part B Eng. 2012;43:2843–2850. doi: 10.1016/j.compositesb.2012.04.048. DOI

Huang J., Rodrigue D. Stiffness Behavior of Sisal Fiber Reinforced Foam Concrete under Flexural Loading. J. Nat. Fiber. 2022;19:12251–12267. doi: 10.1080/15440478.2022.2054896. DOI

Huang J., Tian G., Huang P., Chen Z. Flexural Performance of Sisal Fiber Reinforced Foamed Concrete under Static and Fatigue Loading. Materials. 2020;13:3098. doi: 10.3390/ma13143098. PubMed DOI PMC

Khan M., Ali M. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Constr. Build. Mater. 2019;203:174–187. doi: 10.1016/j.conbuildmat.2019.01.103. DOI

Frappa G., Pauletta M. Seismic retrofitting of a reinforced concrete building with strongly different stiffness in the main directions; Proceedings of the 14th Fib International PhD Symposium in Civil Engineering; Rome, Italy. 5–7 September 2022.

Messiry M.E., Fadel N. Tailoring the mechanical properties of jute woven/cement composite for innovation in the architectural constructions. J. Nat. Fibers. 2021;18:1181–1193. doi: 10.1080/15440478.2019.1688748. DOI

Palanikumar K., Ramesh M., Reddy K.H. Experimental Investigation on the mechanical properties of green hybrid sisal and glass fiber reinforced polymer composites. J. Nat. Fibers. 2016;13:321–331. doi: 10.1080/15440478.2015.1029192. DOI

Kavitha S., Kala T.F. A review on natural fibers in the concrete. Int. J. Adv. Eng. Technol. 2018;1:32–35.

Elshazli M.T., Ramirez K., Ibrahim A., Badran M. Mechanical, Durability and Corrosion Properties of Basalt Fiber Concrete. Fibers. 2022;10:10. doi: 10.3390/fib10020010. DOI

Palanisamy E., Ramasamy M. Dependency of sisal and banana fiber on mechanical and durability properties of polypropylene hybrid fiber reinforced concrete. J. Nat. Fibers. 2022;19:3147–3157. doi: 10.1080/15440478.2020.1840477. DOI

Rajendran M., Nagarajan C. Experimental investigation on bio-composite using jute and banana fiber as a potential substitute of solid wood-based materials. J. Nat. Fibers. 2022;19:4557–4566. doi: 10.1080/15440478.2020.1867943. DOI

Jaballi S., Miraoui I., Hassis H. Long-unidirectional palm and sisal fibers reinforced composite: An experimental investigation. J. Nat. Fibers. 2017;14:368–378. doi: 10.1080/15440478.2016.1212758. DOI

Prasanthi P.P., Babu K.S., Kumar M.S., Kumar A.E. Analysis of sisal fiber waviness effect on the elastic properties of natural composites using analytical and experimental methods. J. Nat. Fibers. 2021;18:1675–1688. doi: 10.1080/15440478.2019.1697987. DOI

Zakaria M., Ahmed M., Hoque M., Shaid A. A Comparative study of the mechanical properties of jute fiber and yarn reinforced concrete composites. J. Nat. Fibers. 2020;17:676–687. doi: 10.1080/15440478.2018.1525465. DOI

Ahmad S., Khushnood R.A., Jagdale P., Tulliani J.M., Ferro G.A. High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Mater. Des. 2015;76:223–329. doi: 10.1016/j.matdes.2015.03.048. DOI

Rashid K., Balouch N. Influence of steel fibers extracted from waste tires on shear behavior of reinforced concrete beams. Struct. Concr. 2017;18:589–596. doi: 10.1002/suco.201600194. DOI

Rashid K., Nazir S. A sustainable approach to optimum utilization of used foundry sand in concrete. Sci. Eng. Compos. Mater. 2018;25:927–937. doi: 10.1515/secm-2017-0012. DOI

Ayub T., Shafiq N., Nuruddin M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014;77:131–139. doi: 10.1016/j.proeng.2014.07.029. DOI

Ali M. Seismic performance of coconut-fiber-reinforced-concrete columns with different reinforcement configurations of coconut-fiber ropes. Constr. Build. Mater. 2014;70:226–230. doi: 10.1016/j.conbuildmat.2014.07.086. DOI

Elsaid A., Dawood M., Seracino R., Bobko C. Mechanical properties of kenaf fiber reinforced concrete. Constr. Build. Mater. 2011;25:1991–2001. doi: 10.1016/j.conbuildmat.2010.11.052. DOI

Beskopylny A.N., Stel’makh S.A., Shcherban E.M., Mailyan L.R., Meskhi B., Shilov A.A., Beskopylny N., Chernil’nik A. Enhanced Performance of Concrete Dispersedly Reinforced with Sisal Fibers. Appl. Sci. 2022;12:9102. doi: 10.3390/app12189102. DOI

Thanushan K., Yogananth Y., Sangeeth P., Coonghe J.G., Sathiparan N. Strength and durability characteristics of coconut fibre reinforced earth cement blocks. J. Nat. Fibers. 2021;18:773–788. doi: 10.1080/15440478.2019.1652220. DOI

Jamshaid H., Mishra R., Noman M.T. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2018;109:879–890. doi: 10.1080/00405000.2017.1381394. DOI

Alengaram U.J., Al Muhit B.A., Bin Jumaat M.Z. Utilization of oil palm kernel shell as lightweight aggregate in concrete—A review. Constr. Build. Mater. 2013;38:161–172. doi: 10.1016/j.conbuildmat.2012.08.026. DOI

Muda Z.C., Syamsir A., Mustapha K.N. Impact resistance behaviour of banana fiber reinforced slabs. IOP Conf. Ser. Earth Environ. Sci. 2016;32:012017. doi: 10.1088/1755-1315/32/1/012017. DOI

Pajak M., Ponikiewski T. Experimental investigation on hybrid steel fibers reinforced self-compacting concrete under flexure. Procedia Eng. 2017;193:218–225. doi: 10.1016/j.proeng.2017.06.207. DOI

Jamshaid H., Mishra R., Militky J., Pechociakova M., Noman M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fiber. Polym. 2016;17:1675–1686. doi: 10.1007/s12221-016-6563-z. DOI

Standard Specification for Fineness of Types of Alpaca. American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.

Standard Test Method for Assessing Clean Flax Fiber Fineness. American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.

Standard Test Method for Length and Length Distribution of Manufactured Staple Fibers (Single-Fiber Test) American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.

Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. American Society for Testing and Materials; West Conshohocken, PA, USA: 2016.

Standard Test Methods for Density Determination of Flax Fiber. American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.

Standard Test Methods for Constituent Content of Composite Materials. American Society for Testing and Materials; West Conshohocken, PA, USA: 2016.

Standard Test Method for Tensile Properties of Single Textile Fibers. American Society for Testing and Materials; West Conshohocken, PA, USA: 2020.

Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials; West Conshohocken, PA, USA: 2017.

Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading) American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.

Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.

Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion. American Society for Testing and Materials; West Conshohocken, PA, USA: 2013.

Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. American Society for Testing and Materials; West Conshohocken, PA, USA: 2017.

Standard Tables of Commercial Moisture Regains and Commercial Allowances for Textile Fibers. American Society for Testing and Materials; West Conshohocken, PA, USA: 2020.

Bala S., Chandrashekaran J., Selvan S.S. Experimental investigation of natural fiber reinforced concrete in construction industry. Int. Res. J. Eng. Technol. 2015;2:179–182.

Choi S.Y., Park J.S., Jung W.T. A study on the shrinkage control of fiber reinforced concrete pavement. Procedia Eng. 2011;14:2815–2822. doi: 10.1016/j.proeng.2011.07.354. DOI

Stephens D. Natural fiber reinforced concrete blocks; Proceedings of the 20th WEDC Conf Affordable Water Supply and Sanitation; Colombo, Sri Lanka. 18–20 June 1994; pp. 317–321.

Nazmul R.T., Sainsbury B.-A., Al-Deen S., Garcez E.O., Ashraf M. An Experimental Evaluation of Hemp as an Internal Curing Agent in Concrete Materials. Materials. 2023;16:3993. doi: 10.3390/ma16113993. PubMed DOI PMC

Feng J., Sun W., Zhai H., Wang L., Dong H., Wu Q. Experimental study on hybrid effect evaluation of fiber reinforced concrete subjected to drop weight impacts. Materials. 2018;11:2563. doi: 10.3390/ma11122563. PubMed DOI PMC

Marar K., Eren O., Çelik T. Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Mater. Lett. 2001;47:297–304. doi: 10.1016/S0167-577X(00)00253-6. DOI

Ramakrishna G., Sundararajan T. Impact strength of a few natural fiber reinforced cement mortar slabs: A comparative study. Cem. Concr. Compos. 2005;27:547–553. doi: 10.1016/j.cemconcomp.2004.09.006. DOI

Rehacek S., Simunek I., Kolisko J., Hunka P. Impact resistance of steel fiber reinforced concrete; Proceedings of the Fibre Concrete 2011; Prague, Czech Republic. 8–9 September 2011.

Mishra R., Petru M. Natural Cellulosic Fiber Reinforced Bio-Epoxy Based Composites and Their Mechanical Properties. In: Rojas I., Castillo-Secilla D., Herrera L.J., Pomares H., editors. Bioengineering and Biomedical Signal and Image Processing. Volume 12940. Springer; Berling/Heidelberg, Germany: 2021. (Lecture Notes in Computer Science;). BIOMESIP 2021. DOI

Ghulam M.A., Uddin M., Jamshaid H., Raza A., Tahir Z.R., Hussain U., Satti A.N., Hayat N., Arafat A.M. Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. J. Build. Eng. 2020;31:101411. doi: 10.1016/j.jobe.2020.101411. DOI

Hassan T., Jamshaid H., Mishra R., Khan M.Q., Petru M., Novak J., Choteborsky R., Hromasova M. Acoustic, Mechanical and Thermal Properties of Green Composites Reinforced with Natural Fibers Waste. Polymers. 2020;12:654. doi: 10.3390/polym12030654. PubMed DOI PMC

Mishra R., Gupta N., Pachauri R., Behera B.K. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI

Mishra R. FEM based prediction of 3D woven fabric reinforced concrete under mechanical load. J. Build. Eng. 2018;18:95–106. doi: 10.1016/j.jobe.2018.03.003. DOI

Anggono J., Farkas A., Bartos A. Deformation and failure of sugarcane bagasse reinforced PP. Eur. Polym. J. 2019;112:153–160. doi: 10.1016/j.eurpolymj.2018.12.033. DOI

Gu M., Ahmad W., Alaboud T.M., Zia A., Akmal U., Awad Y.A., Alabduljabbar H. Scientometric Analysis and Research Mapping Knowledge of Coconut Fibers in Concrete. Materials. 2022;15:5639. doi: 10.3390/ma15165639. PubMed DOI PMC

Bunsell A.R. Handbook of Properties of Textile and Technical Fibres. Woodhead Publishing; London, UK: 2018.

Omoniyi T.E., Olorunnisola A.O. Effects of manufacturing techniques on the physico-mechanical properties of cement-bonded bagasse fiber composite. J. Nat. Fibers. 2022;19:3916–3927. doi: 10.1080/15440478.2020.1848736. DOI

Joseph L., Madhavan M.K., Jayanarayanan K., Pegoretti A. High Temperature Performance of Concrete Confinement by MWCNT Modified Epoxy Based Fiber Reinforced Composites. Materials. 2022;15:9051. doi: 10.3390/ma15249051. PubMed DOI PMC

Xu J., Ma J., Zhang Q., Sugahara T., Yang Y., Hamada H. Crashworthiness of carbon fiber hybrid composite tubes molded by filament winding. Compos. Struct. 2016;139:130–140. doi: 10.1016/j.compstruct.2015.11.053. DOI

Ma Y., Sugahara T., Yang Y., Hamada H. A study on the energy absorption properties of carbon/aramid fiber filament winding composite tube. Compos. Struct. 2015;123:301–311. doi: 10.1016/j.compstruct.2014.12.067. DOI

Supian A.B.M., Sapuan S.M., Zuhri M.Y.M., Zainudin E.S., Ya H.H., Hisham H.N. Effect of winding orientation on energy absorption and failure modes of filament wound kenaf/glass fibre reinforced epoxy hybrid composite tubes under intermediate-velocity impact (IVI) load. J. Mater. Res. Technol. 2021;10:1–14. doi: 10.1016/j.jmrt.2020.11.103. DOI

Chang Y., Zhou Y., Wang N., Lu K., Wen W., Xu Y. Micro-mechanical damage simulation of filament-wound composite with various winding angle under multi-axial loading. Compos. Struct. 2023;313:116925. doi: 10.1016/j.compstruct.2023.116925. DOI

Pellegrin M.Z.D., Acordi J., Montedo O.R.K. Influence of the length and the content of cellulose fibers obtained from sugarcane bagasse on the mechanical properties of fiber-reinforced mortar composites. J. Nat. Fibers. 2021;18:111–121. doi: 10.1080/15440478.2019.1612311. DOI

Smith N., Virgo G., Buchanan V. Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Mater. Charact. 2008;59:1273–1278. doi: 10.1016/j.matchar.2007.10.011. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...