Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2022:31140/1312
Internal grant agency of Faculty of Engineering no. 2022:31140/1312, Czech University of Life Sciences, Prague
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministry of Education, Youth and Sports of the Czech Republic, the European Union (European Structural and Investment Funds - Operational Program Research, Development and Education) in the frames of the project "Modular platform for autonomous chassis of
PubMed
35160829
PubMed Central
PMC8837064
DOI
10.3390/ma15030874
PII: ma15030874
Knihovny.cz E-zdroje
- Klíčová slova
- bending, compression, concrete, impact, natural fiber, tensile,
- Publikační typ
- časopisecké články MeSH
The paper reports experimental research regarding the mechanical characteristics of concrete reinforced with natural cellulosic fibers like jute, sisal, sugarcane, and coconut. Each type of natural fiber, with an average of 30 mm length, was mixed with a concrete matrix in varying proportions of 0.5% to 3% mass. The tensile and compressive strength of the developed concrete samples with cellulosic fiber reinforcement gradually increased with the increasing proportion of natural cellulosic fibers up to 2%. A further increase in fiber loading fraction results in deterioration of the mechanical properties. By using jute and sisal fiber reinforcement, about 11.6% to 20.2% improvement in tensile and compressive strength, respectively, was observed compared to plain concrete, just by adding 2% of fibers in the concrete mix. Bending strength increased for the natural fiber-based concrete with up to 1.5% fiber loading. However, a decrease in bending strength was observed beyond 1.5% loading due to cracks at fiber-concrete interface. The impact performance showed gradual improvement with natural fiber loading of up to 2%. The water absorption capacity of natural cellulosic fiber reinforced concrete decreased substantially; however, it increased with the loading percent of fibers. The natural fiber reinforced concrete can be commercially used for interior or exterior pavements and flooring slabs as a sustainable construction material for the future.
Department of Textile Primeasia University Banani Dhaka 1213 Bangladesh
Faculty of Textile Engineering National Textile University Faisalabad 37610 Pakistan
Zobrazit více v PubMed
Hasan K.M.F., Horváth P.G., Alpár T. Lignocellulosic fiber cement compatibility: A state of the art review. J. Nat. Fibers. 2021:1–26. doi: 10.1080/15440478.2021.1875380. DOI
Torgal F.P., Jalali S. Natural Fiber Reinforced Concrete, No. 1994. Volume 1. Woodhead Publishing Limited; Sawston, UK: 2011. pp. 24–39.
Silveira D., Varum H., Costa A., Martins T., Pereira H., Almeida J. Mechanical properties of adobe bricks in ancient constructions. Constr. Build. Mater. 2012;28:36–44. doi: 10.1016/j.conbuildmat.2011.08.046. DOI
Torgal F.P., Jalali S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012;29:512–519. doi: 10.1016/j.conbuildmat.2011.10.054. DOI
Zakaria M., Ahmed M., Hoque M., Islam S. Scope of using jute fiber for the reinforcement of concrete material. Text. Cloth. Sustain. 2016;1:2–11. doi: 10.1186/s40689-016-0022-5. DOI
Bourmaud A., Baley C. Nanoindentation contribution to mechanical characterization of vegetal fibers. Compos. Part B Eng. 2012;43:2861–2866. doi: 10.1016/j.compositesb.2012.04.050. DOI
Chandramohan D., Marimuthu K. A Review on Natural Fibers. Sci. Res. 2011;8:194–206.
Pérez E., Famá L., Pardo S.G., Abad M.J., Bernal C. Tensile and fracture behaviour of PP/wood flour composites. Compos. Part B Eng. 2012;43:2795–2800. doi: 10.1016/j.compositesb.2012.04.041. DOI
Shih Y.F., Cai J.X., Kuan C.S., Hsieh C.F. Plant fibers and wasted fiber/epoxy green composites. Compos. Part B Eng. 2012;43:2817–2821. doi: 10.1016/j.compositesb.2012.04.044. DOI
Kavitha S., Kala T.F. A review on natural fibers in the concrete. Int. J. Adv. Eng. Technol. 2018;1:32–35.
Milanese A.C., Cioffi M.O.H., Voorwald H.J.C. Thermal and mechanical behaviour of sisal/phenolic composites. Compos. Part B Eng. 2012;43:2843–2850. doi: 10.1016/j.compositesb.2012.04.048. DOI
Vajje S., Krishna N.R. Study on addition of the natural fibers into concrete. Int. J. Sci. Technol. Res. 2013;2:213–218.
Messiry M.E., Fadel N. Tailoring the mechanical properties of jute woven/cement composite for innovation in the architectural constructions. J. Nat. Fibers. 2021;18:1181–1193. doi: 10.1080/15440478.2019.1688748. DOI
Palanikumar K., Ramesh M., Reddy K.H. Experimental Investigation on the mechanical properties of green hybrid sisal and glass fiber reinforced polymer composites. J. Nat. Fibers. 2016;13:321–331. doi: 10.1080/15440478.2015.1029192. DOI
Palanisamy E., Ramasamy M. Dependency of sisal and banana fiber on mechanical and durability properties of polypropylene hybrid fiber reinforced concrete. J. Nat. Fibers. 2020:1–11. doi: 10.1080/15440478.2020.1840477. DOI
Rajendran M., Nagarajan C. Experimental investigation on bio-composite using jute and banana fiber as a potential substitute of solid wood-based materials. J. Nat. Fibers. 2021:1–10. doi: 10.1080/15440478.2020.1867943. DOI
Jaballi S., Miraoui I., Hassis H. Long-unidirectional palm and sisal fibers reinforced composite: An experimental investigation. J. Nat. Fibers. 2017;14:368–378. doi: 10.1080/15440478.2016.1212758. DOI
Prasanthi P.P., Babu K.S., Kumar M.S., Kumar A.E. Analysis of sisal fiber waviness effect on the elastic properties of natural composites using analytical and experimental methods. J. Nat. Fibers. 2021;18:1675–1688. doi: 10.1080/15440478.2019.1697987. DOI
Zakaria M., Ahmed M., Hoque M., Shaid A. A Comparative study of the mechanical properties of jute fiber and yarn reinforced concrete composites. J. Nat. Fibers. 2020;17:676–687. doi: 10.1080/15440478.2018.1525465. DOI
Ahmad S., Khushnood R.A., Jagdale P., Tulliani J.M., Ferro G.A. High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Mater. Des. 2015;76:223–329. doi: 10.1016/j.matdes.2015.03.048. DOI
Rashid K., Balouch N. Influence of steel fibers extracted from waste tires on shear behavior of reinforced concrete beams. Struct. Concr. 2017;18:589–596. doi: 10.1002/suco.201600194. DOI
Rashid K., Nazir S. A sustainable approach to optimum utilization of used foundry sand in concrete. Sci. Eng. Compos. Mater. 2018;25:927–937. doi: 10.1515/secm-2017-0012. DOI
Ayub T., Shafiq N., Nuruddin M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014;77:131–139. doi: 10.1016/j.proeng.2014.07.029. DOI
Ali M. Seismic performance of coconut-fiber-reinforced-concrete columns with different reinforcement configurations of coconut-fiber ropes. Constr. Build. Mater. 2014;70:226–230. doi: 10.1016/j.conbuildmat.2014.07.086. DOI
Elsaid A., Dawood M., Seracino R., Bobko C. Mechanical properties of kenaf fiber reinforced concrete. Constr. Build. Mater. 2011;25:1991–2001. doi: 10.1016/j.conbuildmat.2010.11.052. DOI
Thanushan K., Yogananth Y., Sangeeth P., Coonghe J.G., Sathiparan N. Strength and durability characteristics of coconut fibre reinforced earth cement blocks. J. Nat. Fibers. 2021;18:773–788. doi: 10.1080/15440478.2019.1652220. DOI
Jamshaid H., Mishra R., Noman M.T. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2018;109:879–890. doi: 10.1080/00405000.2017.1381394. DOI
Alengaram U.J., Al Muhit B.A., Bin Jumaat M.Z. Utilization of oil palm kernel shell as lightweight aggregate in concrete—A review. Constr. Build. Mater. 2013;38:161–172. doi: 10.1016/j.conbuildmat.2012.08.026. DOI
Muda Z.C., Syamsir A., Mustapha K.N. Impact resistance behaviour of banana fiber reinforced slabs. IOP Conf. Ser. Earth Environ. Sci. 2016;32:012017. doi: 10.1088/1755-1315/32/1/012017. DOI
Pajak M., Ponikiewski T. Experimental investigation on hybrid steel fibers reinforced self-compacting concrete under flexure. Procedia Eng. 2017;193:218–225. doi: 10.1016/j.proeng.2017.06.207. DOI
Bala S., Chandrashekaran J., Selvan S.S. Experimental investigation of natural fiber reinforced concrete in construction industry. Int. Res. J. Eng. Technol. 2015;2:179–182.
Choi S.Y., Park J.S., Jung W.T. A study on the shrinkage control of fiber reinforced concrete pavement. Procedia Eng. 2011;14:2815–2822. doi: 10.1016/j.proeng.2011.07.354. DOI
Stephens D. Natural fiber reinforced concrete blocks; Proceedings of the 20th WEDC Conference Affordable Water Supply and Sanitation; Colombo, Sri Lanka. 18–20 June 1994; pp. 317–321.
Feng J., Sun W., Zhai H., Wang L., Dong H., Wu Q. Experimental study on hybrid effect evaluation of fiber reinforced concrete subjected to drop weight impacts. Materials. 2018;11:2563. doi: 10.3390/ma11122563. PubMed DOI PMC
Marar K., Eren O., Çelik T. Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Mater. Lett. 2001;47:297–304. doi: 10.1016/S0167-577X(00)00253-6. DOI
Ramakrishna G., Sundararajan T. Impact strength of a few natural fiber reinforced cement mortar slabs: A comparative study. Cem. Concr. Compos. 2005;27:547–553. doi: 10.1016/j.cemconcomp.2004.09.006. DOI
Rehacek S., Simunek I., Kolisko J., Hunka P. Impact resistance of steel fiber reinforced concrete; Proceedings of the Fibre Concrete 2011; Prague, Czech Republic. 8–9 September 2011.
Mishra R., Petru M. Natural Cellulosic Fiber Reinforced Bio-Epoxy Based Composites and Their Mechanical Properties. In: Rojas I., Castillo-Secilla D., Herrera L.J., Pomares H., editors. Bioengineering and Biomedical Signal and Image Processing. Volume 12940. Springer; Berling/Heidelberg, Germany: 2021. BIOMESIP 2021; Lecture Notes in Computer Science. DOI
Ghulam M.A., Uddin M., Jamshaid H., Raza A., Tahir Z.R., Hussain U., Satti A.N., Hayat N., Arafat A.M. Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. J. Build. Eng. 2020;31:101411. doi: 10.1016/j.jobe.2020.101411. DOI
Hassan T., Jamshaid H., Mishra R., Khan M.Q., Petru M., Novak J., Choteborsky R., Hromasova M. Acoustic, Mechanical and Thermal Properties of Green Composites Reinforced with Natural Fibers Waste. Polymers. 2020;12:654. doi: 10.3390/polym12030654. PubMed DOI PMC
Mishra R., Gupta N., Pachauri R., Behera B.K. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI
Mishra R. FEM based prediction of 3D woven fabric reinforced concrete under mechanical load. J. Build. Eng. 2018;18:95–106. doi: 10.1016/j.jobe.2018.03.003. DOI
Anggono J., Farkas A., Bartos A. Deformation and failure of sugarcane bagasse reinforced PP. Eur. Polym. J. 2019;112:153–160. doi: 10.1016/j.eurpolymj.2018.12.033. DOI
Bunsell A.R. Handbook of Properties of Textile and Technical Fibres. Elsevier; London, UK: 2018.
Omoniyi T.E., Olorunnisola A.O. Effects of manufacturing techniques on the physico-mechanical properties of cement-bonded bagasse fiber composite. J. Nat. Fibers. 2020:1–12. doi: 10.1080/15440478.2020.1848736. DOI
Pellegrin M.Z.D., Acordi J., Montedo O.R.K. Influence of the length and the content of cellulose fibers obtained from sugarcane bagasse on the mechanical properties of fiber-reinforced mortar composites. J. Nat. Fibers. 2021;18:111–121. doi: 10.1080/15440478.2019.1612311. DOI
Smith N., Virgo G., Buchanan V. Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Mater. Charact. 2008;59:1273–1278. doi: 10.1016/j.matchar.2007.10.011. DOI
Standard Specification for Fineness of Types of Alpaca. American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.
Standard Test Method for Assessing Clean Flax Fiber Fineness. American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.
Standard Test Method for Length and Length Distribution of Manufactured Staple Fibers (Single-Fiber Test) American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.
Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. American Society for Testing and Materials; West Conshohocken, PA, USA: 2016.
Standard Test Methods for Density Determination of Flax Fiber. American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.
Standard Test Methods for Constituent Content of Composite Materials. American Society for Testing and Materials; West Conshohocken, PA, USA: 2016.
Standard Test Method for Tensile Properties of Single Textile Fibers. American Society for Testing and Materials; West Conshohocken, PA, USA: 2020.
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials; West Conshohocken, PA, USA: 2017.
Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading) American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.
Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.
Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion. American Society for Testing and Materials; West Conshohocken, PA, USA: 2013.
Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. American Society for Testing and Materials; West Conshohocken, PA, USA: 2017.