The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27918583
PubMed Central
PMC5137874
DOI
10.1371/journal.pgen.1006441
PII: PGENETICS-D-15-02330
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované genetika MeSH
- ektoderm růst a vývoj patologie MeSH
- genové regulační sítě genetika MeSH
- homeodoménové proteiny genetika metabolismus MeSH
- lidé MeSH
- myši MeSH
- nádorové proteiny genetika metabolismus MeSH
- oči růst a vývoj metabolismus patologie MeSH
- oční čočka růst a vývoj metabolismus patologie MeSH
- transkripční faktor Meis1 MeSH
- transkripční faktor PAX6 genetika metabolismus MeSH
- vazebná místa MeSH
- vývojová regulace genové exprese MeSH
- zesilovače transkripce genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- homeodoménové proteiny MeSH
- MEIS1 protein, human MeSH Prohlížeč
- Meis1 protein, mouse MeSH Prohlížeč
- Mrg1 protein, mouse MeSH Prohlížeč
- nádorové proteiny MeSH
- Pax6 protein, mouse MeSH Prohlížeč
- transkripční faktor Meis1 MeSH
- transkripční faktor PAX6 MeSH
Lens induction is a classical developmental model allowing investigation of cell specification, spatiotemporal control of gene expression, as well as how transcription factors are integrated into highly complex gene regulatory networks (GRNs). Pax6 represents a key node in the gene regulatory network governing mammalian lens induction. Meis1 and Meis2 homeoproteins are considered as essential upstream regulators of Pax6 during lens morphogenesis based on their interaction with the ectoderm enhancer (EE) located upstream of Pax6 transcription start site. Despite this generally accepted regulatory pathway, Meis1-, Meis2- and EE-deficient mice have surprisingly mild eye phenotypes at placodal stage of lens development. Here, we show that simultaneous deletion of Meis1 and Meis2 in presumptive lens ectoderm results in arrested lens development in the pre-placodal stage, and neither lens placode nor lens is formed. We found that in the presumptive lens ectoderm of Meis1/Meis2 deficient embryos Pax6 expression is absent. We demonstrate using chromatin immunoprecipitation (ChIP) that in addition to EE, Meis homeoproteins bind to a remote, ultraconserved SIMO enhancer of Pax6. We further show, using in vivo gene reporter analyses, that the lens-specific activity of SIMO enhancer is dependent on the presence of three Meis binding sites, phylogenetically conserved from man to zebrafish. Genetic ablation of EE and SIMO enhancers demostrates their requirement for lens induction and uncovers an apparent redundancy at early stages of lens development. These findings identify a genetic requirement for Meis1 and Meis2 during the early steps of mammalian eye development. Moreover, they reveal an apparent robustness in the gene regulatory mechanism whereby two independent "shadow enhancers" maintain critical levels of a dosage-sensitive gene, Pax6, during lens induction.
Zobrazit více v PubMed
Cvekl A, Ashery-Padan R. The cellular and molecular mechanisms of vertebrate lens development. Development. 2014;141(23):4432–47. PubMed Central PMCID: PMC4302924. 10.1242/dev.107953 PubMed DOI PMC
Gunhaga L. The lens: a classical model of embryonic induction providing new insights into cell determination in early development. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2011;366(1568):1193–203. PubMed Central PMCID: PMC3061103. 10.1098/rstb.2010.0175 PubMed DOI PMC
Bailey AP, Bhattacharyya S, Bronner-Fraser M, Streit A. Lens specification is the ground state of all sensory placodes, from which FGF promotes olfactory identity. Developmental cell. 2006;11(4):505–17. 10.1016/j.devcel.2006.08.009 PubMed DOI
Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature. 1991;354(6354):522–5. 10.1038/354522a0 PubMed DOI
Hogan BL, Horsburgh G, Cohen J, Hetherington CM, Fisher G, Lyon MF. Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. Journal of embryology and experimental morphology. 1986;97:95–110. PubMed
Hogan BL, Hirst EM, Horsburgh G, Hetherington CM. Small eye (Sey): a mouse model for the genetic analysis of craniofacial abnormalities. Development. 1988;103 Suppl:115–9. PubMed
Ashery-Padan R, Marquardt T, Zhou X, Gruss P. Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 2000;14(21):2701–11. Epub 2000/11/09. PubMed PMC
Collinson JM, Hill RE, West JD. Different roles for Pax6 in the optic vesicle and facial epithelium mediate early morphogenesis of the murine eye. Development. 2000;127(5):945–56. PubMed
Quinn JC, West JD, Hill RE. Multiple functions for Pax6 in mouse eye and nasal development. Genes Dev. 1996;10(4):435–46. PubMed
Matsushima D, Heavner W, Pevny LH. Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6. Development. 2011;138(3):443–54. PubMed Central PMCID: PMC3014633. 10.1242/dev.055178 PubMed DOI PMC
Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, et al. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 2003;17(3):368–79. PubMed Central PMCID: PMC195989. 10.1101/gad.1059403 PubMed DOI PMC
Langer L, Taranova O, Sulik K, Pevny L. SOX2 hypomorphism disrupts development of the prechordal floor and optic cup. Mechanisms of development. 2012;129(1–4):1–12. PubMed Central PMCID: PMC4077342. 10.1016/j.mod.2012.04.001 PubMed DOI PMC
Bhatia S, Monahan J, Ravi V, Gautier P, Murdoch E, Brenner S, et al. A survey of ancient conserved non-coding elements in the PAX6 locus reveals a landscape of interdigitated cis-regulatory archipelagos. Developmental biology. 2014;387(2):214–28. 10.1016/j.ydbio.2014.01.007 PubMed DOI
Kleinjan DA, van Heyningen V. Long-range control of gene expression: emerging mechanisms and disruption in disease. American journal of human genetics. 2005;76(1):8–32. PubMed Central PMCID: PMC1196435. 10.1086/426833 PubMed DOI PMC
Kammandel B, Chowdhury K, Stoykova A, Aparicio S, Brenner S, Gruss P. Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Developmental biology. 1999;205(1):79–97. 10.1006/dbio.1998.9128 PubMed DOI
Williams SC, Altmann CR, Chow RL, Hemmati-Brivanlou A, Lang RA. A highly conserved lens transcriptional control element from the Pax-6 gene. Mechanisms of development. 1998;73(2):225–9. PubMed
Dimanlig PV, Faber SC, Auerbach W, Makarenkova HP, Lang RA. The upstream ectoderm enhancer in Pax6 has an important role in lens induction. Development. 2001;128(22):4415–24. PubMed
Fantes J, Redeker B, Breen M, Boyle S, Brown J, Fletcher J, et al. Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Human molecular genetics. 1995;4(3):415–22. PubMed
Bhatia S, Bengani H, Fish M, Brown A, Divizia MT, de Marco R, et al. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. American journal of human genetics. 2013;93(6):1126–34. PubMed Central PMCID: PMC3852925. 10.1016/j.ajhg.2013.10.028 PubMed DOI PMC
Kleinjan DA, Seawright A, Schedl A, Quinlan RA, Danes S, van Heyningen V. Aniridia-associated translocations, DNase hypersensitivity, sequence comparison and transgenic analysis redefine the functional domain of PAX6. Human molecular genetics. 2001;10(19):2049–59. PubMed
Aota S, Nakajima N, Sakamoto R, Watanabe S, Ibaraki N, Okazaki K. Pax6 autoregulation mediated by direct interaction of Pax6 protein with the head surface ectoderm-specific enhancer of the mouse Pax6 gene. Developmental biology. 2003;257(1):1–13. PubMed
Zhang X, Friedman A, Heaney S, Purcell P, Maas RL. Meis homeoproteins directly regulate Pax6 during vertebrate lens morphogenesis. Genes Dev. 2002;16(16):2097–107. PubMed Central PMCID: PMC186446. 10.1101/gad.1007602 PubMed DOI PMC
Liu W, Lagutin OV, Mende M, Streit A, Oliver G. Six3 activation of Pax6 expression is essential for mammalian lens induction and specification. The EMBO journal. 2006;25(22):5383–95. PubMed Central PMCID: PMC1636621. 10.1038/sj.emboj.7601398 PubMed DOI PMC
Donner AL, Episkopou V, Maas RL. Sox2 and Pou2f1 interact to control lens and olfactory placode development. Developmental biology. 2007;303(2):784–99. PubMed Central PMCID: PMC3276313. 10.1016/j.ydbio.2006.10.047 PubMed DOI PMC
Rowan S, Siggers T, Lachke SA, Yue Y, Bulyk ML, Maas RL. Precise temporal control of the eye regulatory gene Pax6 via enhancer-binding site affinity. Genes Dev. 2010;24(10):980–5. PubMed Central PMCID: PMC2867212. 10.1101/gad.1890410 PubMed DOI PMC
Longobardi E, Penkov D, Mateos D, De Florian G, Torres M, Blasi F. Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Developmental dynamics: an official publication of the American Association of Anatomists. 2014;243(1):59–75. PubMed Central PMCID: PMC4232920. PubMed PMC
Penkov D, Mateos San Martin D, Fernandez-Diaz LC, Rossello CA, Torroja C, Sanchez-Cabo F, et al. Analysis of the DNA-binding profile and function of TALE homeoproteins reveals their specialization and specific interactions with Hox genes/proteins. Cell reports. 2013;3(4):1321–33. 10.1016/j.celrep.2013.03.029 PubMed DOI
Hisa T, Spence SE, Rachel RA, Fujita M, Nakamura T, Ward JM, et al. Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. The EMBO journal. 2004;23(2):450–9. PubMed Central PMCID: PMC1271748. 10.1038/sj.emboj.7600038 PubMed DOI PMC
Swift GH, Liu Y, Rose SD, Bischof LJ, Steelman S, Buchberg AM, et al. An endocrine-exocrine switch in the activity of the pancreatic homeodomain protein PDX1 through formation of a trimeric complex with PBX1b and MRG1 (MEIS2). Molecular and cellular biology. 1998;18(9):5109–20. PubMed Central PMCID: PMC109096. PubMed PMC
Toresson H, Parmar M, Campbell K. Expression of Meis and Pbx genes and their protein products in the developing telencephalon: implications for regional differentiation. Mechanisms of development. 2000;94(1–2):183–7. PubMed
Grindley JC, Davidson DR, Hill RE. The role of Pax-6 in eye and nasal development. Development. 1995;121(5):1433–42. PubMed
Machon O, Masek J, Machonova O, Krauss S, Kozmik Z. Meis2 is essential for cranial and cardiac neural crest development. BMC developmental biology. 2015;15:40 PubMed Central PMCID: PMC4636814. 10.1186/s12861-015-0093-6 PubMed DOI PMC
Blixt A, Landgren H, Johansson BR, Carlsson P. Foxe3 is required for morphogenesis and differentiation of the anterior segment of the eye and is sensitive to Pax6 gene dosage. Developmental biology. 2007;302(1):218–29. 10.1016/j.ydbio.2006.09.021 PubMed DOI
Smith AN, Miller LA, Radice G, Ashery-Padan R, Lang RA. Stage-dependent modes of Pax6-Sox2 epistasis regulate lens development and eye morphogenesis. Development. 2009;136(17):2977–85. PubMed Central PMCID: PMC2723069. 10.1242/dev.037341 PubMed DOI PMC
Purcell P, Oliver G, Mardon G, Donner AL, Maas RL. Pax6-dependence of Six3, Eya1 and Dach1 expression during lens and nasal placode induction. Gene expression patterns: GEP. 2005;6(1):110–8. 10.1016/j.modgep.2005.04.010 PubMed DOI
Chang CP, Jacobs Y, Nakamura T, Jenkins NA, Copeland NG, Cleary ML. Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric Pbx proteins. Molecular and cellular biology. 1997;17(10):5679–87. PubMed Central PMCID: PMC232416. PubMed PMC
Yamada T, Nakamura T, Westphal H, Russell P. Synthesis of alpha-crystallin by a cell line derived from the lens of a transgenic animal. Current eye research. 1990;9(1):31–7. PubMed
Zhang X, Rowan S, Yue Y, Heaney S, Pan Y, Brendolan A, et al. Pax6 is regulated by Meis and Pbx homeoproteins during pancreatic development. Developmental biology. 2006;300(2):748–57. 10.1016/j.ydbio.2006.06.030 PubMed DOI
Farley EK, Olson KM, Zhang W, Brandt AJ, Rokhsar DS, Levine MS. Suboptimization of developmental enhancers. Science. 2015;350(6258):325–8. PubMed Central PMCID: PMC4970741. 10.1126/science.aac6948 PubMed DOI PMC
Bessa J, Tena JJ, de la Calle-Mustienes E, Fernandez-Minan A, Naranjo S, Fernandez A, et al. Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Developmental dynamics: an official publication of the American Association of Anatomists. 2009;238(9):2409–17. PubMed
Davidson EH. Emerging properties of animal gene regulatory networks. Nature. 2010;468(7326):911–20. PubMed Central PMCID: PMC3967874. 10.1038/nature09645 PubMed DOI PMC
Davidson EH, Levine MS. Properties of developmental gene regulatory networks. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(51):20063–6. PubMed Central PMCID: PMC2629280. 10.1073/pnas.0806007105 PubMed DOI PMC
Goudreau G, Petrou P, Reneker LW, Graw J, Loster J, Gruss P. Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(13):8719–24. PubMed Central PMCID: PMC124365. 10.1073/pnas.132195699 PubMed DOI PMC
Lang RA. Pathways regulating lens induction in the mouse. The International journal of developmental biology. 2004;48(8–9):783–91. 10.1387/ijdb.041903rl PubMed DOI
Carbe C, Hertzler-Schaefer K, Zhang X. The functional role of the Meis/Prep-binding elements in Pax6 locus during pancreas and eye development. Developmental biology. 2012;363(1):320–9. PubMed Central PMCID: PMC3288747. 10.1016/j.ydbio.2011.12.038 PubMed DOI PMC
Marcos S, Gonzalez-Lazaro M, Beccari L, Carramolino L, Martin-Bermejo MJ, Amarie O, et al. Meis1 coordinates a network of genes implicated in eye development and microphthalmia. Development. 2015;142(17):3009–20. 10.1242/dev.122176 PubMed DOI
Jordan T, Hanson I, Zaletayev D, Hodgson S, Prosser J, Seawright A, et al. The human PAX6 gene is mutated in two patients with aniridia. Nature genetics. 1992;1(5):328–32. 10.1038/ng0892-328 PubMed DOI
Ton CC, Hirvonen H, Miwa H, Weil MM, Monaghan P, Jordan T, et al. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell. 1991;67(6):1059–74. PubMed
Glaser T, Walton DS, Maas RL. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nature genetics. 1992;2(3):232–9. 10.1038/ng1192-232 PubMed DOI
Kroeber M, Davis N, Holzmann S, Kritzenberger M, Shelah-Goraly M, Ofri R, et al. Reduced expression of Pax6 in lens and cornea of mutant mice leads to failure of chamber angle development and juvenile glaucoma. Human molecular genetics. 2010;19(17):3332–42. 10.1093/hmg/ddq237 PubMed DOI
Schedl A, Ross A, Lee M, Engelkamp D, Rashbass P, van Heyningen V, et al. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell. 1996;86(1):71–82. PubMed
Shaham O, Smith AN, Robinson ML, Taketo MM, Lang RA, Ashery-Padan R. Pax6 is essential for lens fiber cell differentiation. Development. 2009;136(15):2567–78. PubMed Central PMCID: PMC2709063. 10.1242/dev.032888 PubMed DOI PMC
Hong JW, Hendrix DA, Levine MS. Shadow enhancers as a source of evolutionary novelty. Science. 2008;321(5894):1314 PubMed Central PMCID: PMC4257485. 10.1126/science.1160631 PubMed DOI PMC
Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008;134(1):25–36. 10.1016/j.cell.2008.06.030 PubMed DOI
Prud'homme B, Gompel N, Carroll SB. Emerging principles of regulatory evolution. Proceedings of the National Academy of Sciences of the United States of America. 2007;104 Suppl 1:8605–12. PubMed Central PMCID: PMC1876436. PubMed PMC
Frankel N, Davis GK, Vargas D, Wang S, Payre F, Stern DL. Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature. 2010;466(7305):490–3. PubMed Central PMCID: PMC2909378. 10.1038/nature09158 PubMed DOI PMC
Perry MW, Boettiger AN, Bothma JP, Levine M. Shadow enhancers foster robustness of Drosophila gastrulation. Current biology: CB. 2010;20(17):1562–7. PubMed Central PMCID: PMC4257487. 10.1016/j.cub.2010.07.043 PubMed DOI PMC
Perry MW, Bothma JP, Luu RD, Levine M. Precision of hunchback expression in the Drosophila embryo. Current biology: CB. 2012;22(23):2247–52. PubMed Central PMCID: PMC4257490. 10.1016/j.cub.2012.09.051 PubMed DOI PMC
Ghiasvand NM, Rudolph DD, Mashayekhi M, Brzezinski JAt, Goldman D, Glaser T. Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nature neuroscience. 2011;14(5):578–86. PubMed Central PMCID: PMC3083485. 10.1038/nn.2798 PubMed DOI PMC
Cannavo E, Khoueiry P, Garfield DA, Geeleher P, Zichner T, Gustafson EH, et al. Shadow Enhancers Are Pervasive Features of Developmental Regulatory Networks. Current biology: CB. 2016;26(1):38–51. PubMed Central PMCID: PMC4712172. 10.1016/j.cub.2015.11.034 PubMed DOI PMC
Ravi V, Bhatia S, Gautier P, Loosli F, Tay BH, Tay A, et al. Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences. PLoS genetics. 2013;9(1):e1003177 PubMed Central PMCID: PMC3554528. 10.1371/journal.pgen.1003177 PubMed DOI PMC
Gehring WJ, Ikeo K. Pax 6: mastering eye morphogenesis and eye evolution. Trends in genetics: TIG. 1999;15(9):371–7. PubMed
Mukherjee K, Burglin TR. Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution. Journal of molecular evolution. 2007;65(2):137–53. 10.1007/s00239-006-0023-0 PubMed DOI
Pai CY, Kuo TS, Jaw TJ, Kurant E, Chen CT, Bessarab DA, et al. The Homothorax homeoprotein activates the nuclear localization of another homeoprotein, extradenticle, and suppresses eye development in Drosophila. Genes Dev. 1998;12(3):435–46. PubMed Central PMCID: PMC316489. PubMed PMC
Wang CW, Sun YH. Segregation of eye and antenna fates maintained by mutual antagonism in Drosophila. Development. 2012;139(18):3413–21. 10.1242/dev.078857 PubMed DOI
Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature genetics. 1999;21(1):70–1. 10.1038/5007 PubMed DOI
Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic acids research. 2011;39(12):e82 PubMed Central PMCID: PMC3130291. 10.1093/nar/gkr218 PubMed DOI PMC
Kasparek P, Krausova M, Haneckova R, Kriz V, Zbodakova O, Korinek V, et al. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS letters. 2014;588(21):3982–8. 10.1016/j.febslet.2014.09.014 PubMed DOI
Machon O, Kreslova J, Ruzickova J, Vacik T, Klimova L, Fujimura N, et al. Lens morphogenesis is dependent on Pax6-mediated inhibition of the canonical Wnt/beta-catenin signaling in the lens surface ectoderm. Genesis. 2010;48(2):86–95. 10.1002/dvg.20583 PubMed DOI
Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic acids research. 2004;32(Database issue):D91–4. PubMed Central PMCID: PMC308747. 10.1093/nar/gkh012 PubMed DOI PMC
Starostova M, Cermak V, Dvorakova M, Karafiat V, Kosla J, Dvorak M. The oncoprotein v-Myb activates transcription of Gremlin 2 during in vitro differentiation of the chicken neural crest to melanoblasts. Gene. 2014;540(1):122–9. 10.1016/j.gene.2014.02.031 PubMed DOI
Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Developmental cell. 2004;7(1):133–44. \ 10.1016/j.devcel.2004.06.005 PubMed DOI
Conserved enhancers control notochord expression of vertebrate Brachyury
Conserved enhancer logic controls the notochord expression of vertebrate Brachyury
Paralogous Genes Involved in Embryonic Development: Lessons from the Eye and Other Tissues
Meis homeobox genes control progenitor competence in the retina
Neural crest cells require Meis2 for patterning the mandibular arch via the Sonic hedgehog pathway