Meis homeobox genes control progenitor competence in the retina

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33723039

The vertebrate eye is derived from the neuroepithelium, surface ectoderm, and extracellular mesenchyme. The neuroepithelium forms an optic cup in which the spatial separation of three domains is established, namely, the region of multipotent retinal progenitor cells (RPCs), the ciliary margin zone (CMZ)-which possesses both a neurogenic and nonneurogenic potential-and the optic disk (OD), the interface between the optic stalk and the neuroretina. Here, we show by genetic ablation in the developing optic cup that Meis1 and Meis2 homeobox genes function redundantly to maintain the retinal progenitor pool while they simultaneously suppress the expression of genes characteristic of CMZ and OD fates. Furthermore, we demonstrate that Meis transcription factors bind regulatory regions of RPC-, CMZ-, and OD-specific genes, thus providing a mechanistic insight into the Meis-dependent gene regulatory network. Our work uncovers the essential role of Meis1 and Meis2 as regulators of cell fate competence, which organize spatial territories in the vertebrate eye.

Zobrazit více v PubMed

Zuber M. E., Gestri G., Viczian A. S., Barsacchi G., Harris W. A., Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155–5167 (2003). PubMed

Esteve P., Bovolenta P., Secreted inducers in vertebrate eye development: More functions for old morphogens. Curr. Opin. Neurobiol. 16, 13–19 (2006). PubMed

Fuhrmann S., Eye morphogenesis and patterning of the optic vesicle. Curr. Top. Dev. Biol. 93, 61–84 (2010). PubMed PMC

Bélanger M. C., Robert B., Cayouette M., Msx1-positive progenitors in the retinal ciliary margin give rise to both neural and non-neural progenies in mammals. Dev. Cell 40, 137–150 (2017). PubMed

Cepko C., Intrinsically different retinal progenitor cells produce specific types of progeny. Nat. Rev. Neurosci. 15, 615–627 (2014). PubMed

Cayouette M., Mattar P., Harris W. A., Progenitor competence: Genes switching places. Cell 152, 13–14 (2013). PubMed

Javed A., Cayouette M., Temporal progression of retinal progenitor cell identity: Implications in cell replacement therapies. Front. Neural Circuits 11, 105 (2017). PubMed PMC

Brzezinski J. A. 4th, Kim E. J., Johnson J. E., Reh T. A., Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development 138, 3519–3531 (2011). PubMed PMC

Brzezinski J. A. 4th, Prasov L., Glaser T., Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. Dev. Biol. 365, 395–413 (2012). PubMed PMC

Elliott J., Jolicoeur C., Ramamurthy V., Cayouette M., Ikaros confers early temporal competence to mouse retinal progenitor cells. Neuron 60, 26–39 (2008). PubMed

Mattar P., Ericson J., Blackshaw S., Cayouette M., A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron 85, 497–504 (2015). PubMed PMC

Clark B. S., et al. ., Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. Neuron 102, 1111–1126.e5 (2019). PubMed PMC

Morcillo J., et al. ., Proper patterning of the optic fissure requires the sequential activity of BMP7 and SHH. Development 133, 3179–3190 (2006). PubMed

Patel A., Sowden J. C., Genes and pathways in optic fissure closure. Semin. Cell Dev. Biol. 91, 55–65 (2019). PubMed

Erskine L., Herrera E., Connecting the retina to the brain. ASN Neuro 6, 1759091414562107 (2014). PubMed PMC

Deiner M. S., et al. ., Netrin-1 and DCC mediate axon guidance locally at the optic disc: Loss of function leads to optic nerve hypoplasia. Neuron 19, 575–589 (1997). PubMed

Bobola N., From DNA binding to transcriptional activation: Is the TALE complete? J. Cell Biol. 216, 2603–2605 (2017). PubMed PMC

Schulte D., Geerts D., MEIS transcription factors in development and disease. Development 146, dev174706 (2019). PubMed

Amin S., et al. ., Hoxa2 selectively enhances Meis binding to change a branchial arch ground state. Dev. Cell 32, 265–277 (2015). PubMed PMC

Choe S. K., Ladam F., Sagerström C. G., TALE factors poise promoters for activation by Hox proteins. Dev. Cell 28, 203–211 (2014). PubMed PMC

Blasi F., Bruckmann C., Penkov D., Dardaei L., A tale of TALE, PREP1, PBX1, and MEIS1: Interconnections and competition in cancer. BioEssays 39, (2017). PubMed

Hisa T., et al. ., Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. EMBO J. 23, 450–459 (2004). PubMed PMC

Machon O., Masek J., Machonova O., Krauss S., Kozmik Z., Meis2 is essential for cranial and cardiac neural crest development. BMC Dev. Biol. 15, 40 (2015). PubMed PMC

Azcoitia V., Aracil M., Martínez-A C., Torres M., The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev. Biol. 280, 307–320 (2005). PubMed

Antosova B., et al. ., The gene regulatory network of lens induction is wired through Meis-dependent shadow enhancers of Pax6. PLoS Genet. 12, e1006441 (2016). PubMed PMC

Heine P., Dohle E., Bumsted-O’Brien K., Engelkamp D., Schulte D., Evidence for an evolutionary conserved role of homothorax/Meis1/2 during vertebrate retina development. Development 135, 805–811 (2008). PubMed

Marcos S., et al. ., Meis1 coordinates a network of genes implicated in eye development and microphthalmia. Development 142, 3009–3020 (2015). PubMed

Klimova L., Lachova J., Machon O., Sedlacek R., Kozmik Z., Generation of mRx-Cre transgenic mouse line for efficient conditional gene deletion in early retinal progenitors. PLoS One 8, e63029 (2013). PubMed PMC

Das G., Choi Y., Sicinski P., Levine E. M., Cyclin D1 fine-tunes the neurogenic output of embryonic retinal progenitor cells. Neural Dev. 4, 15 (2009). PubMed PMC

Martynoga B., Morrison H., Price D. J., Mason J. O., Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev. Biol. 283, 113–127 (2005). PubMed

Das G., Clark A. M., Levine E. M., Cyclin D1 inactivation extends proliferation and alters histogenesis in the postnatal mouse retina. Dev. Dyn. 241, 941–952 (2012). PubMed PMC

Cai Z., et al. ., Deficient FGF signaling causes optic nerve dysgenesis and ocular coloboma. Development 140, 2711–2723 (2013). PubMed PMC

Penkov D., et al. ., Analysis of the DNA-binding profile and function of TALE homeoproteins reveals their specialization and specific interactions with Hox genes/proteins. Cell Rep. 3, 1321–1333 (2013). PubMed

Aldiri I.et al. .; St. Jude Children’s Research Hospital—Washington University Pediatric Cancer Genome Project , The dynamic epigenetic landscape of the retina during development, reprogramming, and tumorigenesis. Neuron 94, 550–568.e10 (2017). PubMed PMC

Kleinjan D. A., et al. ., Aniridia-associated translocations, DNase hypersensitivity, sequence comparison and transgenic analysis redefine the functional domain of PAX6. Hum. Mol. Genet. 10, 2049–2059 (2001). PubMed

Kleinjan D. A., et al. ., Long-range downstream enhancers are essential for Pax6 expression. Dev. Biol. 299, 563–581 (2006). PubMed PMC

Kammandel B., et al. ., Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Dev. Biol. 205, 79–97 (1999). PubMed

Marquardt T., et al. ., Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105, 43–55 (2001). PubMed

Okamoto R., Uchikawa M., Kondoh H., Sixteen additional enhancers associated with the chicken Sox2 locus outside the central 50-kb region. Dev. Growth Differ. 57, 24–39 (2015). PubMed

Furuta Y., Lagutin O., Hogan B. L., Oliver G. C., Retina- and ventral forebrain-specific Cre recombinase activity in transgenic mice. Genesis 26, 130–132 (2000). PubMed

Islam M. M., Li Y., Luo H., Xiang M., Cai L., Meis1 regulates Foxn4 expression during retinal progenitor cell differentiation. Biol. Open 2, 1125–1136 (2013). PubMed PMC

Verma-Kurvari S., Savage T., Smith D., Johnson J. E., Multiple elements regulate Mash1 expression in the developing CNS. Dev. Biol. 197, 106–116 (1998). PubMed

Miesfeld J. B., et al. ., The Atoh7 remote enhancer provides transcriptional robustness during retinal ganglion cell development. Proc. Natl. Acad. Sci. U.S.A. 117, 21690–21700 (2020). PubMed PMC

Ghiasvand N. M., et al. ., Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat. Neurosci. 14, 578–586 (2011). PubMed PMC

Bridoux L., et al. ., HOX paralogs selectively convert binding of ubiquitous transcription factors into tissue-specific patterns of enhancer activation. PLoS Genet. 16, e1009162 (2020). PubMed PMC

Kamachi Y., Kondoh H., Sox proteins: Regulators of cell fate specification and differentiation. Development 140, 4129–4144 (2013). PubMed

Hernandez J., et al. ., Highly conserved sequences mediate the dynamic interplay of basic helix-loop-helix proteins regulating retinogenesis. J. Biol. Chem. 282, 37894–37905 (2007). PubMed

VandenBosch L. S., et al. ., Developmental changes in the accessible chromatin, transcriptome and Ascl1-binding correlate with the loss in Müller glial regenerative potential. Sci. Rep. 10, 13615 (2020). PubMed PMC

Zibetti C., Liu S., Wan J., Qian J., Blackshaw S., Epigenomic profiling of retinal progenitors reveals LHX2 is required for developmental regulation of open chromatin. Commun. Biol. 2, 142 (2019). PubMed PMC

Gordon P. J., et al. ., Lhx2 balances progenitor maintenance with neurogenic output and promotes competence state progression in the developing retina. J. Neurosci. 33, 12197–12207 (2013). PubMed PMC

Roy A., et al. ., LHX2 is necessary for the maintenance of optic identity and for the progression of optic morphogenesis. J. Neurosci. 33, 6877–6884 (2013). PubMed PMC

Norrie J. L., et al. ., Nucleome dynamics during retinal development. Neuron 104, 512–528.e11 (2019). PubMed PMC

Burmeister M., et al. ., Ocular retardation mouse caused by Chx10 homeobox null allele: Impaired retinal progenitor proliferation and bipolar cell differentiation. Nat. Genet. 12, 376–384 (1996). PubMed

Trimarchi J. M., Cho S. H., Cepko C. L., Identification of genes expressed preferentially in the developing peripheral margin of the optic cup. Dev. Dyn. 238, 2327–2329 (2009). PubMed PMC

Liu H., et al. ., Ciliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling. Dev. Biol. 308, 54–67 (2007). PubMed

Zhao S., Chen Q., Hung F. C., Overbeek P. A., BMP signaling is required for development of the ciliary body. Development 129, 4435–4442 (2002). PubMed

Diacou R., Zhao Y., Zheng D., Cvekl A., Liu W., Six3 and Six6 are jointly required for the maintenance of multipotent retinal progenitors through both positive and negative regulation. Cell Rep. 25, 2510–2523.e4 (2018). PubMed PMC

Heavner W. E., Andoniadou C. L., Pevny L. H., Establishment of the neurogenic boundary of the mouse retina requires cooperation of SOX2 and WNT signaling. Neural Dev. 9, 27 (2014). PubMed PMC

Matsushima D., Heavner W., Pevny L. H., Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6. Development 138, 443–454 (2011). PubMed PMC

Jolma A., et al. ., DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527, 384–388 (2015). PubMed

Zhu C. C., et al. ., Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development 129, 2835–2849 (2002). PubMed

Schwarz M., et al. ., Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development 127, 4325–4334 (2000). PubMed

Bertuzzi S., Hindges R., Mui S. H., O’Leary D. D., Lemke G., The homeodomain protein vax1 is required for axon guidance and major tract formation in the developing forebrain. Genes Dev. 13, 3092–3105 (1999). PubMed PMC

Liu C., Bakeri H., Li T., Swaroop A., Regulation of retinal progenitor expansion by Frizzled receptors: Implications for microphthalmia and retinal coloboma. Hum. Mol. Genet. 21, 1848–1860 (2012). PubMed PMC

Petros T. J., Williams S. E., Mason C. A., Temporal regulation of EphA4 in astroglia during murine retinal and optic nerve development. Mol. Cell. Neurosci. 32, 49–66 (2006). PubMed

Oster S. F., Bodeker M. O., He F., Sretavan D. W., Invariant Sema5A inhibition serves an ensheathing function during optic nerve development. Development 130, 775–784 (2003). PubMed

Dakubo G. D., et al. ., Retinal ganglion cell-derived sonic hedgehog signaling is required for optic disc and stalk neuroepithelial cell development. Development 130, 2967–2980 (2003). PubMed

Liu H., Mohamed O., Dufort D., Wallace V. A., Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev. Dyn. 227, 323–334 (2003). PubMed

Ladam F., et al. ., TALE factors use two distinct functional modes to control an essential zebrafish gene expression program. eLife 7, e36144 (2018). PubMed PMC

Bessa J., Gebelein B., Pichaud F., Casares F., Mann R. S., Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes Dev. 16, 2415–2427 (2002). PubMed PMC

Agoston Z., et al. ., Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development 141, 28–38 (2014). PubMed

Thein T., et al. ., Control of lens development by Lhx2-regulated neuroretinal FGFs. Development 143, 3994–4002 (2016). PubMed PMC

Thompson H., Camand O., Barker D., Erskine L., Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral retina. J. Neurosci. 26, 8082–8091 (2006). PubMed PMC

Smith J. N., et al. ., Lens-regulated retinoic acid signalling controls expansion of the developing eye. Development 145, dev167171 (2018). PubMed

Rowan S., Chen C. M., Young T. L., Fisher D. E., Cepko C. L., Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Development 131, 5139–5152 (2004). PubMed

Horsford D. J., et al. ., Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development 132, 177–187 (2005). PubMed

Bosze B., Moon M. S., Kageyama R., Brown N. L., Simultaneous requirements for Hes1 in retinal neurogenesis and optic cup-stalk boundary maintenance. J. Neurosci. 40, 1501–1513 (2020). PubMed PMC

Murali D., Kawaguchi-Niida M., Deng C. X., Furuta Y., Smad4 is required predominantly in the developmental processes dependent on the BMP branch of the TGF-β signaling system in the embryonic mouse retina. Invest. Ophthalmol. Vis. Sci. 52, 2930–2937 (2011). PubMed PMC

Liu J., Wilson S., Reh T., BMP receptor 1b is required for axon guidance and cell survival in the developing retina. Dev. Biol. 256, 34–48 (2003). PubMed

Liu H., Thurig S., Mohamed O., Dufort D., Wallace V. A., Mapping canonical Wnt signaling in the developing and adult retina. Invest. Ophthalmol. Vis. Sci. 47, 5088–5097 (2006). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...