Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance

. 2022 Jan 24 ; 15 (3) : . [epub] 20220124

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35160829

Grantová podpora
2022:31140/1312 Internal grant agency of Faculty of Engineering no. 2022:31140/1312, Czech University of Life Sciences, Prague
CZ.02.1.01/0.0/0.0/16_025/0007293 Ministry of Education, Youth and Sports of the Czech Republic, the European Union (European Structural and Investment Funds - Operational Program Research, Development and Education) in the frames of the project "Modular platform for autonomous chassis of

The paper reports experimental research regarding the mechanical characteristics of concrete reinforced with natural cellulosic fibers like jute, sisal, sugarcane, and coconut. Each type of natural fiber, with an average of 30 mm length, was mixed with a concrete matrix in varying proportions of 0.5% to 3% mass. The tensile and compressive strength of the developed concrete samples with cellulosic fiber reinforcement gradually increased with the increasing proportion of natural cellulosic fibers up to 2%. A further increase in fiber loading fraction results in deterioration of the mechanical properties. By using jute and sisal fiber reinforcement, about 11.6% to 20.2% improvement in tensile and compressive strength, respectively, was observed compared to plain concrete, just by adding 2% of fibers in the concrete mix. Bending strength increased for the natural fiber-based concrete with up to 1.5% fiber loading. However, a decrease in bending strength was observed beyond 1.5% loading due to cracks at fiber-concrete interface. The impact performance showed gradual improvement with natural fiber loading of up to 2%. The water absorption capacity of natural cellulosic fiber reinforced concrete decreased substantially; however, it increased with the loading percent of fibers. The natural fiber reinforced concrete can be commercially used for interior or exterior pavements and flooring slabs as a sustainable construction material for the future.

Zobrazit více v PubMed

Hasan K.M.F., Horváth P.G., Alpár T. Lignocellulosic fiber cement compatibility: A state of the art review. J. Nat. Fibers. 2021:1–26. doi: 10.1080/15440478.2021.1875380. DOI

Torgal F.P., Jalali S. Natural Fiber Reinforced Concrete, No. 1994. Volume 1. Woodhead Publishing Limited; Sawston, UK: 2011. pp. 24–39.

Silveira D., Varum H., Costa A., Martins T., Pereira H., Almeida J. Mechanical properties of adobe bricks in ancient constructions. Constr. Build. Mater. 2012;28:36–44. doi: 10.1016/j.conbuildmat.2011.08.046. DOI

Torgal F.P., Jalali S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012;29:512–519. doi: 10.1016/j.conbuildmat.2011.10.054. DOI

Zakaria M., Ahmed M., Hoque M., Islam S. Scope of using jute fiber for the reinforcement of concrete material. Text. Cloth. Sustain. 2016;1:2–11. doi: 10.1186/s40689-016-0022-5. DOI

Bourmaud A., Baley C. Nanoindentation contribution to mechanical characterization of vegetal fibers. Compos. Part B Eng. 2012;43:2861–2866. doi: 10.1016/j.compositesb.2012.04.050. DOI

Chandramohan D., Marimuthu K. A Review on Natural Fibers. Sci. Res. 2011;8:194–206.

Pérez E., Famá L., Pardo S.G., Abad M.J., Bernal C. Tensile and fracture behaviour of PP/wood flour composites. Compos. Part B Eng. 2012;43:2795–2800. doi: 10.1016/j.compositesb.2012.04.041. DOI

Shih Y.F., Cai J.X., Kuan C.S., Hsieh C.F. Plant fibers and wasted fiber/epoxy green composites. Compos. Part B Eng. 2012;43:2817–2821. doi: 10.1016/j.compositesb.2012.04.044. DOI

Kavitha S., Kala T.F. A review on natural fibers in the concrete. Int. J. Adv. Eng. Technol. 2018;1:32–35.

Milanese A.C., Cioffi M.O.H., Voorwald H.J.C. Thermal and mechanical behaviour of sisal/phenolic composites. Compos. Part B Eng. 2012;43:2843–2850. doi: 10.1016/j.compositesb.2012.04.048. DOI

Vajje S., Krishna N.R. Study on addition of the natural fibers into concrete. Int. J. Sci. Technol. Res. 2013;2:213–218.

Messiry M.E., Fadel N. Tailoring the mechanical properties of jute woven/cement composite for innovation in the architectural constructions. J. Nat. Fibers. 2021;18:1181–1193. doi: 10.1080/15440478.2019.1688748. DOI

Palanikumar K., Ramesh M., Reddy K.H. Experimental Investigation on the mechanical properties of green hybrid sisal and glass fiber reinforced polymer composites. J. Nat. Fibers. 2016;13:321–331. doi: 10.1080/15440478.2015.1029192. DOI

Palanisamy E., Ramasamy M. Dependency of sisal and banana fiber on mechanical and durability properties of polypropylene hybrid fiber reinforced concrete. J. Nat. Fibers. 2020:1–11. doi: 10.1080/15440478.2020.1840477. DOI

Rajendran M., Nagarajan C. Experimental investigation on bio-composite using jute and banana fiber as a potential substitute of solid wood-based materials. J. Nat. Fibers. 2021:1–10. doi: 10.1080/15440478.2020.1867943. DOI

Jaballi S., Miraoui I., Hassis H. Long-unidirectional palm and sisal fibers reinforced composite: An experimental investigation. J. Nat. Fibers. 2017;14:368–378. doi: 10.1080/15440478.2016.1212758. DOI

Prasanthi P.P., Babu K.S., Kumar M.S., Kumar A.E. Analysis of sisal fiber waviness effect on the elastic properties of natural composites using analytical and experimental methods. J. Nat. Fibers. 2021;18:1675–1688. doi: 10.1080/15440478.2019.1697987. DOI

Zakaria M., Ahmed M., Hoque M., Shaid A. A Comparative study of the mechanical properties of jute fiber and yarn reinforced concrete composites. J. Nat. Fibers. 2020;17:676–687. doi: 10.1080/15440478.2018.1525465. DOI

Ahmad S., Khushnood R.A., Jagdale P., Tulliani J.M., Ferro G.A. High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Mater. Des. 2015;76:223–329. doi: 10.1016/j.matdes.2015.03.048. DOI

Rashid K., Balouch N. Influence of steel fibers extracted from waste tires on shear behavior of reinforced concrete beams. Struct. Concr. 2017;18:589–596. doi: 10.1002/suco.201600194. DOI

Rashid K., Nazir S. A sustainable approach to optimum utilization of used foundry sand in concrete. Sci. Eng. Compos. Mater. 2018;25:927–937. doi: 10.1515/secm-2017-0012. DOI

Ayub T., Shafiq N., Nuruddin M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014;77:131–139. doi: 10.1016/j.proeng.2014.07.029. DOI

Ali M. Seismic performance of coconut-fiber-reinforced-concrete columns with different reinforcement configurations of coconut-fiber ropes. Constr. Build. Mater. 2014;70:226–230. doi: 10.1016/j.conbuildmat.2014.07.086. DOI

Elsaid A., Dawood M., Seracino R., Bobko C. Mechanical properties of kenaf fiber reinforced concrete. Constr. Build. Mater. 2011;25:1991–2001. doi: 10.1016/j.conbuildmat.2010.11.052. DOI

Thanushan K., Yogananth Y., Sangeeth P., Coonghe J.G., Sathiparan N. Strength and durability characteristics of coconut fibre reinforced earth cement blocks. J. Nat. Fibers. 2021;18:773–788. doi: 10.1080/15440478.2019.1652220. DOI

Jamshaid H., Mishra R., Noman M.T. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2018;109:879–890. doi: 10.1080/00405000.2017.1381394. DOI

Alengaram U.J., Al Muhit B.A., Bin Jumaat M.Z. Utilization of oil palm kernel shell as lightweight aggregate in concrete—A review. Constr. Build. Mater. 2013;38:161–172. doi: 10.1016/j.conbuildmat.2012.08.026. DOI

Muda Z.C., Syamsir A., Mustapha K.N. Impact resistance behaviour of banana fiber reinforced slabs. IOP Conf. Ser. Earth Environ. Sci. 2016;32:012017. doi: 10.1088/1755-1315/32/1/012017. DOI

Pajak M., Ponikiewski T. Experimental investigation on hybrid steel fibers reinforced self-compacting concrete under flexure. Procedia Eng. 2017;193:218–225. doi: 10.1016/j.proeng.2017.06.207. DOI

Bala S., Chandrashekaran J., Selvan S.S. Experimental investigation of natural fiber reinforced concrete in construction industry. Int. Res. J. Eng. Technol. 2015;2:179–182.

Choi S.Y., Park J.S., Jung W.T. A study on the shrinkage control of fiber reinforced concrete pavement. Procedia Eng. 2011;14:2815–2822. doi: 10.1016/j.proeng.2011.07.354. DOI

Stephens D. Natural fiber reinforced concrete blocks; Proceedings of the 20th WEDC Conference Affordable Water Supply and Sanitation; Colombo, Sri Lanka. 18–20 June 1994; pp. 317–321.

Feng J., Sun W., Zhai H., Wang L., Dong H., Wu Q. Experimental study on hybrid effect evaluation of fiber reinforced concrete subjected to drop weight impacts. Materials. 2018;11:2563. doi: 10.3390/ma11122563. PubMed DOI PMC

Marar K., Eren O., Çelik T. Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Mater. Lett. 2001;47:297–304. doi: 10.1016/S0167-577X(00)00253-6. DOI

Ramakrishna G., Sundararajan T. Impact strength of a few natural fiber reinforced cement mortar slabs: A comparative study. Cem. Concr. Compos. 2005;27:547–553. doi: 10.1016/j.cemconcomp.2004.09.006. DOI

Rehacek S., Simunek I., Kolisko J., Hunka P. Impact resistance of steel fiber reinforced concrete; Proceedings of the Fibre Concrete 2011; Prague, Czech Republic. 8–9 September 2011.

Mishra R., Petru M. Natural Cellulosic Fiber Reinforced Bio-Epoxy Based Composites and Their Mechanical Properties. In: Rojas I., Castillo-Secilla D., Herrera L.J., Pomares H., editors. Bioengineering and Biomedical Signal and Image Processing. Volume 12940. Springer; Berling/Heidelberg, Germany: 2021. BIOMESIP 2021; Lecture Notes in Computer Science. DOI

Ghulam M.A., Uddin M., Jamshaid H., Raza A., Tahir Z.R., Hussain U., Satti A.N., Hayat N., Arafat A.M. Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. J. Build. Eng. 2020;31:101411. doi: 10.1016/j.jobe.2020.101411. DOI

Hassan T., Jamshaid H., Mishra R., Khan M.Q., Petru M., Novak J., Choteborsky R., Hromasova M. Acoustic, Mechanical and Thermal Properties of Green Composites Reinforced with Natural Fibers Waste. Polymers. 2020;12:654. doi: 10.3390/polym12030654. PubMed DOI PMC

Mishra R., Gupta N., Pachauri R., Behera B.K. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI

Mishra R. FEM based prediction of 3D woven fabric reinforced concrete under mechanical load. J. Build. Eng. 2018;18:95–106. doi: 10.1016/j.jobe.2018.03.003. DOI

Anggono J., Farkas A., Bartos A. Deformation and failure of sugarcane bagasse reinforced PP. Eur. Polym. J. 2019;112:153–160. doi: 10.1016/j.eurpolymj.2018.12.033. DOI

Bunsell A.R. Handbook of Properties of Textile and Technical Fibres. Elsevier; London, UK: 2018.

Omoniyi T.E., Olorunnisola A.O. Effects of manufacturing techniques on the physico-mechanical properties of cement-bonded bagasse fiber composite. J. Nat. Fibers. 2020:1–12. doi: 10.1080/15440478.2020.1848736. DOI

Pellegrin M.Z.D., Acordi J., Montedo O.R.K. Influence of the length and the content of cellulose fibers obtained from sugarcane bagasse on the mechanical properties of fiber-reinforced mortar composites. J. Nat. Fibers. 2021;18:111–121. doi: 10.1080/15440478.2019.1612311. DOI

Smith N., Virgo G., Buchanan V. Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Mater. Charact. 2008;59:1273–1278. doi: 10.1016/j.matchar.2007.10.011. DOI

Standard Specification for Fineness of Types of Alpaca. American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.

Standard Test Method for Assessing Clean Flax Fiber Fineness. American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.

Standard Test Method for Length and Length Distribution of Manufactured Staple Fibers (Single-Fiber Test) American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.

Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. American Society for Testing and Materials; West Conshohocken, PA, USA: 2016.

Standard Test Methods for Density Determination of Flax Fiber. American Society for Testing and Materials; West Conshohocken, PA, USA: 2018.

Standard Test Methods for Constituent Content of Composite Materials. American Society for Testing and Materials; West Conshohocken, PA, USA: 2016.

Standard Test Method for Tensile Properties of Single Textile Fibers. American Society for Testing and Materials; West Conshohocken, PA, USA: 2020.

Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials; West Conshohocken, PA, USA: 2017.

Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading) American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.

Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.

Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion. American Society for Testing and Materials; West Conshohocken, PA, USA: 2013.

Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. American Society for Testing and Materials; West Conshohocken, PA, USA: 2017.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...