Conserved enhancers control notochord expression of vertebrate Brachyury
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 HG003988
NHGRI NIH HHS - United States
R01 DE028599
NIDCR NIH HHS - United States
R01 DE024745
NIDCR NIH HHS - United States
R01 HL162304
NHLBI NIH HHS - United States
R01 DK129350
NIDDK NIH HHS - United States
T32 GM141742
NIGMS NIH HHS - United States
DP2 HG010013
NHGRI NIH HHS - United States
F31 HL167580
NHLBI NIH HHS - United States
PubMed
37852970
PubMed Central
PMC10584899
DOI
10.1038/s41467-023-42151-3
PII: 10.1038/s41467-023-42151-3
Knihovny.cz E-zdroje
- MeSH
- chorda dorsalis * metabolismus MeSH
- dánio pruhované * genetika metabolismus MeSH
- fetální proteiny genetika metabolismus MeSH
- lidé MeSH
- myši MeSH
- proteiny T-boxu genetika metabolismus MeSH
- savci genetika MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- Brachyury Protein MeSH
- fetální proteiny MeSH
- proteiny T-boxu MeSH
- TBX1 protein, human MeSH Prohlížeč
- Tbx1 protein, mouse MeSH Prohlížeč
The cell type-specific expression of key transcription factors is central to development and disease. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three conserved Brachyury-controlling notochord enhancers, T3, C, and I, in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, in cis deletion of all three enhancers in mouse abolishes Brachyury/T/Tbxt expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. The three Brachyury-driving notochord enhancers are conserved beyond mammals in the brachyury/tbxtb loci of fishes, dating their origin to the last common ancestor of jawed vertebrates. Our data define the vertebrate enhancers for Brachyury/T/TBXTB notochord expression through an auto-regulatory mechanism that conveys robustness and adaptability as ancient basis for axis development.
Biological Sciences Graduate Program University of California San Diego La Jolla CA USA
Cluster of Excellence Physics of Life Technische Universität Dresden Dresden Germany
Comparative Biochemistry Program University of California Berkeley CA 94720 USA
Department for BioMedical Research University of Bern Bern Switzerland
Department of Anatomy University of California San Francisco San Francisco CA USA
Department of Cardiology Bern University Hospital Bern Switzerland
Department of Medicine Health Sciences University of California San Diego La Jolla CA USA
Department of Orofacial Sciences University of California San Francisco San Francisco CA USA
Institute for Human Genetics University of California San Francisco San Francisco CA USA
Institute of Molecular Genetics of the ASCR v v i Prague Czech Republic
Institute of Molecular Life Sciences University of Zurich Zurich Switzerland
Max Planck Institute for Molecular Cell Biology and Genetics Dresden Germany
Program in Craniofacial Biology University of California San Francisco San Francisco CA USA
School of Natural Sciences University of California Merced Merced CA USA
Technische Universität Dresden CRTD Center for Regenerative Therapies Dresden Dresden Germany
US Department of Energy Joint Genome Institute Lawrence Berkeley National Laboratory Berkeley CA USA
Zobrazit více v PubMed
Stemple DL. Structure and function of the notochord: an essential organ for chordate development. Development. 2005;132:2503–2512. PubMed
Corallo D, Trapani V, Bonaldo P. The notochord: structure and functions. Cell Mol. Life Sci. 2015;72:2989–3008. PubMed PMC
Wang, F. et al. The embryonic and evolutionary boundaries between notochord and cartilage: a new look at nucleus pulposus-specific markers. Osteoarthr. Cartil.10.1016/j.joca.2018.05.022 (2018). PubMed
Risbud MV, Schaer TP, Shapiro IM. Toward an understanding of the role of notochordal cells in the adult intervertebral disc: from discord to accord. Dev. Dyn. 2010;239:2141–2148. PubMed PMC
Bagnat, M. & Gray, R. S. Development of a straight vertebrate body axis. Development.10.1242/dev.175794 (2020). PubMed PMC
Stosiek P, Kasper M, Karsten U. Expression of cytokeratin and vimentin in nucleus pulposus cells. Differentiation. 1988;39:78–81. PubMed
Peck SH, et al. Whole transcriptome analysis of notochord-derived cells during embryonic formation of the nucleus pulposus. Sci. Rep. 2017;7:1–14. PubMed PMC
Satoh, N., Tagawa, K. & Takahashi, H. How was the notochord born? Evol. Dev.14, 56–75 (2012). PubMed
Dobrovolskaia-Zavadskaia N. Sur la mortification spontanee de la chez la souris nouveau-nee et sur l’existence d’un caractere (facteur) hereditaire, non-viable. Crit. Rev. Soc. Biol. 1927;97:114–116.
Corbo JC, Levine M, Zeller RW. Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, ciona intestinalis. Development. 1997;124:589–602. PubMed
Herrmann BG. The mouse Brachyury (T) gene. Semin. Dev. Biol. 1995;6:385–394.
Holland PW, Koschorz B, Holland LZ, Herrmann BG. Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development. 1995;121:4283–4291. PubMed
Schulte-Merker S, van Eeden FJ, Halpern ME, Kimmel CB, Nüsslein-Volhard C. No tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development. 1994;120:1009–1015. PubMed
Smith JC, Price BMJJ, Green JBAA, Weigel D, Herrmann BG. Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell. 1991;67:79–87. PubMed
Halpern ME, Ho RK, Walker C, Kimmel CB. Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell. 1993;75:99–111. PubMed
Rivera-Pérez JA, Magnuson T. Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev. Biol. 2005;288:363–371. PubMed
Martin BL, Kimelman D. Regulation of canonical wnt signaling by Brachyury is essential for posterior mesoderm formation. Dev. Cell. 2008;15:121–133. PubMed PMC
Henrique D, Abranches E, Verrier L, Storey KG. Neuromesodermal progenitors and the making of the spinal cord. Development. 2015;142:2864–2875. PubMed PMC
Schwaner MJ, Hsieh ST, Swalla BJ, McGowan CP. An introduction to an evolutionary tail: evodevo, structure, and function of post-anal appendages. Integr. Comp. Biol. 2021;61:352–357. PubMed
Sebé-Pedrós A, et al. Early eèolution of the T-box transcription factor family. Proc. Natl Acad. Sci. USA. 2013;110:16050–16055. PubMed PMC
Inoue J, Yasuoka Y, Takahashi H, Satoh N. The chordate ancestor possessed a single copy of the Brachyury gene for notochord acquisition. Zool. Lett. 2017;3:1–7. PubMed PMC
Amemiya CT, et al. The African coelacanth genome provides insights into tetrapod evolution. Nature. 2013;496:311–316. PubMed PMC
Harvey SAA, et al. no tail integrates two modes of mesoderm induction. Development. 2010;137:1127–1135. PubMed PMC
Clements D, Taylor HC, Herrmann BG, Stott D. Distinct regulatory control of the Brachyury gene in axial and non-axial mesoderm suggests separation of mesoderm lineages early in mouse gastrulation. Mech. Dev. 1996;56:139–149. PubMed
Latinkić BV, et al. The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins. Genes. Dev. 1997;11:3265–3276. PubMed PMC
Arnold SJ, et al. Brachyury is a target gene of the Wnt/β-catenin signaling pathway. Mech. Dev. 2000;91:249–258. PubMed
Schifferl, D. et al. A 37 kb region upstream of Brachyury comprising a notochord enhancer is essential for notochord and tail development. Development10.1242/DEV.200059 (2021). PubMed PMC
Farley EK, Olson KM, Zhang W, Rokhsar DS, Levine MS. Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers. Proc. Natl Acad. Sci. USA. 2016;113:6508–6513. PubMed PMC
Song BP, et al. Diverse logics and grammar encode notochord enhancers. Cell Rep. 2023;42:112052. PubMed PMC
Yakkioui, Y., van Overbeeke, J. J., Santegoeds, R., van Engeland, M. & Temel, Y. The origin of chordoma. Biochim. Biophys. Acta. 10.1016/j.bbcan.2014.07.012 (2014). PubMed
Nibu Y, Jose-Edwards DS, Di Gregorio A, José-Edwards DS, Di Gregorio A. From notochord formation to hereditary chordoma: The many roles of brachyury. BioMed. Res. Int. 2013;2013:826435. PubMed PMC
Vujovic S, et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J. Pathol. 2006;209:157–165. PubMed
Bhadra AK, Casey AT. Familial chordoma. A report of two cases. J. Bone Jt. Surg. Br. 2006;88:634–636. PubMed
Yang XR, et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat. Genet. 2009;41:1176–1178. PubMed PMC
Hsu W, et al. Generation of chordoma cell line JHC7 and the identification of Brachyury as a novel molecular target. J. Neurosurg. 2011;115:760–769. PubMed PMC
Nelson AC, et al. An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma. J. Pathol. 2012;228:274–285. PubMed PMC
Tarpey PS, et al. The driver landscape of sporadic chordoma. Nat. Commun. 2017;8:1–6. PubMed PMC
Sharifnia, T. et al. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat. Med. 10.1038/s41591-018-0312-3 (2019). PubMed PMC
Beisaw A, et al. BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Rep. 2018;19:118. PubMed PMC
Faial T, et al. Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells. Development. 2015;142:2121. PubMed PMC
Mikkelsen TS, et al. Genome of the marsupial monodelphis domestica reveals innovation in non-coding sequences. Nature. 2007;447:167–177. PubMed
Kemmler CL, et al. Next-generation plasmids for transgenesis in zebrafish and beyond. Development. 2023;150:dev201531. PubMed PMC
Nowoshilow S, et al. The axolotl genome and the evolution of key tissue formation regulators. Nature. 2018;554:50–55. PubMed
Prummel KD, et al. A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat. Commun. 2019;10:3857. PubMed PMC
Kvon EZ, et al. Comprehensive in vivo interrogation reveals phenotypic impact of human enhancer variants. Cell. 2020;180:1262. PubMed PMC
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinform. 2011;27:1017. PubMed PMC
Pippucci T, et al. Mutations in the 5’ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am. J. Hum. Genet. 2011;88:115–120. PubMed PMC
Nei M, Xu P, Glazko G. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc. Natl Acad. Sci. USA. 2001;98:2497–2502. PubMed PMC
Goodstadt L, Heger A, Webber C, Ponting CP. An analysis of the gene complement of a marsupial, monodelphis domestica: evolution of lineage-specific genes and giant chromosomes. Genome Res. 2007;17:969–981. PubMed PMC
Kumar S, Stecher G, Suleski M, Blair Hedges S. Time tree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017;34:1812–1819. PubMed
Passamaneck YJ, et al. Direct activation of a notochord cis-regulatory module by Brachyury and FoxA in the ascidian ciona intestinalis. Development. 2009;136:3679–3689. PubMed PMC
Gluecksohn-Schoenheimer S. The development of two tailless mutants in house mouse. Genetics. 1938;23:573–584. PubMed PMC
Gluecksohn-Schoenheimer S. The development of normal and homozygous brachy (T/T) mouse embryos in the extraembryonic coelom of the chick. Proc. Natl Acad. Sci. 1944;30:134–140. PubMed PMC
Yanagisawa KO. Does the T gene determine the anteroposterior axis of a mouse embryo? Jpn. J. Genet. 1990;65:287–297. PubMed
Pennimpede T, et al. In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Dev. Biol. 2012;372:55–67. PubMed
Zhu, J., Kwan, K. M. & Mackem, S. Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT. Proc. Natl Acad. Sci. USA10.1073/pnas.1601252113 (2016). PubMed PMC
Martin BL, Kimelman D. Brachyury establishes the embryonic mesodermal progenitor niche. Genes. Dev. 2010;24:2778–2783. PubMed PMC
Braasch I, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 2016;48:427–437. PubMed PMC
Thompson, A. W. et al. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat. Genet.10.1038/s41588-021-00914-y (2021). PubMed PMC
Bradley Shaffer H, et al. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 2013;14:R28. PubMed PMC
Takezaki N. Global rate variation in bony vertebrates. Genome Biol. Evol. 2018;10:1803–1815. PubMed PMC
Kvon, E. Z. et al. Enhancer redundancy in development and disease. Nat. Rev. Genet. 22, 324–336 (2021). PubMed PMC
Letelier J, et al. A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. Nat. Genet. 2018;50:504–509. PubMed PMC
Cannavò, E. et al. Shadow enhancers are pervasive features of developmental regulatory networks. Curr. Biol. 10.1016/j.cub.2015.11.034 (2015). PubMed PMC
Hong JW, Hendrix DA, Levine MS. Shadow enhancers as a source of evolutionary novelty. Science. 2008;321:1314. PubMed PMC
Antosova B, et al. The gene regulatory network of lens induction is wired through meis-dependent shadow enhancers of Pax6. PLoS Genet. 2016;12:e1006441. PubMed PMC
Osterwalder M, et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature. 2018;554:239–243. PubMed PMC
Irimia M, et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 2012;22:2356–2367. PubMed PMC
Amacher, S. L., Draper, B. W., Summers, B. R. & Kimmel, C. B. The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development10.1242/DEV.129.14.3311 (2002). PubMed
Rennebeck GM, et al. Is there a Brachyury the second? analysis of a transgenic mutation involved in notochord maintenance in mice. Dev. Biol. 1995;172:206–217. PubMed
Rennebeck G, Lader E, Fujimoto A, Lei EP, Artzt K. Mouse Brachyury the second (T2) is a gene next to classical T and a candidate gene for tct. Genetics. 1998;150:1125–1131. PubMed PMC
Takei H, Powell SZ. Novel immunohistochemical markers in the diagnosis of nonglial tumors of nervous system. Adv. Anat. Pathol. 2010;17:150–153. PubMed
Sangoi AR, et al. Specificity of brachyury in the distinction of chordoma from clear cell renal cell carcinoma and germ cell tumors: a study of 305 cases. Mod. Pathol. 2011;24:425–429. PubMed
Heaton JM, Turner DR. Reflections on notochordal differentiation arising from a study of chordomas. Histopathol. 1985;9:543–550. PubMed
Choi KS, Cohn MJ, Harfe BD. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev. Dyn. 2008;237:3953–3958. PubMed PMC
Tang X, Jing L, Chen J. Changes in the molecular phenotype of nucleus pulposus cells with intervertebral disc aging. PLoS One. 2012;7:52020. PubMed PMC
Richardson SM, et al. Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci. Rep. 2017;7:1–11. PubMed PMC
Nakamichi R, Asahara H. The transcription factors regulating intervertebral disc development. JOR Spine. 2020;3:e1081. PubMed PMC
Hu Y, Mintz A, Shah SRR, Quinones-Hinojosa A, Hsu W. The FGFR/MEK/ERK/brachyury pathway is critical for chordoma cell growth and survival. Carcinogene. 2014;35:1491–1499. PubMed PMC
D’Agati, G. et al. Active receptor tyrosine kinases, but not Brachyury, are sufficient to trigger chordoma in zebrafish. Dis. Model Mech. 12, 7 (2019). PubMed PMC
Presneau N, et al. Role of the transcription factor T (brachyury) in the pathogenesis of sporadic chordoma: a genetic and functional-based study. J. Pathol. 2011;223:327–335. PubMed
Brink, S. C. van den et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature10.1038/s41586-020-2024-3 (2020). PubMed
Lópezlópez-Anguita N, et al. Hypoxia induces an early primitive streak signature, enhancing spontaneous elongation and lineage representation in gastruloids. Development. 2022;149:dev200679. PubMed PMC
Veenvliet JV, et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science. 2020;370:eaba4937. PubMed
Moris, N. et al. An in vitro model of early anteroposterior organization during human development. Nature10.1038/s41586-020-2383-9 (2020). PubMed
Xu PF, et al. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat. Commun. 2021;12:3277. PubMed PMC
Xu P-F, Houssin N, Ferri-Lagneau KF, Thisse B, Thisse C. Construction of a vertebrate embryo from two opposing morphogen gradients. Science. 2014;344:87–89. PubMed
Rito, T., Libby, A. R. G., Demuth, M. & Briscoe, J. Notochord and axial progenitor generation by timely BMP and NODAL inhibition during vertebrate trunk formation. bioRxiv. 10.1101/2023.02.27.530267 (2023).
Tosic J, et al. Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nat. Cell Biol. 2019;21:1518–1531. PubMed
Koch, F. et al. Antagonistic activities of Sox2 and brachyury control the fate choice of neuro-mesodermal progenitors. Dev. Cell10.1016/j.devcel.2017.07.021 (2017). PubMed
Abascal F, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583:699–710. PubMed PMC
Mosimann, C. Multisite gateway calculations: excel spreadsheet. protocols.io Preprint at 10.17504/protocols.io.b4xdqxi6 (2022).
Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Oregon University Press, 2007).
Mosimann C, et al. Ubiquitous transgene expression and cre-based recombination driven by the ubiquitin promoter in zebrafish. Development. 2011;138:169–177. PubMed PMC
Kwan KM, et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 2007;236:3088–3099. PubMed
Felker A, Mosimann C. Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments. Methods Cell Biol. 2016;135:219–244. PubMed
Yun MH, Gates PB, Brockes JP. Regulation of p53 is critical for vertebrate limb regeneration. Proc. Natl Acad. Sci. USA. 2013;110:17392–17397. PubMed PMC
Khattak S, et al. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat. Protoc. 2014;9:529–540. PubMed
Armstrong, J. B. & Malacinski, G. M. Developmental Biology of the Axolotl (Oxford University Press, 1989).
Hippenmeyer S, et al. Genetic mosaic dissection of lis1 and Ndel1 in neuronal migration. Neuron. 2010;68:695. PubMed PMC
Tasic B, et al. Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc. Natl Acad. Sci. USA. 2011;108:7902–7907. PubMed PMC
Osterwalder M, et al. Characterization of mammalian in vivo enhancers using mouse transgenesis and CRISPR genome editing. Methods Mol. Biol. 2022;2403:147–186. PubMed
Farley EK, et al. Suboptimization of developmental enhancers. Science. 2015;350:325–328. PubMed PMC
Harafuji N, Keys DN, Levine M. Genome-wide identification of tissue-specific enhancers in the ciona tadpole. Proc. Natl Acad. Sci. USA. 2002;99:6802–6805. PubMed PMC
Christiaen L, Wagner E, Shi W, Levine M. Electroporation of transgenic DNAs in the sea squirt Ciona. Cold Spring Harb. Protoc. 2009;2009:pdb.prot5345. PubMed
Jenickova I, et al. Efficient allele conversion in mouse zygotes and primary cells based on electroporation of Cre protein. Methods. 2021;191:87–94. PubMed
Mašek J, Machoň O, Kořínek V, Taketo MM, Kozmik Z. Tcf7l1 protects the anterior neural fold from adopting the neural crest fate. Development. 2016;143:2206–2216. PubMed
Martin FJ, et al. Ensembl 2023. Nucleic Acids Res. 2023;51:D933–D941. PubMed PMC
Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 2009;537:39–64. PubMed
Castro-Mondragon JA, et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50:D165–D173. PubMed PMC
Visel A, Minovitsky S, Dubchak I, Pennacchio LA. VISTA enhancer browser–a database of tissue-specific human enhancers. Nucleic Acids Res. 2007;35:D88–92. PubMed PMC