3D Woven Textile Structural Polymer Composites: Effect of Resin Processing Parameters on Mechanical Performance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministry of Education, Youth and Sports of the Czech Republic, the European Union (European Structural and Investment Funds - Operational Program Research, Development and Education) in the frames of the project "Modular platform for autonomous chassis of
2022
Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague
PubMed
35335464
PubMed Central
PMC8949007
DOI
10.3390/polym14061134
PII: polym14061134
Knihovny.cz E-zdroje
- Klíčová slova
- add-on (%), amount of hardener (%), curing temperature, curing time, epoxy resin, mechanical properties, molding pressure, textile structural composite,
- Publikační typ
- časopisecké články MeSH
This work presents the manufacture of polymer composites using 3D woven structures (orthogonal, angle interlock and warp interlock) with glass multifilament tows and epoxy as the resin. The mechanical properties were analyzed by varying the processing parameters, namely, add-on percentage, amount of hardener, curing time, curing temperature and molding pressure, at four different levels during the composite fabrication for three different 3D woven structures. The mechanical properties of composites are affected by resin infusion or resin impregnation. Resin infusion depends on many processing conditions (temperature, pressure, viscosity and molding time), the structure of the reinforcement and the compatibility of the resin with the reinforcement. The samples were tested for tensile strength, tensile modulus, impact resistance and flexural strength. Optimal process parameters were identified for different 3D-woven-structure-based composites for obtaining optimal results for tensile strength, tensile modulus, impact resistance and flexural strength. The tensile strength, elongation at break and tensile modulus were found to be at a maximum for the angle interlock structure among the various 3D woven composites. A composition of 55% matrix (including 12% of hardener added) and 45% fiber were found to be optimal for the tensile and impact performance of 3D woven glass-epoxy composites. A curing temperature of about 140 °C seemed to be optimal for glass-epoxy composites. Increasing the molding pressure up to 12 bar helped with better penetration of the resin, resulting in higher tensile strength, modulus and impact performance. The optimal conditions for the best flexural performance in 3D woven glass-epoxy composites were 12% hardener, 140 °C curing temperature, 900 s curing time and 12 bar molding pressure.
Zobrazit více v PubMed
Walter T., Subhash G., Sankar B., Yen C. Damage modes in 3D glass fiber epoxy woven composites under high rate of impact loading. Compos. Part B Eng. 2009;40:584–589. doi: 10.1016/j.compositesb.2009.04.021. DOI
Kendall K., Rudd C., Owen M., Midleton V. Characterization of the resin transfer molding process. Compos. Manuf. 1992;3:235–249. doi: 10.1016/0956-7143(92)90111-7. DOI
Potter K. In-plane and out-of-plane deformation properties of unidirectional preimpregnated reinforcement. Compos. Part A Appl. Sci. Manuf. 2002;33:1469–1477. doi: 10.1016/S1359-835X(02)00138-0. DOI
Karbhari V.M., Chin J.W., Hunston D., Benmokrane B., Juska T., Morgan R., Lesko J.J., Sorathia U., Reynaud D. Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure. J. Compos. Constr. 2003;7:238–247. doi: 10.1061/(ASCE)1090-0268(2003)7:3(238). DOI
Corrado A., Polini W. Measurement of high flexibility components in composite material by touch probe and force sensing resistors. J. Manuf. Process. 2019;45:520–531. doi: 10.1016/j.jmapro.2019.07.038. DOI
Wang F., Xie Z., Liang J., Fang B., Piao Y., Hao M., Wang Z. Tourmaline-Modified FeMnTiOx Catalysts for Improved Low-Temperature NH 3-SCR Performance. Environ. Sci. Technol. 2019;53:6989–6996. doi: 10.1021/acs.est.9b02620. PubMed DOI
Behera B.K., Mishra R. 3-Dimensional weaving. Ind. J. Fiber Text. Res. 2008;33:274–287.
Parnas R., Fly D., Dal-Favero M. A permeability database for composites manufacturing. Polym. Compos. 1997;18:623–633. doi: 10.1002/pc.10313. DOI
Hu H., Zhang M., Fangueiro R., Araujo M. Mechanical properties of composite materials made of 3D stitched woven-knitted preforms. J. Compos. Mater. 2010;44:1753–1767. doi: 10.1177/0021998309359211. DOI
Qiang L., Montgomery T.S., Richard S.P., Anne-Marie M. Investigation of basalt fiber composite aging behavior for applications in transportation. Polym. Compos. 2006;27:475–483. doi: 10.1002/pc.20215. DOI
Ouyang J., Zhao Z., Yang H., Zhang Y., Tang A. Large-scale synthesis of sub-micro sized halloysite-composed CZA with enhanced catalysis performances. Appl. Clay Sci. 2018;152:221–229. doi: 10.1016/j.clay.2017.11.015. DOI
Piao Y., Jiang Q., Li H., Matsumoto H., Liang J., Liu W., Pham-Huu C., Liu Y., Wang F. Identify Zr Promotion Effects in Atomic Scale for Co-Based Catalysts in Fischer–Tropsch Synthesis. ACS Catal. 2020;10:7894–7906. doi: 10.1021/acscatal.0c01874. DOI
Bocci E., Prosperi E., Mair V., Bocci M. Ageing and Cooling of Hot-Mix-Asphalt during Hauling and Paving—A Laboratory and Site Study. Sustainability. 2020;12:8612. doi: 10.3390/su12208612. DOI
Mishra R., Behera B.K. Impact simulation of three-dimensional woven kevlar-epoxy composites. J. Ind. Text. 2016;45:978–994. doi: 10.1177/1528083714550056. DOI
Shubhra Q.T.H., Alam A.K., Quaiyyum M.A. Mechanical properties of polypropylene composites: A review. J. Thermoplast. Compos. Mater. 2013;26:362–391. doi: 10.1177/08927057114286596. DOI
Tsai K.H., Chiu C.H., Wu T.H. Fatigue behavior of 3D multi-layer angle interlock woven composite plates. Compos. Sci. Technol. 2000;60:241–248. doi: 10.1016/S0266-3538(99)00120-7. DOI
Yang T., Hu L., Xiong X., Mishra R. Sound absorption properties of natural fibers: A review. Sustainability. 2020;12:8477. doi: 10.3390/su12208477. DOI
Thwe M.M., Liao K. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos. Sci. Technol. 2003;63:375–387. doi: 10.1016/S0266-3538(02)00225-7. DOI
Jacob M., Joseph S., Pothan L.A., Thomas S. A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites. Compos. Interface. 2005;12:95–124. doi: 10.1163/1568554053542115. DOI
Mishra R. Drape behavior of 3D woven glass-epoxy composites. Polym. Compos. 2016;37:472–480. doi: 10.1002/pc.23202. DOI
Rudov-Clark S., Mouritz A.P. Tensile fatigue properties of a 3D orthogonal woven composite. Compos. Part A Appl. Sci. Manuf. 2008;39:1018–1024. doi: 10.1016/j.compositesa.2008.03.001. DOI
Kalaprasad G., Thomas S., Pavithran C., Neelakantan N.R., Balakrishnan S. Hybrid effect in the mechanical properties of short sisal/glass hybrid fiber reinforced low density polyethylene composites. J. Reinf. Plast. Comp. 1996;15:48–73. doi: 10.1177/073168449601500104. DOI
Kalaprasad G., Joseph K., Thomas S. Influence of short glass fiber addition on the mechanical properties of sisal reinforced low density polyethylene composites. J. Compos. Mater. 1997;31:509–527. doi: 10.1177/002199839703100504. DOI
Mishra R., Gupta N., Pachauri R., Behera B.K. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI
Gude M., Hufenbach W., Koch I. Damage evolution of novel 3D textile-reinforced composites under fatigue loading conditions. Compos. Sci. Technol. 2010;70:186–192. doi: 10.1016/j.compscitech.2009.10.010. DOI
Mishra R. Impact tolerance of 3D woven nanocomposites: A simulation approach. J. Text. Inst. 2013;104:562–570. doi: 10.1080/00405000.2012.752123. DOI
Kumar L.R., Datta P.K., Prabhakara D.L. Dynamic instability characteristics of laminated composite doubly curved panels subjected to partially distributed follower edge loading. Int. J. Solids Struct. 2005;42:2243–2264. doi: 10.1016/j.ijsolstr.2004.09.024. DOI
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. American Society for Testing and Materials; West Conshohocken, PA, USA: 2017.
Hassan T., Jamshaid H., Mishra R., Khan M.Q., Petru M., Novak J., Choteborsky R., Hromasova M. Acoustic, Mechanical and Thermal Properties of Green Composites Reinforced with Natural Fibers Waste. Polymers. 2020;12:654. doi: 10.3390/polym12030654. PubMed DOI PMC
Friedrich K., Jacobs O. On wear synergism in hybrid composites. Compos. Sci. Technol. 1992;43:71–84. doi: 10.1016/0266-3538(92)90134-O. DOI
Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimen by Means of a Striker Impacted by a Falling Weight (Gardner Impact) American Society for Testing and Materials; West Conshohocken, PA, USA: 2021.
Mishra R. Specific functional properties of 3D woven glass nanocomposites. J. Compos. Mater. 2014;48:1745–1754. doi: 10.1177/0021998313490539. DOI
Ishikawa T., Chou T.W. Stiffness and strength behaviour of woven fabric composites. J. Mater. Sci. 1982;17:3211–3220. doi: 10.1007/BF01203485. DOI
Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. American Society for Testing and Materials; West Conshohocken, PA, USA: 2007.
Abot J.L., Daniel I.M. Through-thickness mechanical characterization of woven fabric composites. J. Compos. Mater. 2004;38:543–553. doi: 10.1177/0021998304042394. DOI
Geethamma V.G., Kalaprasad G., Groeninckx G., Thomas S. Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos. Part A Appl. Sci. Manuf. 2005;36:1499–1506. doi: 10.1016/j.compositesa.2005.03.004. DOI