GM1 Ganglioside Inhibits β-Amyloid Oligomerization Induced by Sphingomyelin

. 2016 Aug 01 ; 55 (32) : 9411-5. [epub] 20160613

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27295499

β-Amyloid (Aβ) oligomers are neurotoxic and implicated in Alzheimer's disease. Neuronal plasma membranes may mediate formation of Aβ oligomers in vivo. Membrane components sphingomyelin and GM1 have been shown to promote aggregation of Aβ; however, these studies were performed under extreme, non-physiological conditions. We demonstrate that physiological levels of GM1 , organized in nanodomains do not seed oligomerization of Aβ40 monomers. We show that sphingomyelin triggers oligomerization of Aβ40 and that GM1 is counteractive thus preventing oligomerization. We propose a molecular explanation that is supported by all-atom molecular dynamics simulations. The preventive role of GM1 in the oligomerization of Aβ40 suggests that decreasing levels of GM1 in the brain, for example, due to aging, could reduce protection against Aβ oligomerization and contribute to the onset of Alzheimer's disease.

Zobrazit více v PubMed

Bucciantini M., Giannoni E., Chiti F., Baroni F., Formigli L., Zurdo J., Taddei N., Ramponi G., Dobson C. M., Stefani M., Nature 2002, 416, 507–511; PubMed

Shankar G. M., Li S., Mehta T. H., Garcia-munoz A., Nina E., Smith I., Brett F. M., Farrell M. A., Rowan M. J., Lemere C. A. et al., Nat. Med. 2008, 1 4, 837–842. PubMed PMC

Amaro M., Birch D. J. S., Rolinski O. J., Phys. Chem. Chem. Phys. 2011, 13, 6434–6441; PubMed

Narayan P., Orte A., Clarke R. W., Bolognesi B., Hook S., Ganzinger K. A., Meehan S., Wilson M. R., Dobson C. M., Klenerman D., Nat. Struct. Mol. Biol. 2011, 19, 79–83. PubMed PMC

de Almeida R. F. M., Fedorov A., Prieto M., Biophys. J. 2003, 85, 2406–2416. PubMed PMC

Devanathan S., Salamon Z., Lindblom G., Gröbner G., Tollin G., FEBS J. 2006, 273, 1389–1402; PubMed

Chi E. Y., Ege C., Winans A., Majewski J., Wu G., Kjaer K., Lee K. Y. C., Proteins Struct. Funct. Bioinf. 2008, 72, 1–24; PubMed

Williams T. L., Johnson B. R. G., Urbanc B., Jenkins A. T. A., Connell S. D. A., Serpell L. C., Biochem. J. 2011, 439, 67–77. PubMed

Yanagisawa K., J. Neurochem. 2011, 116, 806–812. PubMed

Ledeen R. W., J. Supramol. Struct. 1978, 8, 1–17. PubMed

Tettamanti G., Anastasia L. in Handb. Neurochem. Mol. Neurobiol. (Eds.: A. Lajtha, G. Tettamanti, G. Goracci), Springer, Boston, 2010, pp. 99–171.

Ariga T., McDonald M. P., Yu R. K., J. Lipid Res. 2008, 49, 1157–1175; PubMed PMC

Mocchetti I., Cell. Mol. Life Sci. 2005, 62, 2283–2294. PubMed PMC

Kreutz F., Frozza R. L., Breier A. C., Oliveira V. A., Horn A. P., Pettenuzzo L. F., Netto C. A., Salbego C. G., Trindade V. M. T., Neurochem. Int. 2011, 59, 648–655; PubMed

Yang R., Wang Q., Min L., Sui R., Li J., Liu X., Neurol. Sci. 2013, 34, 1447–1451; PubMed

Kreutz F., Scherer E. B., Ferreira A. G. K., Petry F. D. S., Pereira C. L., Santana F., de Souza Wyse A. T., Salbego C. G., Trindade V. M. T., Neurochem. Res. 2013, 38, 2342–2350. PubMed

Göttfert F., Wurm C. A., Mueller V., Berning S., Cordes V. C., Honigmann A., Hell S. W., Biophys. J. 2013, 105, L01–L03; PubMed PMC

Sevcsik E., Schütz G. J., BioEssays 2016, 38, 129–139. PubMed PMC

Macháň R., Hof M., Biochim. Biophys. Acta Biomembr. 2010, 1798, 1377–1391. PubMed

Sachl R., Amaro M., Aydogan G., Koukalová A., Mikhalyov I. I., Boldyrev I. A., Humpolíčková J., Hof M., Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 850–857. PubMed

Amaro M., Sachl R., Jurkiewicz P., Coutinho A., Prieto M., Hof M., Biophys. J. 2014, 107, 2751–2760. PubMed PMC

Cohen S. I. A., Vendruscolo M., Welland M. E., Dobson C. M., Terentjev E. M., Knowles T. P. J., J. Chem. Phys. 2011, 135, 065105. PubMed PMC

Kakio A., Nishimoto S. I., Yanagisawa K., Kozutsumi Y., Matsuzaki K., J. Biol. Chem. 2001, 276, 24985–24990; PubMed

Kakio A., Nishimoto S., Yanagisawa K., Kozutsumi Y., Matsuzaki K., Biochemistry 2002, 41, 7385–7390. PubMed

Sagle L. B., Ruvuna L. K., Bingham J. M., Liu C., Cremer P. S., Van Duyne R. P., J. Am. Chem. Soc. 2012, 134, 15832–15839. PubMed PMC

Devarajan S., Sharmila J. S., J. Mol. Liq. 2014, 195, 59–64;

Manna M., Mukhopadhyay C., PLoS One 2013, 8, e71308. PubMed PMC

Vácha R., Linse S., Lund M., J. Am. Chem. Soc. 2014, 136, 11776–11782; PubMed

Minton A. P., Biophys. Chem. 2000, 86, 239–247; PubMed

Minton A. P., Biophys. J. 2001, 80, 1641–1648. PubMed PMC

Kracun I., Rosner H., Drnovsek V., Vukelic Z., Cosovic C., Trbojevic-Cepe M., Kubat M., Neurochem. Int. 1992, 20, 421–431. PubMed

Sokolova T. V., Zakharova I. O., Furaev V. V., Rychkova M. P., Avrova N. F., Neurochem. Res. 2007, 32, 1302–1313. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Different amyloid β42 preparations induce different cell death pathways in the model of SH-SY5Y neuroblastoma cells

. 2024 Nov 17 ; 29 (1) : 143. [epub] 20241117

Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol

. 2023 Sep 13 ; 13 (1) : 171. [epub] 20230913

Which Moiety Drives Gangliosides to Form Nanodomains?

. 2023 Jun 29 ; 14 (25) : 5791-5797. [epub] 20230616

Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?

. 2023 Jun 06 ; 122 (11) : 2053-2067. [epub] 20221115

Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer's disease

. 2022 ; 15 () : 937056. [epub] 20220825

The Role of Lipid Environment in Ganglioside GM1-Induced Amyloid β Aggregation

. 2020 Sep 09 ; 10 (9) : . [epub] 20200909

Amyloidogenic Intrinsically Disordered Proteins: New Insights into Their Self-Assembly and Their Interaction with Membranes

. 2020 Aug 08 ; 10 (8) : . [epub] 20200808

Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems

. 2020 ; 8 () : 284. [epub] 20200428

Impact of GM1 on Membrane-Mediated Aggregation/Oligomerization of β-Amyloid: Unifying View

. 2017 Sep 19 ; 113 (6) : 1194-1199. [epub] 20170411

Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered

. 2017 Jul 14 ; 7 (1) : 5460. [epub] 20170714

There Is No Simple Model of the Plasma Membrane Organization

. 2016 ; 4 () : 106. [epub] 20160929

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace