Genetic analysis of medaka fish illuminates conserved and divergent roles of Pax6 in vertebrate eye development
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39512904
PubMed Central
PMC11541176
DOI
10.3389/fcell.2024.1448773
PII: 1448773
Knihovny.cz E-zdroje
- Klíčová slova
- Pax6, eye evolution, gene expression, lens, retina, vision,
- Publikační typ
- časopisecké články MeSH
Landmark discovery of eye defects caused by Pax6 gene mutations in humans, rodents, and even fruit flies combined with Pax6 gene expression studies in various phyla, led to the master control gene hypothesis postulating that the gene is required almost universally for animal visual system development. However, this assumption has not been broadly tested in genetically trackable organisms such as vertebrates. Here, to determine the functional role of the fish orthologue of mammalian Pax6 in eye development we analyzed mutants in medaka Pax6.1 gene generated by genome editing. We found that transcription factors implicated in vertebrate lens development (Prox1a, MafB, c-Maf, FoxE3) failed to initiate expression in the presumptive lens tissue of Pax6.1 mutant fish resulting in aphakia, a phenotype observed previously in Pax6 mutant mice. Surprisingly, the overall differentiation potential of Pax6.1-deficient retinal progenitor cells (RPCs) is not severely compromised, and the only cell types affected by the absence of Pax6.1 transcription factor are retinal ganglion cells. This is in stark contrast to the situation in mice where the Pax6 gene is required cell-autonomously for the expansion of RPCs, and the differentiation of all retina cell types. Our results provide novel insight into the conserved and divergent roles of Pax6 gene orthologues in vertebrate eye development indicating that the lens-specific role is more evolutionarily conserved than the role in retina differentiation.
Zobrazit více v PubMed
Agathocleous M., Harris W. A. (2009). From progenitors to differentiated cells in the vertebrate retina. Annu. Rev. Cell Dev. Biol. 25, 45–69. 10.1146/annurev.cellbio.042308.113259 PubMed DOI
Antosova B., Smolikova J., Klimova L., Lachova J., Bendova M., Kozmikova I., et al. (2016). The gene regulatory network of lens induction is wired through meis-dependent shadow enhancers of Pax6. PLoS Genet. 12 (12), e1006441. 10.1371/journal.pgen.1006441 PubMed DOI PMC
Ashery-Padan R., Marquardt T., Zhou X., Gruss P. (2000). Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 14 (21), 2701–2711. 10.1101/gad.184000 PubMed DOI PMC
Burmeister M., Novak J., Liang M. Y., Basu S., Ploder L., Hawes N. L., et al. (1996). Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat. Genet. 12 (4), 376–384. 10.1038/ng0496-376 PubMed DOI
Cepko C. L. (1999). The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr. Opin. Neurobiol. 9 (1), 37–46. 10.1016/s0959-4388(99)80005-1 PubMed DOI
Cepko C. L., Austin C. P., Yang X., Alexiades M., Ezzeddine D. (1996). Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. U. S. A. 93 (2), 589–595. 10.1073/pnas.93.2.589 PubMed DOI PMC
Cvekl A., Callaerts P. (2017). PAX6: 25th anniversary and more to learn. Exp. Eye Res. 156, 10–21. 10.1016/j.exer.2016.04.017 PubMed DOI
Cvekl A., McGreal R., Liu W. (2015). Lens development and crystallin gene expression. Prog. Mol. Biol. Transl. Sci. 134, 129–167. 10.1016/bs.pmbts.2015.05.001 PubMed DOI
Cvekl A., Piatigorsky J. (1996). Lens development and crystallin gene expression: many roles for Pax-6. Bioessays 18 (8), 621–630. 10.1002/bies.950180805 PubMed DOI
Cvekl A., Zhao Y., McGreal R., Xie Q., Gu X., Zheng D. (2017). Evolutionary origins of Pax6 control of crystallin genes. Genome Biol. Evol. 9 (8), 2075–2092. 10.1093/gbe/evx153 PubMed DOI PMC
Czerny T., Halder G., Kloter U., Souabni A., Gehring W. J., Busslinger M. (1999). Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol. Cell 3 (3), 297–307. 10.1016/s1097-2765(00)80457-8 PubMed DOI
Diacou R., Zhao Y., Zheng D., Cvekl A., Liu W. (2018). Six3 and Six6 are jointly required for the maintenance of multipotent retinal progenitors through both positive and negative regulation. Cell Rep. 25 (9), 2510–2523. 10.1016/j.celrep.2018.10.106 PubMed DOI PMC
Dimanlig P. V., Faber S. C., Auerbach W., Makarenkova H. P., Lang R. A. (2001). The upstream ectoderm enhancer in Pax6 has an important role in lens induction. Development 128 (22), 4415–4424. 10.1242/dev.128.22.4415 PubMed DOI
Dupacova N., Antosova B., Paces J., Kozmik Z. (2021). Meis homeobox genes control progenitor competence in the retina. Proc. Natl. Acad. Sci. U. S. A. 118 (12), e2013136118. 10.1073/pnas.2013136118 PubMed DOI PMC
Fabian P., Kozmikova I., Kozmik Z., Pantzartzi C. N. (2015). Pax2/5/8 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain. Front. Genet. 6, 228. 10.3389/fgene.2015.00228 PubMed DOI PMC
Force A., Lynch M., Pickett F. B., Amores A., Yan Y. L., Postlethwait J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151 (4), 1531–1545. 10.1093/genetics/151.4.1531 PubMed DOI PMC
Fuhrmann S. (2010). Eye morphogenesis and patterning of the optic vesicle. Curr. Top. Dev. Biol. 93, 61–84. 10.1016/B978-0-12-385044-7.00003-5 PubMed DOI PMC
Furutani-Seiki M., Wittbrodt J. (2004). Medaka and zebrafish, an evolutionary twin study. Mech. Dev. 121 (7-8), 629–637. 10.1016/j.mod.2004.05.010 PubMed DOI
Glaser T., Walton D. S., Maas R. L. (1992). Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat. Genet. 2 (3), 232–239. 10.1038/ng1192-232 PubMed DOI
Hatakeyama J., Kageyama R. (2004). Retinal cell fate determination and bHLH factors. Semin. Cell Dev. Biol. 15 (1), 83–89. 10.1016/j.semcdb.2003.09.005 PubMed DOI
Hill R. E., Favor J., Hogan B. L., Ton C. C., Saunders G. F., Hanson I. M., et al. (1991). Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354 (6354), 522–525. 10.1038/354522a0 PubMed DOI
Hoang T., Wang J., Boyd P., Wang F., Santiago C., Jiang L., et al. (2020). Gene regulatory networks controlling vertebrate retinal regeneration. Science 370 (6519), eabb8598. 10.1126/science.abb8598 PubMed DOI PMC
Holt C. E., Bertsch T. W., Ellis H. M., Harris W. A. (1988). Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1 (1), 15–26. 10.1016/0896-6273(88)90205-x PubMed DOI
Iwamatsu T. (2004). Stages of normal development in the medaka Oryzias latipes . Mech. Dev. 121 (7-8), 605–618. 10.1016/j.mod.2004.03.012 PubMed DOI
Jonasova K., Kozmik Z. (2008). Eye evolution: lens and cornea as an upgrade of animal visual system. Semin. Cell Dev. Biol. 19 (2), 71–81. 10.1016/j.semcdb.2007.10.005 PubMed DOI
Kitambi S. S., Malicki J. J. (2008). Spatiotemporal features of neurogenesis in the retina of medaka, Oryzias latipes . Dev. Dyn. 237 (12), 3870–3881. 10.1002/dvdy.21797 PubMed DOI PMC
Kleinjan D. A., Bancewicz R. M., Gautier P., Dahm R., Schonthaler H. B., Damante G., et al. (2008). Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genet. 4 (2), e29. 10.1371/journal.pgen.0040029 PubMed DOI PMC
Klimova L., Antosova B., Kuzelova A., Strnad H., Kozmik Z. (2015). Onecut1 and Onecut2 transcription factors operate downstream of Pax6 to regulate horizontal cell development. Dev. Biol. 402 (1), 48–60. 10.1016/j.ydbio.2015.02.023 PubMed DOI
Klimova L., Kozmik Z. (2014). Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development 141 (6), 1292–1302. 10.1242/dev.098822 PubMed DOI
Kozmik Z. (2005). Pax genes in eye development and evolution. Curr. Opin. Genet. Dev. 15 (4), 430–438. 10.1016/j.gde.2005.05.001 PubMed DOI
Kozmik Z., Czerny T., Busslinger M. (1997). Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8. EMBO J. 16 (22), 6793–6803. 10.1093/emboj/16.22.6793 PubMed DOI PMC
Lamb T. D. (2013). Evolution of phototransduction, vertebrate photoreceptors and retina. Prog. Retin Eye Res. 36, 52–119. 10.1016/j.preteyeres.2013.06.001 PubMed DOI
Levine E. M., Green E. S. (2004). Cell-intrinsic regulators of proliferation in vertebrate retinal progenitors. Semin. Cell Dev. Biol. 15 (1), 63–74. 10.1016/j.semcdb.2003.09.001 PubMed DOI
Liu W., Cvekl A. (2017). Six3 in a small population of progenitors at E8.5 is required for neuroretinal specification via regulating cell signaling and survival in mice. Dev. Biol. 428 (1), 164–175. 10.1016/j.ydbio.2017.05.026 PubMed DOI PMC
Liu W., Lagutin O., Swindell E., Jamrich M., Oliver G. (2010). Neuroretina specification in mouse embryos requires Six3-mediated suppression of Wnt8b in the anterior neural plate. J. Clin. Invest. 120 (10), 3568–3577. 10.1172/JCI43219 PubMed DOI PMC
Livesey F. J., Cepko C. L. (2001). Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2 (2), 109–118. 10.1038/35053522 PubMed DOI
Loosli F., Koster R. W., Carl M., Kuhnlein R., Henrich T., Mucke M., et al. (2000). A genetic screen for mutations affecting embryonic development in medaka fish (Oryzias latipes). Mech. Dev. 97 (1-2), 133–139. 10.1016/s0925-4773(00)00406-8 PubMed DOI
Lust K., Wittbrodt J. (2018). Activating the regenerative potential of Muller glia cells in a regeneration-deficient retina. Elife 7, e32319. 10.7554/eLife.32319 PubMed DOI PMC
Lyu P., Iribarne M., Serjanov D., Zhai Y., Hoang T., Campbell L. J., et al. (2023). Common and divergent gene regulatory networks control injury-induced and developmental neurogenesis in zebrafish retina. Nat. Commun. 14 (1), 8477. 10.1038/s41467-023-44142-w PubMed DOI PMC
Marquardt T., Ashery-Padan R., Andrejewski N., Scardigli R., Guillemot F., Gruss P. (2001). Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105 (1), 43–55. 10.1016/s0092-8674(01)00295-1 PubMed DOI
Mathers P. H., Grinberg A., Mahon K. A., Jamrich M. (1997). The Rx homeobox gene is essential for vertebrate eye development. Nature 387 (6633), 603–607. 10.1038/42475 PubMed DOI
Matsuo T., Osumi-Yamashita N., Noji S., Ohuchi H., Koyama E., Myokai F., et al. (1993). A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nat. Genet. 3 (4), 299–304. 10.1038/ng0493-299 PubMed DOI
Morris S. C., Caron J. B. (2014). A primitive fish from the Cambrian of North America. Nature 512 (7515), 419–422. 10.1038/nature13414 PubMed DOI
Nakayama T., Fisher M., Nakajima K., Odeleye A. O., Zimmerman K. B., Fish M. B., et al. (2015). Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients. Dev. Biol. 408 (2), 328–344. 10.1016/j.ydbio.2015.02.012 PubMed DOI PMC
Oliver G., Mailhos A., Wehr R., Copeland N. G., Jenkins N. A., Gruss P. (1995). Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121 (12), 4045–4055. 10.1242/dev.121.12.4045 PubMed DOI
Pan Q., Lu K., Luo J., Jiang Y., Xia B., Chen L., et al. (2023). Japanese medaka Olpax6.1 mutant as a potential model for spondylo-ocular syndrome. Funct. Integr. Genomics 23 (2), 168. 10.1007/s10142-023-01090-4 PubMed DOI
Perron M., Kanekar S., Vetter M. L., Harris W. A. (1998). The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev. Biol. 199 (2), 185–200. 10.1006/dbio.1998.8939 PubMed DOI
Plageman T. F., Jr., Chung M. I., Lou M., Smith A. N., Hildebrand J. D., Wallingford J. B., et al. (2010). Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development 137 (3), 405–415. 10.1242/dev.045369 PubMed DOI PMC
Porter F. D., Drago J., Xu Y., Cheema S. S., Wassif C., Huang S. P., et al. (1997). Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124 (15), 2935–2944. 10.1242/dev.124.15.2935 PubMed DOI
Quiring R., Walldorf U., Kloter U., Gehring W. J. (1994). Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265 (5173), 785–789. 10.1126/science.7914031 PubMed DOI
Ravi V., Bhatia S., Gautier P., Loosli F., Tay B. H., Tay A., et al. (2013). Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences. PLoS Genet. 9 (1), e1003177. 10.1371/journal.pgen.1003177 PubMed DOI PMC
Richardson R., Tracey-White D., Webster A., Moosajee M. (2017). The zebrafish eye-a paradigm for investigating human ocular genetics. Eye (Lond) 31 (1), 68–86. 10.1038/eye.2016.198 PubMed DOI PMC
Riesenberg A. N., Le T. T., Willardsen M. I., Blackburn D. C., Vetter M. L., Brown N. L. (2009). Pax6 regulation of Math5 during mouse retinal neurogenesis. Genesis 47 (3), 175–187. 10.1002/dvg.20479 PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 (7), 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Schwaninger M., Blume R., Oetjen E., Lux G., Knepel W. (1993). Inhibition of cAMP-responsive element-mediated gene transcription by cyclosporin A and FK506 after membrane depolarization. J. Biol. Chem. 268 (31), 23111–23115. 10.1016/s0021-9258(19)49433-7 PubMed DOI
Shaham O., Gueta K., Mor E., Oren-Giladi P., Grinberg D., Xie Q., et al. (2013). Pax6 regulates gene expression in the vertebrate lens through miR-204. PLoS Genet. 9 (3), e1003357. 10.1371/journal.pgen.1003357 PubMed DOI PMC
Shaham O., Menuchin Y., Farhy C., Ashery-Padan R. (2012). Pax6: a multi-level regulator of ocular development. Prog. Retin Eye Res. 31 (5), 351–376. 10.1016/j.preteyeres.2012.04.002 PubMed DOI
Shu D., Luo H. L., Conway-Morris S., Zhang X., Hu S., Han J., et al. (1999). Lower Cambrian vertebrates from south China. Nature 402, 42–46. 10.1038/46965 DOI
Shu D. G., Morris S. C., Han J., Zhang Z. F., Yasui K., Janvier P., et al. (2003). Head and backbone of the early cambrian vertebrate haikouichthys. Nature 421 (6922), 526–529. 10.1038/nature01264 PubMed DOI
Signore I. A., Guerrero N., Loosli F., Colombo A., Villalon A., Wittbrodt J., et al. (2009). Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry. Philos. Trans. R. Soc. Lond B Biol. Sci. 364 (1519), 991–1003. 10.1098/rstb.2008.0260 PubMed DOI PMC
Suzuki D. G., Grillner S. (2018). The stepwise development of the lamprey visual system and its evolutionary implications. Biol. Rev. Camb Philos. Soc. 93 (3), 1461–1477. 10.1111/brv.12403 PubMed DOI
Takamiya M., Stegmaier J., Kobitski A. Y., Schott B., Weger B. D., Margariti D., et al. (2020). Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. PLoS Genet. 16 (6), e1008774. 10.1371/journal.pgen.1008774 PubMed DOI PMC
Takamiya M., Weger B. D., Schindler S., Beil T., Yang L., Armant O., et al. (2015). Molecular description of eye defects in the zebrafish Pax6b mutant, sunrise, reveals a Pax6b-dependent genetic network in the developing anterior chamber. PLoS One 10 (2), e0117645. 10.1371/journal.pone.0117645 PubMed DOI PMC
Tena J. J., Gonzalez-Aguilera C., Fernandez-Minan A., Vazquez-Marin J., Parra-Acero H., Cross J. W., et al. (2014). Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res. 24 (7), 1075–1085. 10.1101/gr.163915.113 PubMed DOI PMC
Tomita K., Ishibashi M., Nakahara K., Ang S. L., Nakanishi S., Guillemot F., et al. (1996). Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16 (4), 723–734. 10.1016/s0896-6273(00)80093-8 PubMed DOI
Ton C. C., Hirvonen H., Miwa H., Weil M. M., Monaghan P., Jordan T., et al. (1991). Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 67 (6), 1059–1074. 10.1016/0092-8674(91)90284-6 PubMed DOI
Turner D. L., Cepko C. L. (1987). A common progenitor for neurons and glia persists in rat retina late in development. Nature 328 (6126), 131–136. 10.1038/328131a0 PubMed DOI
Turner D. L., Snyder E. Y., Cepko C. L. (1990). Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4 (6), 833–845. 10.1016/0896-6273(90)90136-4 PubMed DOI
Wan J., Goldman D. (2016). Retina regeneration in zebrafish. Curr. Opin. Genet. Dev. 40, 41–47. 10.1016/j.gde.2016.05.009 PubMed DOI PMC
Willardsen M. I., Suli A., Pan Y., Marsh-Armstrong N., Chien C. B., El-Hodiri H., et al. (2009). Temporal regulation of Ath5 gene expression during eye development. Dev. Biol. 326 (2), 471–481. 10.1016/j.ydbio.2008.10.046 PubMed DOI PMC
Wittbrodt J., Shima A., Schartl M. (2002). Medaka--a model organism from the far East. Nat. Rev. Genet. 3 (1), 53–64. 10.1038/nrg704 PubMed DOI
Young R. W. (1985). Cell differentiation in the retina of the mouse. Anat. Rec. 212 (2), 199–205. 10.1002/ar.1092120215 PubMed DOI
Zagozewski J. L., Zhang Q., Pinto V. I., Wigle J. T., Eisenstat D. D. (2014). The role of homeobox genes in retinal development and disease. Dev. Biol. 393 (2), 195–208. 10.1016/j.ydbio.2014.07.004 PubMed DOI
Zhang X., Leavey P., Appel H., Makrides N., Blackshaw S. (2023). Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification. Trends Genet. 39 (10), 736–757. 10.1016/j.tig.2023.06.002 PubMed DOI PMC