Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2024:31140/1312/3104
Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grants no. 2024:31140/1312/3104: "Computational and analytical studies on sandwich composites reinforced with hybrid fibrous materials and bio-fillers"
2024:31140/1312/3102
Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grants no. 2024:31140/1312/3102: "Research of factors affecting ecological processing and use of polymer composite materials based on natural fillers".
PubMed
39685264
PubMed Central
PMC11641941
DOI
10.3390/ma17235826
PII: ma17235826
Knihovny.cz E-zdroje
- Klíčová slova
- comfort, fire fighters’ clothing, infraded thermography, phase change materials, thermal protective testing,
- Publikační typ
- časopisecké články MeSH
Firefighters need personal protection equipment and protective clothing to be safe and protected when responding to fire incidents. At present, firefighters' suits are developed by using inherently thermal-resistant fibers but pose serious problems related to comfort. In the present research, multilayered fire-fighting fabrics were developed with different fiber blends. Multilayer fire retardant (FR) fabrics with phase change materials (PCMs) inserts were developed and compared with reference multilayer fabrics without PCM. In this context, four fabric samples were chosen to fabricate the multilayer FR fabrics. Properties of multilayer fabrics were investigated, which include physical, thermo-physiological comfort, and flame-resistant performance. The heating process of the clothing was examined using infrared (IR) thermography, differential scanning calorimetry (DSC), thermal protective testing (TPP), and steady-state (Convective and Radiant) heat resistance tests. Areal density and thickness were measured as physical parameters, and air permeability (AP), overall moisture management capacity (OMMC), and thermal conductivity were measured as thermo-physiological comfort characteristics. The inclusion of PCM improved the thermal protection as well as flame resistance significantly. Sample S1 (Nomex + PTFE + Nomex with PCM) demonstrated superior fire resistance, air permeability, and thermal protection, with a 37.3% increase in air permeability as compared to the control sample (SC) by maintaining comfort while offering high thermal resilience. The inclusion of PCM enhanced its thermal regulation, moderating heat transfer. Flame resistance tests confirmed its excellent performance, while thermo-physiological assessments highlighted a well-balanced combination of thermal conductivity and air permeability. This study will help to improve the performance of firefighter protective fabrics and provide guidelines in terms of balancing comfort and performance while designing firefighter protective clothing for different climatic conditions.
Zobrazit více v PubMed
Morris C.E., Chander H. The impact of firefighter physical fitness on job performance: A review of the factors that influence fire suppression safety and success. Safety. 2018;4:60. doi: 10.3390/safety4040060. DOI
Phelps H., Sidhu H. A mathematical model for heat transfer in fire fighting suits containing phase change materials. Fire Saf. J. 2015;74:43–47. doi: 10.1016/j.firesaf.2015.04.007. DOI
Mohammed Ali A.H., Yu W. Thermal Protective Performance of Multilayer Fire Fighting Fabric. Int. J. Cloth. Sci. Technol. 2014;26:235–246. doi: 10.1108/IJCST-03-2013-0032. DOI
Atalay O., Bahadir S.K., Kalaoglu F. An Analysis on the Moisture and Thermal Protective Performance of Firefighter Clothing Based on Different Layer Combinations and Effect of Washing on Heat Protection and Vapour Transfer Performance. Adv. Mater. Sci. Eng. 2015;2015:40394. doi: 10.1155/2015/540394. DOI
Barker R.L., Yener M. Evaluating the Resistance of Some Protective Fabrics to Molten Iron. Text. Res. J. 2016;51:533–541. doi: 10.1177/004051758105100807. DOI
Lei Z. Review of the study of relation between the thermal protection performance and the thermal comfort performance of firefighters’ clothing. J. Eng. Fiber. Fabr. 2022;17:15589250211068032. doi: 10.1177/15589250211068032. DOI
Barr D., Gregson W., Reilly T. The thermal ergonomics of firefighting reviewed. Appl. Ergon. 2010;41:161–172. doi: 10.1016/j.apergo.2009.07.001. PubMed DOI
Sati R., Crown E.M., Gonzalez J., Ackerman M., Dale D. Protection from steam at high pressures: Development of a test device and protocol. Int. J. Occup. Saf. Ergon. 2008;14:29–41. doi: 10.1080/10803548.2008.11076748. PubMed DOI
What Kind of Gear Do Firefighters Wear? [(accessed on 21 October 2024)]. Available online: https://work.chron.com/kind-gear-firefighters-wear-9547.html.
Fire Fighting Suit—Universal Fire Protection Co. Pvt Ltd. [(accessed on 21 October 2024)]. Available online: https://universalfireprotection.com.pk/fire-fighting-suit/
How Your Turnout Gear Works—The Scene|A head-to-Toe Safety Blog from the Experts at MSA Fire. [(accessed on 21 October 2024)]. Available online: https://blog.msafire.com/how-your-turnout-gear-works/
The Firefighter Suit: Understanding the Layers of Protection. [(accessed on 21 October 2024)]. Available online: https://eu.tencatefabrics.com/blog/layers-firefighter-suit.
Peeling Back the Fire Suit ‘Onion’, Layer #3: The Thermal Barrier. [(accessed on 21 October 2024)]. Available online: https://eu.tencatefabrics.com/blog/fire-suit-layer-thermal-barrier.
Nayak R., Houshyar S., Padhye R. Recent trends and future scope in the protection and comfort of fire-fighters’ personal protective clothing. Fire Sci. Rev. 2014;3:4. doi: 10.1186/s40038-014-0004-0. DOI
Eryuruk S.H., Gidik H., Koncar V., Kalaoglu F., Tao X., Saglam Y. Heat and moisture transfer properties of a firefighter clothing with a new fire-resistant underwear. J. Ind. Text. 2022;51:4480S–4513S. doi: 10.1177/1528083721993775. DOI
Tekstil Z. Investigation of Flame Retardancy Effect of Licorice Root Extract on Cotton and Cotton-Polyester Blended Fabrics, Meyan Kökü Ekstraktının Pamuk ve Pamuk—Poliester Karışımlı Kumaşlarda Güç. Cukurova Univ. J. Fac. Eng. 2022;37:351–366. doi: 10.21605/cukurovaumfd.1146075. DOI
Kim H.A., Kim S.J. Flame-Retardant and Wear Comfort Properties of Modacrylic/FR-Rayon/Anti-static PET Blend Yarns and Their Woven Fabrics for Clothing. Fibers Polym. 2018;19:1869–1879. doi: 10.1007/s12221-018-1087-3. DOI
Jin L., Hong K., Yoon K. Effect of aerogel on thermal protective performance of firefighter clothing. J. Fiber Bioeng. Inform. 2013;6:315–324. doi: 10.3993/jfbi09201309. DOI
Mishra R., Militky J., Venkataraman M. Nanoporous materials. In: Mishra R., Militky J., editors. The Textile Institute Book Series, Nanotechnology in Textiles. Woodhead Publishing; New York, NY, USA: 2019. pp. 311–353. DOI
Venkataraman M., Mishra R., Militky J., Xiong X., Marek J., Yao J., Zhu G. Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polym. Adv. Technol. 2018;29:2583–2592. doi: 10.1002/pat.4369. DOI
Xiong X., Yang T., Kanai H., Militky J. Thermal and compression characteristics of aerogel-encapsulated textiles. J. Ind. Text. 2018;47:1998–2013. doi: 10.1177/1528083717716167. DOI
Meena M., Kerketta A., Tripathi M., Roy P., Jacob J. Moisture barrier layer with supplemental chemical and biological protective functionality for firefighting clothing applications. J. Ind. Text. 2022;51((Suppl. S4)):6110S–6133S. doi: 10.1177/15280837211073360. DOI
Zhao M. The usage of phase change materials in fire fighter protective clothing: Its effect on thermal protection. IOP Conf. Ser. Mater. Sci. Eng. 2017;274:012136. doi: 10.1088/1757-899X/274/1/012136. DOI
Malaquias A.F., Neves S.F., Campos J.B. Incorporation of phase change materials in fire protective clothing considering the presence of water. Int. J. Therm. Sci. 2023;183:107870. doi: 10.1016/j.ijthermalsci.2022.107870. DOI
Renard M., Machnowski W., Puszkarz A.K. Assessment of Thermal Performance of Phase-Change Material-Based Multilayer Protective Clothing Exposed to Contact and Radiant Heat. Appl. Sci. 2023;13:9447. doi: 10.3390/app13169447. DOI
Atakan R., Bical A., Celebi E., Ozcan G., Soydan N., Sarac A.S. Development of a flame retardant chemical for finishing of cotton, polyester, and CO/PET blends. J. Ind. Text. 2019;49:141–161. doi: 10.1177/1528083718772303. DOI
Atakan R., Özcan G., Er E., Öztürk T., Kardaş D.G. Flame retardancy and non-slip finish in one step process for co/PET fabrics. Tekst. Konfeksiyon. 2019;29:50–57. doi: 10.32710/tekstilvekonfeksiyon.448130. DOI
Eryuruk S.H. Effect of Fabric Layers on Thermal Comfort Properties of Multilayered Thermal Protective Fabrics. Autex Res. J. 2019;19:271–278. doi: 10.1515/aut-2018-0051. DOI
Hossain M.T., Shahid M.A., Ali M.Y., Saha S., Jamal M.S., Habib A. Fabrications, Classifications, and Environmental Impact of PCM-Incorporated Textiles: Current State and Future Outlook. ACS Omega. 2023;8:45164–45176. doi: 10.1021/acsomega.3c05702. PubMed DOI PMC
Li F.F., Zheng C.Q., Qin G.M., Zhou X.H. Research on thermal protective performance of thermal insulation and flame-retardant protective clothing. Adv. Mater. Res. 2013;796:607–612. doi: 10.4028/www.scientific.net/AMR.796.607. DOI
Latifi S., Boukhriss A., Saoiabi S., Saoiabi A., Gmouh S. Flame retardant coating of textile fabrics based on ionic liquids with self-extinguishing, high thermal stability and mechanical properties. Polym. Bull. 2022;80:9253–9274. doi: 10.1007/s00289-022-04513-7. DOI
Zhang H., Liu X., Song G., Yang H. Effects of microencapsulated phase change materials on the thermal behavior of multilayer thermal protective clothing. J. Text. Inst. 2021;112:1004–1013. doi: 10.1080/00405000.2020.1832363. DOI
Jamshaid H., Mishra R., Khan A., Chandan V., Muller M., Valasek P. Flammability and comfort properties of blended knit fabrics made from inherently fire-resistant fibers to use for fire fighters. Heliyon. 2023;9:e13127. doi: 10.1016/j.heliyon.2023.e13127. PubMed DOI PMC
Khan A.A., Jamshaid H., Mishra R.K., Chandan V., Kolář V., Jirků P., Müller M., Nazari S., Alexiou Ivanova T., Hussain T. An Analysis of the Performance and Comfort Properties of Fire-Protective Material by Using Inherently Fire-Retardant Fibers and Knitting Structures. Materials. 2023;16:7347. doi: 10.3390/ma16237347. PubMed DOI PMC
Williams M.E. Advanced Composites in Bridge Construction and Repair. Woodhead Publishing; Sawston, UK: 2014. Repair of deteriorated bridge substructures using carbon fiber-reinforced polymer (CFRP) composites; pp. 265–286. DOI
Infrared Thermography Explained|Reliable Plant. [(accessed on 23 October 2024)]. Available online: https://www.reliableplant.com/infrared-thermography-31572.
Differential Scanning Calorimetry (DSC) Analysis. [(accessed on 23 October 2024)]. Available online: https://www.intertek.com/analysis/dsc/
Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. ASTM International; West Conshohocken, PA, USA: 2015.
Song G., Mandal S., Rossi R.M. Thermal Protective Clothing for Firefighters. Woodhead Publishing; Sawston, UK: 2017. Effects of various factors on performance of thermal protective clothing; pp. 163–182. (Woodhead Publishing Series in Textiles). DOI
Thermal Protective Performance—Thermetrics Thermal Solutions. [(accessed on 23 October 2024)]. Available online: https://thermetrics.com/products/protective/tpp-htp-test-device/
Kothari V.K., Chakraborty S. Protective performance of thermal protective clothing assemblies exposed to different radiant heat fluxes. Fibers Polym. 2016;17:809–814. doi: 10.1007/s12221-016-5656-z. DOI
Horrocks A.R. Technical Fibres for Heat and Flame Protection. 2nd ed. Woodhead Publishing; New York, NY, USA: 2016. DOI
Standard Test Method for Unsteady-State Heat Transfer Evaluation of Flame-Resistant Materials for Clothing with Continuous Heating. ASTM International; West Conshohocken, PA, USA: 2020.
Standard Test Method for Flame Resistance of Textiles (Vertical Test) ASTM International; West Conshohocken, PA, USA: 2015.
Textile fabrics—Burning behaviour—Determination of Ease of Ignition of Vertically Oriented Specimens. ISO; Geneva, Switzerland: 2004.
PPE Personal Protection Equipment Heat Thermal Resistance Protection Laboraotry Testing Machine. ASTM International; West Conshohocken, PA, USA: 2023.
Standard Test Methods for Mass Per Unit Area (Weight) of Fabric. ASTM International; West Conshohocken, PA, USA: 2020.
Standard Test Method for Thickness of Textile Materials. ASTM International; West Conshohocken, PA, USA: 2019.
Standard Test Method for Air Permeability of Textile Fabrics. ASTM International; West Conshohocken, PA, USA: 2023.
Liquid Moisture Management Properties of Textile Fabrics. American Association of Textile Chemists and Colorists. Research Triangle Park; Durham, NC, USA: 2011.
Textiles—Measurement method of cool touch feeling property. Japanese Standards Association; Tokyo, Japan: 2020.
Varshney R.K., Kothari V.K., Dhamija S. A study on thermophysiological comfort properties of fabrics in relation to constituent fibre fineness and cross-sectional shapes. J. Text. Inst. 2010;101:495–505. doi: 10.1080/00405000802542184. DOI
Sheraz A., Faheem A., Ali A., Abher R., Muhammad M., Niaz A. Effect of Weave Structure on Thermo-Physiological Properties of Cotton Fabrics. Autex Res. J. 2015;15:30–34. doi: 10.2478/aut-2014-0011. DOI
Hu J., Li Y., Yeung K.W., Wong A.S.W., Xu W. Moisture Management Tester: A Method to Characterize Fabric Liquid Moisture Management Properties. Text. Res. J. 2016;75:57–62. doi: 10.1177/004051750507500111. DOI
Motlogelwa S. Comfort and Durability in High-Performance Clothing. Elsevier Ltd.; Amsterdam, The Netherlands: 2017. DOI
Yang F. Fire-Retardant Carbon-Fiber-Reinforced Thermoset Composites. Elsevier Ltd.; Amsterdam, The Netherlands: 2017. DOI
Gracia M.O., Velazquez L.M., Mercado A.M. Increasing the Burned Time and Mechanical Properties with New Mix As Flame Retardant Based in Hexametaphosphate of Sodium and Borax in Textile 100% Acrylic Fabrics. Adv. Mater. Phys. Chem. 2012;2:99–101. doi: 10.4236/ampc.2012.24B027. DOI
Bajaj P. Flame retardant materials. Bull. Mater. Sci. 1992;15:67–76. doi: 10.1007/BF02745218. DOI
Fei B. High-Performance Fibers for Textiles. Elsevier Ltd.; Amsterdam, The Netherlands: 2018. DOI
Lu J., Ghodrat M., Escobedo-Diaz J.P. Experimental Investigation of the Factors Affecting Performance of Firefighters’ Protective Clothing. In: Peng Z., editor. Characterization of Minerals, Metals, and Materials. Springer; Cham, Switzerland: 2024. (TMS 2024. The Minerals, Metals & Materials Series). DOI
Jalil J.M., Mahdi H.S., Allawy A.S. Cooling performance investigation of PCM integrated into heat sink with nano particles addition. J. Energy Storage. 2022;55:105466. doi: 10.1016/j.est.2022.105466. DOI
Yin C., Fei Z.X., Sun J., Weng L., Wang X., Yang K.K., Shi L.Y. High-enthalpy biphasic phase change organogels with shape memory function based on hydrophobic association and H-bonding interaction. Chem. Eng. J. 2023;468:143495. doi: 10.1016/j.cej.2023.143495. DOI
Lan T.-Y., Mao H.-I., Chen C.-W., Lee Y.-T., Yang Z.-Y., Luo J.-L., Li P.-R., Rwei S.-P. A Rapid Thermal Absorption Rate and High Latent Heat Enthalpy Phase Change Fiber Derived from Bio-Based Low Melting Point Copolyesters. Polymers. 2022;14:3298. doi: 10.3390/polym14163298. PubMed DOI PMC
Mandal S., Annaheim S., Camenzind M., Rossi R.M. Characterization and modelling of thermal protective performance of fabrics under different levels of radiant-heat exposures. J. Ind. Text. 2019;48:1184–1205. doi: 10.1177/1528083718760801. DOI