An Analysis of the Performance and Comfort Properties of Fire-Protective Material by Using Inherently Fire-Retardant Fibers and Knitting Structures

. 2023 Nov 25 ; 16 (23) : . [epub] 20231125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38068090

Grantová podpora
2023:31140/1312/3111 Internal Grant Agency of the Faculty of Engineering, Czech University of Life Sciences Prague, project "Numerical and experimental analysis of hybrid composites partially reinforced with bio-fibers and fillers", (no. 2023:31140/1312/3111)
20233108 Integral Grant Agency of the Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, project "Appropriate technologies in waste and water management" [no. 20233108]
NRPU-8980 HEC funded project NRPU-8980.

This paper investigates the development of fabric materials using several blends of inherently fire-resistant (FR) fibers and various knitted structures. The samples are evaluated with respect to their performance and comfort-related properties. Inherently fire-resistant fibers, e.g., Nomex, Protex, carbon and FR viscose, were used to develop different structures of knitted fabrics. Cross-miss, cross-relief, and vertical tubular structures were knitted by using optimum fiber blend proportions and combinations of stitches. Several important aspects of the fabric samples were investigated, e.g., their physical, mechanical and serviceability performance. Thermo-physiological and tactile/touch-related comfort properties were evaluated in addition to flame resistance performance. An analysis of mechanical performance indicated that the knitted structure has a significant influence on the tensile strength, bursting strength and pilling resistance. The cross-relief structure proved to be the strongest followed by the cross-miss and vertical tubular structures. The FR station suits made from 70:30 Protex/Nomex exhibited the best combination of tensile and bursting strength; therefore, this material is recommended for making a stable and durable station suit. Interestingly, it was also concluded from the experimental study that knitted samples with a cross-relief structure exhibit the best fire-resistance performance. Fiber blends of 70:30 Protex/Nomex and 70:30 Nomex/carbon were found to be optimum in terms of overall performance. The best flame resistance was achieved with Nomex:carbon fiber blends. These results were confirmed with vertical flammability tests, TGA, DTGA and cone calorimetry analysis. The optimization of blend composition as well as knitting structure/architecture is a crucial finding toward designing the best FR station suit in terms of mechanical, dimensional, thermal, thermo-physiological and flame resistance performance.

Zobrazit více v PubMed

White R.H., Dietenberger M.A. Wood Handbook. Forest Products Laboratory; Madison, WI, USA: 2009. pp. 7.1–17.10. Chapter 17: Fire Safety. DOI

He H., Qin Y., Zhu Z., Jiang Q., Ouyang S., Wan Y., Qu X., Xu J., Yu Z. Temperature-Arousing Self-Powered Fire Warning E-Textile Based on p–n Segment Coaxial Aerogel Fibers for Active Fire Protection in Firefighting Clothing. Nano-Micro Lett. 2023;15:226. doi: 10.1007/s40820-023-01200-8. PubMed DOI PMC

Pamuk O. Clothing comfort properties in textile industry. E-J. New World Sci. Acad. 2008;3:A0051.

Son S.Y. Effect of Different Types of Firefighter Station Uniforms on Wearer Mobility using Range of Motion and Electromyography Evidence. Fash. Text. Res. J. 2019;21:209–219. doi: 10.5805/SFTI.2019.21.2.209. DOI

Morel A., Bedek G., Salaün F., Dupont D. A review of heat transfer phenomena and the impact of moisture on firefighters’ clothing and protection. Ergonomics. 2014;57:1078–1089. doi: 10.1080/00140139.2014.907447. PubMed DOI

Mcquerry M., Riedy R., Garringer B. Evaluation of the Performance of Station Wear Worn under a NFPA 1971 Structural Fire Fighter Protective Ensemble. Florida State University; Tallahassee, FL, USA: 2018. Report no FPRF-2018-07.

Gracia M.O., Velazquez L.M., Mercado A.M. Increasing the Burned Time and Mechanical Properties with New Mix as Flame Retardant Based in Hexametaphosphate of Sodium and Borax in Textile 100% Acrylic Fabrics. Adv. Mater. Phy. Chem. 2012;2:99–101. doi: 10.4236/ampc.2012.24B027. DOI

Bajaj P. Handbook of Technical Textiles. Woodhead Publishing Limited; New Delhi, India: 2000. pp. 223–263. Chapter 10: Heat and Flame Protection.

Wu C. Application of A New Firefighter Protective Clothing Material in Fire Rescue Application of a New Firefighter Protective Clothing Material in Fire Rescue. IOP Conf. Ser. Mater. Sci. Eng. 2019;612:032009. doi: 10.1088/1757-899X/612/3/032009. DOI

Mansor A., Abdul Ghani S., Faizul Yahya M. Knitted Fabric Parameters in Relation to Comfort Properties. Am. J. Mater. Sci. 2016;6:147–151. doi: 10.5923/j.materials.20160606.01. DOI

Ziaei M., Ghane M., Hasani H., Saboonchi A. Investigation into the effect of fabric structure on surface temperature distribution in weft-knitted fabrics using thermal imaging technique. Therm. Sci. 2018;2018:1991–1998. doi: 10.2298/TSCI180811290Z. DOI

Basra S.A., Azam Z., Asfand N., Anas S., Iftikhar K., Irshad M.A. Development of interlock knitted seersucker fabric for better comfort properties. J. Eng. Fiber Fab. 2020;15:1558925020963009. doi: 10.1177/1558925020963009. DOI

Majumdar A., Mukhopadhyay S., Yadav R. Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibers. Int. J. Therm. Sci. 2010;49:2042–2048. doi: 10.1016/j.ijthermalsci.2010.05.017. DOI

Kanakaraj O., Ramachandran R. Influence of knit and miss stitches on Air and water vapour permeability of flat knitted rib fabrics. J. Text. Eng. 2017;24:269–274. doi: 10.7216/1300759920172410806. DOI

Assefa A., Govindan N. Physical properties of single jersey derivative knitted cotton fabric with tuck and miss stitches. J. Eng. Fiber Fab. 2020;15:1558925020928532. doi: 10.1177/1558925020928532. DOI

Newcomb B.A. Processing, structure, and properties of carbon fibers. Compos. Part A Appl. Sci. Manuf. 2016;91:262–282. doi: 10.1016/j.compositesa.2016.10.018. DOI

Ince M.E., Yildirim H. Air permeability and bursting strength of weft-knitted fabrics from glass yarn. Part II: Knit architecture effect. J. Text. Inst. 2019;110:1072–1084. doi: 10.1080/00405000.2018.1535758. DOI

Buzaite V., Repon R., Milasiene D., Mikucioniene D. Development of multi-layered weft-knitted fabrics for thermal insulation. J. Ind. Text. 2021;51:246–257. doi: 10.1177/1528083719878811. DOI

Sekerden F. Investigation on the unevenness, tenacity and elongation properties of bamboo/cotton blended yarns. Fiber Text. East. Eur. 2011;86:26–29.

Standard Test Methods for Mass Per Unit Area (Weight) of Fabric. ASTM International; West Conshohocken, PA, USA: 2020.

Standard Test Method for Thickness of Textile Materials. ASTM International; West Conshohocken, PA, USA: 2019.

Standard Test Method for Breaking Strength and Elongation of Textile Fabrics. ASTM International; West Conshohocken, PA, USA: 2021.

Textiles—Bursting Properties of Fabrics—Part 2: Pneumatic Method for Determination of Bursting Strength and Bursting Distension. ISO; Geneva, Switzerland: 2019.

Textiles—Determination of Fabric Propensity to Surface Fuzzing and to Pilling—Part 2: Modified Martindale Method. ISO; Geneva, Switzerland: 2019.

Standard Test Method for Stretch Properties of Knitted Fabrics Having Low Power. ASTM International; West Conshohocken, PA, USA: 1999.

Standard Test Method for Air Permeability of Textile Fabrics. ASTM International; West Conshohocken, PA, USA: 2023.

Textiles—Physiological Effects—Measurement of Thermal and Water-Vapour Resistance under Steady-State Conditions (Sweating Guarded-Hotplate Test) ISO; Geneva, Switzerland: 2014.

Liquid Moisture Management Properties of Textile Fabrics. American Association of Textile Chemists and Colorists; Research Triangle Park, NC, USA: 2011.

Test Method for Relative Hand Value of Textiles: Instrumental. American Association of Textile Chemists and Colorists; Research Triangle Park, NC, USA: 2014.

Standard Test Method for Flame Resistance of Textiles (Vertical Test) ASTM International; West Conshohocken, PA, USA: 2023.

Reaction-to-Fire Tests, Heat Release, Smoke Production and Mass Loss Rate, Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement) ISO; Geneva, Switzerland: 2015.

Standard Test Method for Unsteady-State Heat Transfer Evaluation of Flame-Resistant Materials for Clothing with Continuous Heating. ASTM International; West Conshohocken, PA, USA: 2020.

Rassel M.A. Effect of Fabric Structure and Design on Knitted Fabric Width, Weight and its Strength. J. ELT Edu. 2019;1290:25–30.

Horrocks A.R. Technical Fibers for Heat and Flame Protection. 2nd ed. Elsevier Ltd.; Cambridge, MA, USA: 2016.

Uyanik S., Topalbekiroglu M. The effect of knit structures with tuck stitches on fabric properties and pilling resistance. J. Text Inst. 2017;108:1584–1589. doi: 10.1080/00405000.2016.1269394. DOI

Jamshaid H., Mishra R.K., Raza A., Hussain U., Rahman M.L., Nazari S., Chandan V., Muller M., Choteborsky R. Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance. Materials. 2022;15:874. doi: 10.3390/ma15030874. PubMed DOI PMC

Hossain M.M., Rahman L., Tumpa T.R., Uddin K., Sarkar A., Hussain M.H. A Study on the Effect of Weft Knitted Structures and Stitch Length on the Pilling Behavior of Weft Knitted Fabrics. Int. Res. J. Eng. Tech. 2020;7:3394–3400.

Rahman M. Influence of stitch length and structure on selected mechanical properties of single jersey knitted fabrics with varying cotton percentage in the yarn. J. Text. Eng. Fash. Technol. 2018;4:189–196. doi: 10.15406/jteft.2018.04.00139. DOI

Gokarneshan N. Comfort Properties of Textiles: A Review of Some Breakthroughs in Recent Research. J. Mater. Sci. 2019;5:2–6. doi: 10.19080/JOJMS.2019.05.555662. DOI

El-hady R.A. Effect of stitch type on air permeability of summer outer wear knitted fabrics. Int. J. Adv. Res. Sci. Eng. Technol. 2016;5:1–7. doi: 10.13140/RG.2.2.27552.02562. DOI

Behera B.K., Mishra R.K. Artificial neural network-based prediction of aesthetic and functional properties of worsted suiting fabrics. Int. J. Cloth. Sci. Technol. 2007;19:259–276. doi: 10.1108/09556220710819483. DOI

Ogulata R.T., Mavruz S. Investigation of Porosity and Air Permeability Values of Plain Knitted Fabrics. Fiber Text. East. Eur. 2010;18:71–75.

Öner E., Okur A. The effect of different knitted fabrics’ structures on the moisture transport properties. J. Text I. 2013;104:1164–1177. doi: 10.1080/00405000.2013.782214. DOI

Venkataraman M., Mishra R., Jasikova D., Kotresh T.M. Thermodynamics of aerogel-treated nonwoven fabrics at subzero temperatures. J. Ind. Text. 2015;45:387–404. doi: 10.1177/1528083714534711. DOI

Can S., Tan S. A Study on Thermal and Mechanical Properties of Mechanically Milled HDPE and PP. J. Korean Soc. Dyers Finish. 1992;11:42–47.

Cubric I.S., Skenderi Z., Havenith G. Impact of raw material, yarn and fabric parameters, and finishing on water vapor resistance. Text. Res. J. 2013;83:1215–1228. doi: 10.1177/0040517512471745. DOI

Nayak R., Kanesalingam S., Houshyar S., Vijayan A., Wang L., Padhye R. Effect of repeated laundering and dry-cleaning on the thermo-physiological comfort properties of aramid fabrics. Fibers Polym. 2016;17:954–962. doi: 10.1007/s12221-016-5863-7. DOI

Protex Fiber Information. Technical Guide Available on The Advantages of Kanecaron /Protex|Flame-Retardant Materials|KANEKA CORPORATION (modacrylic.com) [(accessed on 6 September 2023)]. Available online: https://www.modacrylic.com/en/about.

Asano K., Zainuddin M.F. Wear behavior of PAN-and pitch-based carbon fiber reinforced aluminum alloy composites under dry sliding condition. Mater. Trans. 2017;58:898–905. doi: 10.2320/matertrans.M2017002. DOI

Kopitar D., Pavlovic Z., Skenderi Z., Vrljicak Z. Thermal resistance of double jersey fabric knitted by different yarn raw material. IOP Conf. Ser. Mater. Sci. Eng. 2020;827:012061. doi: 10.1088/1757-899X/827/1/012061. DOI

Patil U.J., Kane C.D., Ramesh P. Wickability behaviour of single-knit structures. J. Text. I. 2009;100:457–465. doi: 10.1080/00405000801893240. DOI

Mishra R. In: Novelities in Fibrous Material Science. Mishra R., editor. Volume 5. Technical University of Liberec; Liberec, Czech Republic: 2017.

Tirilmasi A. Investigation of Air Permeability and Moisture Management Properties of the Commercial Single Jersey and Rib Knitted Fabrics. Tekst. Konfeksiyon. 2017;27:27–31.

Yanılmaz M., Kalaog F. Investigation of wicking, wetting and drying properties of acrylic knitted fabrics. Text. Res. J. 2012;82:820–831. doi: 10.1177/0040517511435851. DOI

Masood R., Jamshaid H., Khubaib M.A. Development of knitted vest fabrics for human body thermoregulation. J. Therm. Anal. Calorim. 2020;139:159–167. doi: 10.1007/s10973-019-08430-2. DOI

Yoo S., Barker R.L. Comfort Properties of Heat-Resistant Protective Workwear in Varying Conditions of Physical Activity and Environment. Part I: Thermophysical and Sensorial Properties of Fabrics. Text. Res. J. 2005;75:523–530. doi: 10.1177/0040517505053949. DOI

Elmogahzy Y.E. Engineering Textiles. Elsevier; Berkeley, CA, USA: 2020. pp. 192–220. Chapter 8: Fibers.

Petrusic S., Onofrei E., Bedek G., Codau C., Dupont D., Soulat D. Moisture management of underwear fabrics and linings of firefighter protective clothing assemblies. J. Text. I. 2015;106:1270–1281. doi: 10.1080/00405000.2014.995457. DOI

Cauich-Cupul J.I., Pérez-Pacheco E., Valadez-González A., Herrera-Franco P.J. Effect of moisture absorption on the micromechanical behavior of carbon fiber/epoxy matrix composites. J. Mater. Sci. 2011;46:6664–6672. doi: 10.1007/s10853-011-5619-0. DOI

Obispo S.L. Senior Project BS Material Engineering. California PolyTechnic State University; San Luis Obispo, CA, USA: 2019. Moisture Characterization of Thermoplastics and Thermosets for use as Matrices in Fiber Reinforced Composites.

Nazir A., Hussain T., Ahmad F., Faheem S. Effect of knitting parameters on moisture management and air permeability of interlock fabrics. Autex Res. J. 2014;14:39–46. doi: 10.2478/v10304-012-0045-1. DOI

Kilic G.B., Okur A. Effect of yarn characteristics on surface properties of knitted fabrics. Text. Res. J. 2019;89:2476–2489. doi: 10.1177/0040517518797337. DOI

Kilinc-Balci F.S. Testing, Analyzing and Predicting the Comfort Properties of Textiles. Elsevier Masson SAS; Gainesville, FL, USA: 2011. pp. 138–162. Chapter 6: Improving Comfort in Clothing.

Behera B.K., Pattanayak A.K., Mishra R. Prediction of fabric drape behavior using finite element method. J. Text. Eng. 2008;54:103–110. doi: 10.4188/jte.54.103. DOI

Tamanna T.A., Shibly M.A., Nurunnabi M., Suruj-Zaman M., Mondal B.V., Saha P.K. Investigation of Stretch and Recovery Property of Weft Knitted Regular Rib Fabric. Eur. Sci. J. 2017;13:2017. doi: 10.19044/esj.2017.v13n27p400. DOI

Emirhanova N., Kavusturan Y. Effects of Knit Structure on the Dimensional and Physical Properties of Winter Outerwear Knitted Fabrics. Fibers Text. East. Eur. 2008;16:69–74.

Gu H. Research on thermal properties of Nomex/Viscose FR fiber blended fabric. Mater. Des. 2009;30:4324–4327. doi: 10.1016/j.matdes.2009.04.012. DOI

Crina B., Blaga M., Luminita V., Mishra R. Comfort properties of functional weft knitted spacer fabrics. Tekst. Konfeksiyon. 2013;23:220–227.

Varga K., Noisternig M.F., Griesser U.J., Aljaz L., Koch T. Thermal and sorption study of flame-resistant fibers. Lenzing. Berichte. 2011;89:50–59.

Yang F. Fire-Retardant Carbon-Fiber-Reinforced Thermoset Composites. Elsevier Ltd.; Cambridge, MA, USA: 2017. pp. 271–293. Chapter 10: Novel Fire Retardant Polymers and Composite Materials.

Technical Guide of Nomex® Fiber. [(accessed on 7 September 2023)]. Available online: https://www.dupont.com.

Venkataraman M., Mishra R., Militky J., Hes L. Aerogel based nanoporous fibrous materials for thermal insulation. Fiber. Polym. 2014;15:1444–1449. doi: 10.1007/s12221-014-1444-9. DOI

Chiang Y.C., Lee C.C., Lee H.C. Characterization of microstructure and surface properties of heat-treated PAN-and rayon-based activated carbon fibers. J. Porous Mater. 2007;14:227–237. doi: 10.1007/s10934-006-9028-8. DOI

Sun G., Yoo H.S., Zhang X.S., Pan N. Radiant Protective and Transport Properties of Fabrics Used by Wildland Firefighters. Text. Res. J. 2000;70:567–573. doi: 10.1177/004051750007000702. DOI

Hernandez N., Sonnier R. Influence of grammage on heat release rate of polypropylene fabrics. J. Fire Sci. 2018;36:30–46. doi: 10.1177/0734904117738928. DOI

Haghi A.K. Heat & Mass Transfer in Textiles, Heat. 2nd ed. World Scientific and Engineering Academy and Society; Athens, Greece: 2011. pp. 31–129.

Bedek G., Salaün F., Martinkovska Z., Devaux E., Dupont D. Evaluation of thermal and moisture management properties on knitted fabrics and comparison with a physiological model in warm conditions. Appl. Ergon. 2011;42:792–800. doi: 10.1016/j.apergo.2011.01.001. PubMed DOI

Bajaj P. Fire-retardant materials. Bull. Mater. Sci. 1992;15:67–76. doi: 10.1007/BF02745218. DOI

Fei B. High-Performance Fibers for Textiles. Elsevier Ltd.; Cambridge, MA, USA: 2018.

He H., Yu Z., Zhang C., Li M. Thermal Protective Performance of Firefighters’ Clothing Under Low-Intensity Radiation Heat Exposure. Autex Res. J. 2021;21:234–241. doi: 10.2478/aut-2020-0018. DOI

Liu S., Yang C., Zhao Y., Tao X. The impact of float stitches on the resistance of conductive knitted structures. Text. Res. J. 2016;86:1455–1473. doi: 10.1177/0040517514555798. DOI

Standard on Emergency Services Work Apparel. National Fire Protection Association, 1 Batterymarch Park Quincy; Quincy, MA, USA: 2019.

Kotresh T.M.U., Indushekar R., Subbulakshmi M.S., Vijayalakshmi S.N., Krishna Prasad A.S., Gaurav K. Evaluation of foam/single and multiple layer Nomex fabric combinations in the cone calorimeter. Polym. Test. 2005;24:607–612. doi: 10.1016/j.polymertesting.2005.03.001. DOI

Kotresh T., Indushekar R., Subbulakshmi M., Vijayalakshmi S., Prasad A.K., Padaki V., Agrawal A.K. Effect of heat flux on the burning behaviour of foam and foam/ Nomex III fabric combination in the cone calorimeter. Polym. Test. 2006;25:744–757. doi: 10.1016/j.polymertesting.2006.05.009. DOI

White R.H., Nam S., Parikh D.B. Cone calorimeter evaluation of two flame retardant cotton fabrics. Fire Mater. 2013;37:46–57. doi: 10.1002/fam.2111. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...