GM1 Ganglioside Inhibits β-Amyloid Oligomerization Induced by Sphingomyelin
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27295499
PubMed Central
PMC5089616
DOI
10.1002/anie.201603178
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer's disease, amyloid beta-peptides, diffusion coefficients, fluorescence spectroscopy, neuroprotectives,
- MeSH
- amyloidní beta-protein antagonisté a inhibitory metabolismus MeSH
- G(M1) gangliosid chemie farmakologie MeSH
- sfingomyeliny chemie farmakologie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- G(M1) gangliosid MeSH
- sfingomyeliny MeSH
β-Amyloid (Aβ) oligomers are neurotoxic and implicated in Alzheimer's disease. Neuronal plasma membranes may mediate formation of Aβ oligomers in vivo. Membrane components sphingomyelin and GM1 have been shown to promote aggregation of Aβ; however, these studies were performed under extreme, non-physiological conditions. We demonstrate that physiological levels of GM1 , organized in nanodomains do not seed oligomerization of Aβ40 monomers. We show that sphingomyelin triggers oligomerization of Aβ40 and that GM1 is counteractive thus preventing oligomerization. We propose a molecular explanation that is supported by all-atom molecular dynamics simulations. The preventive role of GM1 in the oligomerization of Aβ40 suggests that decreasing levels of GM1 in the brain, for example, due to aging, could reduce protection against Aβ oligomerization and contribute to the onset of Alzheimer's disease.
Faculty of Science and CEITEC Masaryk University Brno Czech Republic
J Heyrovský Inst Physical Chemistry of the A S C R v v i Prague Czech Republic
Shemyakin Ovchinnikov Inst Bioorganic Chemistry of the R A S Moscow GSP 7 Russian Fed
Zobrazit více v PubMed
Bucciantini M., Giannoni E., Chiti F., Baroni F., Formigli L., Zurdo J., Taddei N., Ramponi G., Dobson C. M., Stefani M., Nature 2002, 416, 507–511; PubMed
Shankar G. M., Li S., Mehta T. H., Garcia-munoz A., Nina E., Smith I., Brett F. M., Farrell M. A., Rowan M. J., Lemere C. A. et al., Nat. Med. 2008, 1 4, 837–842. PubMed PMC
Amaro M., Birch D. J. S., Rolinski O. J., Phys. Chem. Chem. Phys. 2011, 13, 6434–6441; PubMed
Narayan P., Orte A., Clarke R. W., Bolognesi B., Hook S., Ganzinger K. A., Meehan S., Wilson M. R., Dobson C. M., Klenerman D., Nat. Struct. Mol. Biol. 2011, 19, 79–83. PubMed PMC
de Almeida R. F. M., Fedorov A., Prieto M., Biophys. J. 2003, 85, 2406–2416. PubMed PMC
Devanathan S., Salamon Z., Lindblom G., Gröbner G., Tollin G., FEBS J. 2006, 273, 1389–1402; PubMed
Chi E. Y., Ege C., Winans A., Majewski J., Wu G., Kjaer K., Lee K. Y. C., Proteins Struct. Funct. Bioinf. 2008, 72, 1–24; PubMed
Williams T. L., Johnson B. R. G., Urbanc B., Jenkins A. T. A., Connell S. D. A., Serpell L. C., Biochem. J. 2011, 439, 67–77. PubMed
Yanagisawa K., J. Neurochem. 2011, 116, 806–812. PubMed
Ledeen R. W., J. Supramol. Struct. 1978, 8, 1–17. PubMed
Tettamanti G., Anastasia L. in Handb. Neurochem. Mol. Neurobiol. (Eds.: A. Lajtha, G. Tettamanti, G. Goracci), Springer, Boston, 2010, pp. 99–171.
Ariga T., McDonald M. P., Yu R. K., J. Lipid Res. 2008, 49, 1157–1175; PubMed PMC
Mocchetti I., Cell. Mol. Life Sci. 2005, 62, 2283–2294. PubMed PMC
Kreutz F., Frozza R. L., Breier A. C., Oliveira V. A., Horn A. P., Pettenuzzo L. F., Netto C. A., Salbego C. G., Trindade V. M. T., Neurochem. Int. 2011, 59, 648–655; PubMed
Yang R., Wang Q., Min L., Sui R., Li J., Liu X., Neurol. Sci. 2013, 34, 1447–1451; PubMed
Kreutz F., Scherer E. B., Ferreira A. G. K., Petry F. D. S., Pereira C. L., Santana F., de Souza Wyse A. T., Salbego C. G., Trindade V. M. T., Neurochem. Res. 2013, 38, 2342–2350. PubMed
Göttfert F., Wurm C. A., Mueller V., Berning S., Cordes V. C., Honigmann A., Hell S. W., Biophys. J. 2013, 105, L01–L03; PubMed PMC
Sevcsik E., Schütz G. J., BioEssays 2016, 38, 129–139. PubMed PMC
Macháň R., Hof M., Biochim. Biophys. Acta Biomembr. 2010, 1798, 1377–1391. PubMed
Sachl R., Amaro M., Aydogan G., Koukalová A., Mikhalyov I. I., Boldyrev I. A., Humpolíčková J., Hof M., Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 850–857. PubMed
Amaro M., Sachl R., Jurkiewicz P., Coutinho A., Prieto M., Hof M., Biophys. J. 2014, 107, 2751–2760. PubMed PMC
Cohen S. I. A., Vendruscolo M., Welland M. E., Dobson C. M., Terentjev E. M., Knowles T. P. J., J. Chem. Phys. 2011, 135, 065105. PubMed PMC
Kakio A., Nishimoto S. I., Yanagisawa K., Kozutsumi Y., Matsuzaki K., J. Biol. Chem. 2001, 276, 24985–24990; PubMed
Kakio A., Nishimoto S., Yanagisawa K., Kozutsumi Y., Matsuzaki K., Biochemistry 2002, 41, 7385–7390. PubMed
Sagle L. B., Ruvuna L. K., Bingham J. M., Liu C., Cremer P. S., Van Duyne R. P., J. Am. Chem. Soc. 2012, 134, 15832–15839. PubMed PMC
Devarajan S., Sharmila J. S., J. Mol. Liq. 2014, 195, 59–64;
Manna M., Mukhopadhyay C., PLoS One 2013, 8, e71308. PubMed PMC
Vácha R., Linse S., Lund M., J. Am. Chem. Soc. 2014, 136, 11776–11782; PubMed
Minton A. P., Biophys. Chem. 2000, 86, 239–247; PubMed
Minton A. P., Biophys. J. 2001, 80, 1641–1648. PubMed PMC
Kracun I., Rosner H., Drnovsek V., Vukelic Z., Cosovic C., Trbojevic-Cepe M., Kubat M., Neurochem. Int. 1992, 20, 421–431. PubMed
Sokolova T. V., Zakharova I. O., Furaev V. V., Rychkova M. P., Avrova N. F., Neurochem. Res. 2007, 32, 1302–1313. PubMed
Which Moiety Drives Gangliosides to Form Nanodomains?
Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?
Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer's disease
The Role of Lipid Environment in Ganglioside GM1-Induced Amyloid β Aggregation
Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems
Impact of GM1 on Membrane-Mediated Aggregation/Oligomerization of β-Amyloid: Unifying View
Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered
There Is No Simple Model of the Plasma Membrane Organization