Conserved enhancers control notochord expression of vertebrate Brachyury

. 2023 Oct 18 ; 14 (1) : 6594. [epub] 20231018

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid37852970

Grantová podpora
R01 HG003988 NHGRI NIH HHS - United States
R01 DE028599 NIDCR NIH HHS - United States
R01 DE024745 NIDCR NIH HHS - United States
R01 HL162304 NHLBI NIH HHS - United States
R01 DK129350 NIDDK NIH HHS - United States
T32 GM141742 NIGMS NIH HHS - United States
DP2 HG010013 NHGRI NIH HHS - United States
F31 HL167580 NHLBI NIH HHS - United States

Odkazy

PubMed 37852970
PubMed Central PMC10584899
DOI 10.1038/s41467-023-42151-3
PII: 10.1038/s41467-023-42151-3
Knihovny.cz E-zdroje

The cell type-specific expression of key transcription factors is central to development and disease. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three conserved Brachyury-controlling notochord enhancers, T3, C, and I, in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, in cis deletion of all three enhancers in mouse abolishes Brachyury/T/Tbxt expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. The three Brachyury-driving notochord enhancers are conserved beyond mammals in the brachyury/tbxtb loci of fishes, dating their origin to the last common ancestor of jawed vertebrates. Our data define the vertebrate enhancers for Brachyury/T/TBXTB notochord expression through an auto-regulatory mechanism that conveys robustness and adaptability as ancient basis for axis development.

Biological Sciences Graduate Program University of California San Diego La Jolla CA USA

Cluster of Excellence Physics of Life Technische Universität Dresden Dresden Germany

Comparative Biochemistry Program University of California Berkeley CA 94720 USA

Department for BioMedical Research University of Bern Bern Switzerland

Department of Anatomy University of California San Francisco San Francisco CA USA

Department of Cardiology Bern University Hospital Bern Switzerland

Department of Integrative Biology and Ecology Evolution and Behavior Program Michigan State University East Lansing MI USA

Department of Medicine Health Sciences University of California San Diego La Jolla CA USA

Department of Molecular Biology Biological Sciences University of California San Diego La Jolla CA USA

Department of Orofacial Sciences University of California San Francisco San Francisco CA USA

Environmental Genomics and Systems Biology Division Lawrence Berkeley National Laboratory Berkeley CA USA

Institute for Human Genetics University of California San Francisco San Francisco CA USA

Institute of Molecular Genetics of the ASCR v v i Prague Czech Republic

Institute of Molecular Life Sciences University of Zurich Zurich Switzerland

Max Planck Institute for Molecular Cell Biology and Genetics Dresden Germany

Program in Craniofacial Biology University of California San Francisco San Francisco CA USA

School of Natural Sciences University of California Merced Merced CA USA

Section of Developmental Biology Department of Pediatrics University of Colorado Anschutz Medical Campus Aurora CO USA

Technische Universität Dresden CRTD Center for Regenerative Therapies Dresden Dresden Germany

US Department of Energy Joint Genome Institute Lawrence Berkeley National Laboratory Berkeley CA USA

Před aktualizací

PubMed

Zobrazit více v PubMed

Stemple DL. Structure and function of the notochord: an essential organ for chordate development. Development. 2005;132:2503–2512. PubMed

Corallo D, Trapani V, Bonaldo P. The notochord: structure and functions. Cell Mol. Life Sci. 2015;72:2989–3008. PubMed PMC

Wang, F. et al. The embryonic and evolutionary boundaries between notochord and cartilage: a new look at nucleus pulposus-specific markers. Osteoarthr. Cartil.10.1016/j.joca.2018.05.022 (2018). PubMed

Risbud MV, Schaer TP, Shapiro IM. Toward an understanding of the role of notochordal cells in the adult intervertebral disc: from discord to accord. Dev. Dyn. 2010;239:2141–2148. PubMed PMC

Bagnat, M. & Gray, R. S. Development of a straight vertebrate body axis. Development.10.1242/dev.175794 (2020). PubMed PMC

Stosiek P, Kasper M, Karsten U. Expression of cytokeratin and vimentin in nucleus pulposus cells. Differentiation. 1988;39:78–81. PubMed

Peck SH, et al. Whole transcriptome analysis of notochord-derived cells during embryonic formation of the nucleus pulposus. Sci. Rep. 2017;7:1–14. PubMed PMC

Satoh, N., Tagawa, K. & Takahashi, H. How was the notochord born? Evol. Dev.14, 56–75 (2012). PubMed

Dobrovolskaia-Zavadskaia N. Sur la mortification spontanee de la chez la souris nouveau-nee et sur l’existence d’un caractere (facteur) hereditaire, non-viable. Crit. Rev. Soc. Biol. 1927;97:114–116.

Corbo JC, Levine M, Zeller RW. Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, ciona intestinalis. Development. 1997;124:589–602. PubMed

Herrmann BG. The mouse Brachyury (T) gene. Semin. Dev. Biol. 1995;6:385–394.

Holland PW, Koschorz B, Holland LZ, Herrmann BG. Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development. 1995;121:4283–4291. PubMed

Schulte-Merker S, van Eeden FJ, Halpern ME, Kimmel CB, Nüsslein-Volhard C. No tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development. 1994;120:1009–1015. PubMed

Smith JC, Price BMJJ, Green JBAA, Weigel D, Herrmann BG. Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell. 1991;67:79–87. PubMed

Halpern ME, Ho RK, Walker C, Kimmel CB. Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell. 1993;75:99–111. PubMed

Rivera-Pérez JA, Magnuson T. Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev. Biol. 2005;288:363–371. PubMed

Martin BL, Kimelman D. Regulation of canonical wnt signaling by Brachyury is essential for posterior mesoderm formation. Dev. Cell. 2008;15:121–133. PubMed PMC

Henrique D, Abranches E, Verrier L, Storey KG. Neuromesodermal progenitors and the making of the spinal cord. Development. 2015;142:2864–2875. PubMed PMC

Schwaner MJ, Hsieh ST, Swalla BJ, McGowan CP. An introduction to an evolutionary tail: evodevo, structure, and function of post-anal appendages. Integr. Comp. Biol. 2021;61:352–357. PubMed

Sebé-Pedrós A, et al. Early eèolution of the T-box transcription factor family. Proc. Natl Acad. Sci. USA. 2013;110:16050–16055. PubMed PMC

Inoue J, Yasuoka Y, Takahashi H, Satoh N. The chordate ancestor possessed a single copy of the Brachyury gene for notochord acquisition. Zool. Lett. 2017;3:1–7. PubMed PMC

Amemiya CT, et al. The African coelacanth genome provides insights into tetrapod evolution. Nature. 2013;496:311–316. PubMed PMC

Harvey SAA, et al. no tail integrates two modes of mesoderm induction. Development. 2010;137:1127–1135. PubMed PMC

Clements D, Taylor HC, Herrmann BG, Stott D. Distinct regulatory control of the Brachyury gene in axial and non-axial mesoderm suggests separation of mesoderm lineages early in mouse gastrulation. Mech. Dev. 1996;56:139–149. PubMed

Latinkić BV, et al. The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins. Genes. Dev. 1997;11:3265–3276. PubMed PMC

Arnold SJ, et al. Brachyury is a target gene of the Wnt/β-catenin signaling pathway. Mech. Dev. 2000;91:249–258. PubMed

Schifferl, D. et al. A 37 kb region upstream of Brachyury comprising a notochord enhancer is essential for notochord and tail development. Development10.1242/DEV.200059 (2021). PubMed PMC

Farley EK, Olson KM, Zhang W, Rokhsar DS, Levine MS. Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers. Proc. Natl Acad. Sci. USA. 2016;113:6508–6513. PubMed PMC

Song BP, et al. Diverse logics and grammar encode notochord enhancers. Cell Rep. 2023;42:112052. PubMed PMC

Yakkioui, Y., van Overbeeke, J. J., Santegoeds, R., van Engeland, M. & Temel, Y. The origin of chordoma. Biochim. Biophys. Acta. 10.1016/j.bbcan.2014.07.012 (2014). PubMed

Nibu Y, Jose-Edwards DS, Di Gregorio A, José-Edwards DS, Di Gregorio A. From notochord formation to hereditary chordoma: The many roles of brachyury. BioMed. Res. Int. 2013;2013:826435. PubMed PMC

Vujovic S, et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J. Pathol. 2006;209:157–165. PubMed

Bhadra AK, Casey AT. Familial chordoma. A report of two cases. J. Bone Jt. Surg. Br. 2006;88:634–636. PubMed

Yang XR, et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat. Genet. 2009;41:1176–1178. PubMed PMC

Hsu W, et al. Generation of chordoma cell line JHC7 and the identification of Brachyury as a novel molecular target. J. Neurosurg. 2011;115:760–769. PubMed PMC

Nelson AC, et al. An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma. J. Pathol. 2012;228:274–285. PubMed PMC

Tarpey PS, et al. The driver landscape of sporadic chordoma. Nat. Commun. 2017;8:1–6. PubMed PMC

Sharifnia, T. et al. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat. Med. 10.1038/s41591-018-0312-3 (2019). PubMed PMC

Beisaw A, et al. BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Rep. 2018;19:118. PubMed PMC

Faial T, et al. Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells. Development. 2015;142:2121. PubMed PMC

Mikkelsen TS, et al. Genome of the marsupial monodelphis domestica reveals innovation in non-coding sequences. Nature. 2007;447:167–177. PubMed

Kemmler CL, et al. Next-generation plasmids for transgenesis in zebrafish and beyond. Development. 2023;150:dev201531. PubMed PMC

Nowoshilow S, et al. The axolotl genome and the evolution of key tissue formation regulators. Nature. 2018;554:50–55. PubMed

Prummel KD, et al. A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat. Commun. 2019;10:3857. PubMed PMC

Kvon EZ, et al. Comprehensive in vivo interrogation reveals phenotypic impact of human enhancer variants. Cell. 2020;180:1262. PubMed PMC

Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinform. 2011;27:1017. PubMed PMC

Pippucci T, et al. Mutations in the 5’ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am. J. Hum. Genet. 2011;88:115–120. PubMed PMC

Nei M, Xu P, Glazko G. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc. Natl Acad. Sci. USA. 2001;98:2497–2502. PubMed PMC

Goodstadt L, Heger A, Webber C, Ponting CP. An analysis of the gene complement of a marsupial, monodelphis domestica: evolution of lineage-specific genes and giant chromosomes. Genome Res. 2007;17:969–981. PubMed PMC

Kumar S, Stecher G, Suleski M, Blair Hedges S. Time tree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017;34:1812–1819. PubMed

Passamaneck YJ, et al. Direct activation of a notochord cis-regulatory module by Brachyury and FoxA in the ascidian ciona intestinalis. Development. 2009;136:3679–3689. PubMed PMC

Gluecksohn-Schoenheimer S. The development of two tailless mutants in house mouse. Genetics. 1938;23:573–584. PubMed PMC

Gluecksohn-Schoenheimer S. The development of normal and homozygous brachy (T/T) mouse embryos in the extraembryonic coelom of the chick. Proc. Natl Acad. Sci. 1944;30:134–140. PubMed PMC

Yanagisawa KO. Does the T gene determine the anteroposterior axis of a mouse embryo? Jpn. J. Genet. 1990;65:287–297. PubMed

Pennimpede T, et al. In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Dev. Biol. 2012;372:55–67. PubMed

Zhu, J., Kwan, K. M. & Mackem, S. Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT. Proc. Natl Acad. Sci. USA10.1073/pnas.1601252113 (2016). PubMed PMC

Martin BL, Kimelman D. Brachyury establishes the embryonic mesodermal progenitor niche. Genes. Dev. 2010;24:2778–2783. PubMed PMC

Braasch I, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 2016;48:427–437. PubMed PMC

Thompson, A. W. et al. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat. Genet.10.1038/s41588-021-00914-y (2021). PubMed PMC

Bradley Shaffer H, et al. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 2013;14:R28. PubMed PMC

Takezaki N. Global rate variation in bony vertebrates. Genome Biol. Evol. 2018;10:1803–1815. PubMed PMC

Kvon, E. Z. et al. Enhancer redundancy in development and disease. Nat. Rev. Genet. 22, 324–336 (2021). PubMed PMC

Letelier J, et al. A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. Nat. Genet. 2018;50:504–509. PubMed PMC

Cannavò, E. et al. Shadow enhancers are pervasive features of developmental regulatory networks. Curr. Biol. 10.1016/j.cub.2015.11.034 (2015). PubMed PMC

Hong JW, Hendrix DA, Levine MS. Shadow enhancers as a source of evolutionary novelty. Science. 2008;321:1314. PubMed PMC

Antosova B, et al. The gene regulatory network of lens induction is wired through meis-dependent shadow enhancers of Pax6. PLoS Genet. 2016;12:e1006441. PubMed PMC

Osterwalder M, et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature. 2018;554:239–243. PubMed PMC

Irimia M, et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 2012;22:2356–2367. PubMed PMC

Amacher, S. L., Draper, B. W., Summers, B. R. & Kimmel, C. B. The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development10.1242/DEV.129.14.3311 (2002). PubMed

Rennebeck GM, et al. Is there a Brachyury the second? analysis of a transgenic mutation involved in notochord maintenance in mice. Dev. Biol. 1995;172:206–217. PubMed

Rennebeck G, Lader E, Fujimoto A, Lei EP, Artzt K. Mouse Brachyury the second (T2) is a gene next to classical T and a candidate gene for tct. Genetics. 1998;150:1125–1131. PubMed PMC

Takei H, Powell SZ. Novel immunohistochemical markers in the diagnosis of nonglial tumors of nervous system. Adv. Anat. Pathol. 2010;17:150–153. PubMed

Sangoi AR, et al. Specificity of brachyury in the distinction of chordoma from clear cell renal cell carcinoma and germ cell tumors: a study of 305 cases. Mod. Pathol. 2011;24:425–429. PubMed

Heaton JM, Turner DR. Reflections on notochordal differentiation arising from a study of chordomas. Histopathol. 1985;9:543–550. PubMed

Choi KS, Cohn MJ, Harfe BD. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev. Dyn. 2008;237:3953–3958. PubMed PMC

Tang X, Jing L, Chen J. Changes in the molecular phenotype of nucleus pulposus cells with intervertebral disc aging. PLoS One. 2012;7:52020. PubMed PMC

Richardson SM, et al. Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci. Rep. 2017;7:1–11. PubMed PMC

Nakamichi R, Asahara H. The transcription factors regulating intervertebral disc development. JOR Spine. 2020;3:e1081. PubMed PMC

Hu Y, Mintz A, Shah SRR, Quinones-Hinojosa A, Hsu W. The FGFR/MEK/ERK/brachyury pathway is critical for chordoma cell growth and survival. Carcinogene. 2014;35:1491–1499. PubMed PMC

D’Agati, G. et al. Active receptor tyrosine kinases, but not Brachyury, are sufficient to trigger chordoma in zebrafish. Dis. Model Mech. 12, 7 (2019). PubMed PMC

Presneau N, et al. Role of the transcription factor T (brachyury) in the pathogenesis of sporadic chordoma: a genetic and functional-based study. J. Pathol. 2011;223:327–335. PubMed

Brink, S. C. van den et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature10.1038/s41586-020-2024-3 (2020). PubMed

Lópezlópez-Anguita N, et al. Hypoxia induces an early primitive streak signature, enhancing spontaneous elongation and lineage representation in gastruloids. Development. 2022;149:dev200679. PubMed PMC

Veenvliet JV, et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science. 2020;370:eaba4937. PubMed

Moris, N. et al. An in vitro model of early anteroposterior organization during human development. Nature10.1038/s41586-020-2383-9 (2020). PubMed

Xu PF, et al. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat. Commun. 2021;12:3277. PubMed PMC

Xu P-F, Houssin N, Ferri-Lagneau KF, Thisse B, Thisse C. Construction of a vertebrate embryo from two opposing morphogen gradients. Science. 2014;344:87–89. PubMed

Rito, T., Libby, A. R. G., Demuth, M. & Briscoe, J. Notochord and axial progenitor generation by timely BMP and NODAL inhibition during vertebrate trunk formation. bioRxiv. 10.1101/2023.02.27.530267 (2023).

Tosic J, et al. Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nat. Cell Biol. 2019;21:1518–1531. PubMed

Koch, F. et al. Antagonistic activities of Sox2 and brachyury control the fate choice of neuro-mesodermal progenitors. Dev. Cell10.1016/j.devcel.2017.07.021 (2017). PubMed

Abascal F, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583:699–710. PubMed PMC

Mosimann, C. Multisite gateway calculations: excel spreadsheet. protocols.io Preprint at 10.17504/protocols.io.b4xdqxi6 (2022).

Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Oregon University Press, 2007).

Mosimann C, et al. Ubiquitous transgene expression and cre-based recombination driven by the ubiquitin promoter in zebrafish. Development. 2011;138:169–177. PubMed PMC

Kwan KM, et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 2007;236:3088–3099. PubMed

Felker A, Mosimann C. Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments. Methods Cell Biol. 2016;135:219–244. PubMed

Yun MH, Gates PB, Brockes JP. Regulation of p53 is critical for vertebrate limb regeneration. Proc. Natl Acad. Sci. USA. 2013;110:17392–17397. PubMed PMC

Khattak S, et al. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat. Protoc. 2014;9:529–540. PubMed

Armstrong, J. B. & Malacinski, G. M. Developmental Biology of the Axolotl (Oxford University Press, 1989).

Hippenmeyer S, et al. Genetic mosaic dissection of lis1 and Ndel1 in neuronal migration. Neuron. 2010;68:695. PubMed PMC

Tasic B, et al. Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc. Natl Acad. Sci. USA. 2011;108:7902–7907. PubMed PMC

Osterwalder M, et al. Characterization of mammalian in vivo enhancers using mouse transgenesis and CRISPR genome editing. Methods Mol. Biol. 2022;2403:147–186. PubMed

Farley EK, et al. Suboptimization of developmental enhancers. Science. 2015;350:325–328. PubMed PMC

Harafuji N, Keys DN, Levine M. Genome-wide identification of tissue-specific enhancers in the ciona tadpole. Proc. Natl Acad. Sci. USA. 2002;99:6802–6805. PubMed PMC

Christiaen L, Wagner E, Shi W, Levine M. Electroporation of transgenic DNAs in the sea squirt Ciona. Cold Spring Harb. Protoc. 2009;2009:pdb.prot5345. PubMed

Jenickova I, et al. Efficient allele conversion in mouse zygotes and primary cells based on electroporation of Cre protein. Methods. 2021;191:87–94. PubMed

Mašek J, Machoň O, Kořínek V, Taketo MM, Kozmik Z. Tcf7l1 protects the anterior neural fold from adopting the neural crest fate. Development. 2016;143:2206–2216. PubMed

Martin FJ, et al. Ensembl 2023. Nucleic Acids Res. 2023;51:D933–D941. PubMed PMC

Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 2009;537:39–64. PubMed

Castro-Mondragon JA, et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50:D165–D173. PubMed PMC

Visel A, Minovitsky S, Dubchak I, Pennacchio LA. VISTA enhancer browser–a database of tissue-specific human enhancers. Nucleic Acids Res. 2007;35:D88–92. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...