Durability and Accelerated Ageing of Natural Fibers in Concrete as a Sustainable Construction Material
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2023:31140/1312/3111
Internal Grant Agency of the Faculty of Engineering, Czech University of Life Sciences Prague, project "Numerical and experimental analysis of hybrid composites partially reinforced with bio-fibers and fillers", (no. 2023:31140/1312/3111)
20233108
Integral Grant Agency of the Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, project "Appropriate technologies in waste and water management" [no. 20233108].
PubMed
37959502
PubMed Central
PMC10650171
DOI
10.3390/ma16216905
PII: ma16216905
Knihovny.cz E-zdroje
- Klíčová slova
- accelerated aging, basalt, compressive strength, fiber pull-out, fiber-reinforced concrete, lignocellulose, natural cellulosic fibers, surface degradation,
- Publikační typ
- časopisecké články MeSH
This paper presents an experimental study on the influence of alkaline environments on natural fibers of plant and mineral origin in concretes. The durability of concrete-based composite materials is influenced by the properties of the reinforcing fiber, and the serviceability of concrete is dependent on its durability. The aim of the present study is to investigate the strength, weight loss %, and surface degradation of jute, sugarcane, coconut, sisal, as well as basalt fibers through an accelerated aging method when used as reinforcements in concrete. The samples were immersed in an alkaline environment of sodium and calcium hydroxide at two different levels of pH for one week. Further, the fibers were immersed in NaOH and Ca(OH)2 solutions of 1 M, 2 M, 4 M, and 6 M concentrations for 48 h in order to investigate the gradual effect of an alkaline environment on the mechanical properties of the fiber. It was concluded that the weight loss % was greatest for jute fibers when used in concrete composite, while there was no significant effect on the basalt fiber samples. The strength of jute fiber in the concrete sample was also most severely affected by the aging process, compared to other fibers. The strength of basalt fibers in a concrete composite was least affected by the aging process. In some cases, the sisal fiber sample showed an increase in fiber tenacity after the aging process due to fibrillation, which might have increased the interfacial area. The fiber microstructure before and after the aging was evaluated through the use of scanning electron microscopy (SEM). SEM analyses of different fibers were carried out to investigate surface degradation. The fiber pull-out strength was found to be the greatest for basalt fiber, followed by jute and sisal. This is indicative of the excellent adhesion of such fibers with cement in a concrete composite. In these cases, the use of sisal fiber results in defibrillation and increased specific surface area. Sugarcane and coconut fibers ruptured due to their inherent weakness and provided only a small increment in the mechanical performance of the concrete. Basalt fiber-reinforced concrete offered the greatest compressive strength, followed by jute and sisal. These observations provide crucial information regarding the durability and aging of natural fiber-reinforced concrete.
Zobrazit více v PubMed
Hasan K.M.F., Horváth P.G., Alpár T. Lignocellulosic fiber cement compatibility: A state of the art review. J. Nat. Fibers. 2022;19:5409–5434. doi: 10.1080/15440478.2021.1875380. DOI
Torgal F.P., Jalali S. Natural Fiber Reinforced Concrete, No. 1994. Volume 1. Woodhead Publishing Limited; Sawston, UK: 2011. pp. 24–39.
Silveira D., Varum H., Costa A., Martins T., Pereira H., Almeida J. Mechanical properties of adobe bricks in ancient constructions. Constr. Build. Mater. 2012;28:36–44. doi: 10.1016/j.conbuildmat.2011.08.046. DOI
Torgal F.P., Jalali S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012;29:512–519. doi: 10.1016/j.conbuildmat.2011.10.054. DOI
Zakaria M., Ahmed M., Hoque M., Islam S. Scope of using jute fiber for the reinforcement of concrete material. Text. Cloth. Sustain. 2016;1:2–11. doi: 10.1186/s40689-016-0022-5. DOI
Bourmaud A., Baley C. Nanoindentation contribution to mechanical characterization of vegetal fibers. Compos. Part B Eng. 2012;43:2861–2866. doi: 10.1016/j.compositesb.2012.04.050. DOI
Chandramohan D., Marimuthu K. A Review on Natural Fibers. Sci. Res. 2011;8:194–206.
Pérez E., Famá L., Pardo S.G., Abad M.J., Bernal C. Tensile and fracture behaviour of PP/wood flour composites. Compos. Part B Eng. 2012;43:2795–2800. doi: 10.1016/j.compositesb.2012.04.041. DOI
Shih Y.F., Cai J.X., Kuan C.S., Hsieh C.F. Plant fibers and wasted fiber/epoxy green composites. Compos. Part B Eng. 2012;43:2817–2821. doi: 10.1016/j.compositesb.2012.04.044. DOI
Jamshaid H., Mishra R.K., Raza A., Hussain U., Rahman M.L., Nazari S., Chandan V., Muller M., Choteborsky R. Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance. Materials. 2022;15:874. doi: 10.3390/ma15030874. PubMed DOI PMC
Milanese A.C., Cioffi M.O.H., Voorwald H.J.C. Thermal and mechanical behaviour of sisal/phenolic composites. Compos. Part B Eng. 2012;43:2843–2850. doi: 10.1016/j.compositesb.2012.04.048. DOI
Huang J., Rodrigue D. Stiffness Behavior of Sisal Fiber Reinforced Foam Concrete under Flexural Loading. J. Nat. Fiber. 2022;19:12251–12267. doi: 10.1080/15440478.2022.2054896. DOI
Huang J., Tian G., Huang P., Chen Z. Flexural Performance of Sisal Fiber Reinforced Foamed Concrete under Static and Fatigue Loading. Materials. 2020;13:3098. doi: 10.3390/ma13143098. PubMed DOI PMC
Khan M., Ali M. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Constr. Build. Mater. 2019;203:174–187. doi: 10.1016/j.conbuildmat.2019.01.103. DOI
Frappa G., Pauletta M. Seismic retrofitting of a reinforced concrete building with strongly different stiffness in the main directions; Proceedings of the 14th Fib International PhD Symposium in Civil Engineering; Rome, Italy. 5–7 September 2022.
Messiry M.E., Fadel N. Tailoring the mechanical properties of jute woven/cement composite for innovation in the architectural constructions. J. Nat. Fibers. 2021;18:1181–1193. doi: 10.1080/15440478.2019.1688748. DOI
Palanikumar K., Ramesh M., Reddy K.H. Experimental Investigation on the mechanical properties of green hybrid sisal and glass fiber reinforced polymer composites. J. Nat. Fibers. 2016;13:321–331. doi: 10.1080/15440478.2015.1029192. DOI
Kavitha S., Kala T.F. A review on natural fibers in the concrete. Int. J. Adv. Eng. Technol. 2018;1:32–35.
Elshazli M.T., Ramirez K., Ibrahim A., Badran M. Mechanical, Durability and Corrosion Properties of Basalt Fiber Concrete. Fibers. 2022;10:10. doi: 10.3390/fib10020010. DOI
Palanisamy E., Ramasamy M. Dependency of sisal and banana fiber on mechanical and durability properties of polypropylene hybrid fiber reinforced concrete. J. Nat. Fibers. 2022;19:3147–3157. doi: 10.1080/15440478.2020.1840477. DOI
Rajendran M., Nagarajan C. Experimental investigation on bio-composite using jute and banana fiber as a potential substitute of solid wood-based materials. J. Nat. Fibers. 2022;19:4557–4566. doi: 10.1080/15440478.2020.1867943. DOI
Jaballi S., Miraoui I., Hassis H. Long-unidirectional palm and sisal fibers reinforced composite: An experimental investigation. J. Nat. Fibers. 2017;14:368–378. doi: 10.1080/15440478.2016.1212758. DOI
Prasanthi P.P., Babu K.S., Kumar M.S., Kumar A.E. Analysis of sisal fiber waviness effect on the elastic properties of natural composites using analytical and experimental methods. J. Nat. Fibers. 2021;18:1675–1688. doi: 10.1080/15440478.2019.1697987. DOI
Zakaria M., Ahmed M., Hoque M., Shaid A. A Comparative study of the mechanical properties of jute fiber and yarn reinforced concrete composites. J. Nat. Fibers. 2020;17:676–687. doi: 10.1080/15440478.2018.1525465. DOI
Ahmad S., Khushnood R.A., Jagdale P., Tulliani J.M., Ferro G.A. High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Mater. Des. 2015;76:223–329. doi: 10.1016/j.matdes.2015.03.048. DOI
Rashid K., Balouch N. Influence of steel fibers extracted from waste tires on shear behavior of reinforced concrete beams. Struct. Concr. 2017;18:589–596. doi: 10.1002/suco.201600194. DOI
Rashid K., Nazir S. A sustainable approach to optimum utilization of used foundry sand in concrete. Sci. Eng. Compos. Mater. 2018;25:927–937. doi: 10.1515/secm-2017-0012. DOI
Ayub T., Shafiq N., Nuruddin M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014;77:131–139. doi: 10.1016/j.proeng.2014.07.029. DOI
Ali M. Seismic performance of coconut-fiber-reinforced-concrete columns with different reinforcement configurations of coconut-fiber ropes. Constr. Build. Mater. 2014;70:226–230. doi: 10.1016/j.conbuildmat.2014.07.086. DOI
Elsaid A., Dawood M., Seracino R., Bobko C. Mechanical properties of kenaf fiber reinforced concrete. Constr. Build. Mater. 2011;25:1991–2001. doi: 10.1016/j.conbuildmat.2010.11.052. DOI
Beskopylny A.N., Stel’makh S.A., Shcherban E.M., Mailyan L.R., Meskhi B., Shilov A.A., Beskopylny N., Chernil’nik A. Enhanced Performance of Concrete Dispersedly Reinforced with Sisal Fibers. Appl. Sci. 2022;12:9102. doi: 10.3390/app12189102. DOI
Thanushan K., Yogananth Y., Sangeeth P., Coonghe J.G., Sathiparan N. Strength and durability characteristics of coconut fibre reinforced earth cement blocks. J. Nat. Fibers. 2021;18:773–788. doi: 10.1080/15440478.2019.1652220. DOI
Jamshaid H., Mishra R., Noman M.T. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2018;109:879–890. doi: 10.1080/00405000.2017.1381394. DOI
Alengaram U.J., Al Muhit B.A., Bin Jumaat M.Z. Utilization of oil palm kernel shell as lightweight aggregate in concrete—A review. Constr. Build. Mater. 2013;38:161–172. doi: 10.1016/j.conbuildmat.2012.08.026. DOI
Muda Z.C., Syamsir A., Mustapha K.N. Impact resistance behaviour of banana fiber reinforced slabs. IOP Conf. Ser. Earth Environ. Sci. 2016;32:012017. doi: 10.1088/1755-1315/32/1/012017. DOI
Pajak M., Ponikiewski T. Experimental investigation on hybrid steel fibers reinforced self-compacting concrete under flexure. Procedia Eng. 2017;193:218–225. doi: 10.1016/j.proeng.2017.06.207. DOI
Jamshaid H., Mishra R., Militky J., Pechociakova M., Noman M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fiber. Polym. 2016;17:1675–1686. doi: 10.1007/s12221-016-6563-z. DOI
Standard Specification for Fineness of Types of Alpaca. American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.
Standard Test Method for Assessing Clean Flax Fiber Fineness. American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.
Standard Test Method for Length and Length Distribution of Manufactured Staple Fibers (Single-Fiber Test) American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.
Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. American Society for Testing and Materials; West Conshohocken, PA, USA: 2016.
Standard Test Methods for Density Determination of Flax Fiber. American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.
Standard Test Methods for Constituent Content of Composite Materials. American Society for Testing and Materials; West Conshohocken, PA, USA: 2016.
Standard Test Method for Tensile Properties of Single Textile Fibers. American Society for Testing and Materials; West Conshohocken, PA, USA: 2020.
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials; West Conshohocken, PA, USA: 2017.
Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading) American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.
Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.
Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion. American Society for Testing and Materials; West Conshohocken, PA, USA: 2013.
Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. American Society for Testing and Materials; West Conshohocken, PA, USA: 2017.
Standard Tables of Commercial Moisture Regains and Commercial Allowances for Textile Fibers. American Society for Testing and Materials; West Conshohocken, PA, USA: 2020.
Bala S., Chandrashekaran J., Selvan S.S. Experimental investigation of natural fiber reinforced concrete in construction industry. Int. Res. J. Eng. Technol. 2015;2:179–182.
Choi S.Y., Park J.S., Jung W.T. A study on the shrinkage control of fiber reinforced concrete pavement. Procedia Eng. 2011;14:2815–2822. doi: 10.1016/j.proeng.2011.07.354. DOI
Stephens D. Natural fiber reinforced concrete blocks; Proceedings of the 20th WEDC Conf Affordable Water Supply and Sanitation; Colombo, Sri Lanka. 18–20 June 1994; pp. 317–321.
Nazmul R.T., Sainsbury B.-A., Al-Deen S., Garcez E.O., Ashraf M. An Experimental Evaluation of Hemp as an Internal Curing Agent in Concrete Materials. Materials. 2023;16:3993. doi: 10.3390/ma16113993. PubMed DOI PMC
Feng J., Sun W., Zhai H., Wang L., Dong H., Wu Q. Experimental study on hybrid effect evaluation of fiber reinforced concrete subjected to drop weight impacts. Materials. 2018;11:2563. doi: 10.3390/ma11122563. PubMed DOI PMC
Marar K., Eren O., Çelik T. Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Mater. Lett. 2001;47:297–304. doi: 10.1016/S0167-577X(00)00253-6. DOI
Ramakrishna G., Sundararajan T. Impact strength of a few natural fiber reinforced cement mortar slabs: A comparative study. Cem. Concr. Compos. 2005;27:547–553. doi: 10.1016/j.cemconcomp.2004.09.006. DOI
Rehacek S., Simunek I., Kolisko J., Hunka P. Impact resistance of steel fiber reinforced concrete; Proceedings of the Fibre Concrete 2011; Prague, Czech Republic. 8–9 September 2011.
Mishra R., Petru M. Natural Cellulosic Fiber Reinforced Bio-Epoxy Based Composites and Their Mechanical Properties. In: Rojas I., Castillo-Secilla D., Herrera L.J., Pomares H., editors. Bioengineering and Biomedical Signal and Image Processing. Volume 12940. Springer; Berling/Heidelberg, Germany: 2021. (Lecture Notes in Computer Science;). BIOMESIP 2021. DOI
Ghulam M.A., Uddin M., Jamshaid H., Raza A., Tahir Z.R., Hussain U., Satti A.N., Hayat N., Arafat A.M. Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. J. Build. Eng. 2020;31:101411. doi: 10.1016/j.jobe.2020.101411. DOI
Hassan T., Jamshaid H., Mishra R., Khan M.Q., Petru M., Novak J., Choteborsky R., Hromasova M. Acoustic, Mechanical and Thermal Properties of Green Composites Reinforced with Natural Fibers Waste. Polymers. 2020;12:654. doi: 10.3390/polym12030654. PubMed DOI PMC
Mishra R., Gupta N., Pachauri R., Behera B.K. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI
Mishra R. FEM based prediction of 3D woven fabric reinforced concrete under mechanical load. J. Build. Eng. 2018;18:95–106. doi: 10.1016/j.jobe.2018.03.003. DOI
Anggono J., Farkas A., Bartos A. Deformation and failure of sugarcane bagasse reinforced PP. Eur. Polym. J. 2019;112:153–160. doi: 10.1016/j.eurpolymj.2018.12.033. DOI
Gu M., Ahmad W., Alaboud T.M., Zia A., Akmal U., Awad Y.A., Alabduljabbar H. Scientometric Analysis and Research Mapping Knowledge of Coconut Fibers in Concrete. Materials. 2022;15:5639. doi: 10.3390/ma15165639. PubMed DOI PMC
Bunsell A.R. Handbook of Properties of Textile and Technical Fibres. Woodhead Publishing; London, UK: 2018.
Omoniyi T.E., Olorunnisola A.O. Effects of manufacturing techniques on the physico-mechanical properties of cement-bonded bagasse fiber composite. J. Nat. Fibers. 2022;19:3916–3927. doi: 10.1080/15440478.2020.1848736. DOI
Joseph L., Madhavan M.K., Jayanarayanan K., Pegoretti A. High Temperature Performance of Concrete Confinement by MWCNT Modified Epoxy Based Fiber Reinforced Composites. Materials. 2022;15:9051. doi: 10.3390/ma15249051. PubMed DOI PMC
Xu J., Ma J., Zhang Q., Sugahara T., Yang Y., Hamada H. Crashworthiness of carbon fiber hybrid composite tubes molded by filament winding. Compos. Struct. 2016;139:130–140. doi: 10.1016/j.compstruct.2015.11.053. DOI
Ma Y., Sugahara T., Yang Y., Hamada H. A study on the energy absorption properties of carbon/aramid fiber filament winding composite tube. Compos. Struct. 2015;123:301–311. doi: 10.1016/j.compstruct.2014.12.067. DOI
Supian A.B.M., Sapuan S.M., Zuhri M.Y.M., Zainudin E.S., Ya H.H., Hisham H.N. Effect of winding orientation on energy absorption and failure modes of filament wound kenaf/glass fibre reinforced epoxy hybrid composite tubes under intermediate-velocity impact (IVI) load. J. Mater. Res. Technol. 2021;10:1–14. doi: 10.1016/j.jmrt.2020.11.103. DOI
Chang Y., Zhou Y., Wang N., Lu K., Wen W., Xu Y. Micro-mechanical damage simulation of filament-wound composite with various winding angle under multi-axial loading. Compos. Struct. 2023;313:116925. doi: 10.1016/j.compstruct.2023.116925. DOI
Pellegrin M.Z.D., Acordi J., Montedo O.R.K. Influence of the length and the content of cellulose fibers obtained from sugarcane bagasse on the mechanical properties of fiber-reinforced mortar composites. J. Nat. Fibers. 2021;18:111–121. doi: 10.1080/15440478.2019.1612311. DOI
Smith N., Virgo G., Buchanan V. Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Mater. Charact. 2008;59:1273–1278. doi: 10.1016/j.matchar.2007.10.011. DOI