BAC libraries from wheat chromosome 7D: efficient tool for positional cloning of aphid resistance genes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21318113
PubMed Central
PMC3035010
DOI
10.1155/2011/302543
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin genetika MeSH
- fluorescence MeSH
- hybridizace nukleových kyselin genetika MeSH
- karyotypizace MeSH
- klonování DNA metody MeSH
- mikrosatelitní repetice genetika MeSH
- mšice fyziologie MeSH
- nemoci rostlin genetika imunologie parazitologie MeSH
- polymerázová řetězová reakce MeSH
- přirozená imunita genetika MeSH
- pšenice genetika imunologie parazitologie MeSH
- rostlinné geny genetika MeSH
- umělé bakteriální chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Positional cloning in bread wheat is a tedious task due to its huge genome size and hexaploid character. BAC libraries represent an essential tool for positional cloning. However, wheat BAC libraries comprise more than million clones, which makes their screening very laborious. Here, we present a targeted approach based on chromosome-specific BAC libraries. Such libraries were constructed from flow-sorted arms of wheat chromosome 7D. A library from the short arm (7DS) consisting of 49,152 clones with 113 kb insert size represented 12.1 arm equivalents whereas a library from the long arm (7DL) comprised 50,304 clones of 116 kb providing 14.9x arm coverage. The 7DS library was PCR screened with markers linked to Russian wheat aphid resistance gene DnCI2401, the 7DL library was screened by hybridization with a probe linked to greenbug resistance gene Gb3. The small number of clones combined with high coverage made the screening highly efficient and cost effective.
Zobrazit více v PubMed
Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(10):6263–6268. PubMed PMC
Yan L, Loukoianov A, Blechl A, et al. The wheat Vrn2 gene is a flowering repressor down-regulated by vernalization. Science. 2004;303(5664):1640–1644. PubMed PMC
Yan L, Fu D, Li C, et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(51):19581–19586. PubMed PMC
Faris JD, Fellers JP, Brooks SA, Gill BS. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics. 2003;164(1):311–321. PubMed PMC
Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics. 2003;164(2):655–664. PubMed PMC
Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(25):15253–15258. PubMed PMC
Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant Journal. 2004;37(4):528–538. PubMed
Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science. 2006;314(5803):1298–1301. PubMed PMC
Qiu J-W, Schürch AC, Yahiaoui N, et al. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theoretical and Applied Genetics. 2007;115(2):159–168. PubMed
Fu Z-Y, Zhang Z-B, Hu X-J, Shao H-B, Ping X. Cloning, identification, expression analysis and phylogenetic relevance of two NADP-dependent malic enzyme genes from hexaploid wheat. Comptes Rendus Biologies. 2009;332(7):591–602. PubMed
Krattinger SG, Lagudah ES, Spielmeyer W, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323(5919):1360–1363. PubMed
Devos KM, Ma J, Pontaroli AC, Pratt LH, Bennetzen JL. Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(52):19243–19248. PubMed PMC
Paux E, Roger D, Badaeva E, et al. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant Journal. 2006;48(3):463–474. PubMed
Allouis S, Moore G, Bellec A, et al. Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ’Chinese Spring’. Cereal Research Communications. 2003;31(3-4):331–338.
Nilmalgoda SD, Cloutier S, Walichnowski AZ. Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome. 2003;46(5):870–878. PubMed
Ling P, Chen XM. Construction of a hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome library for cloning genes for stripe rust resistance. Genome. 2005;48(6):1028–1036. PubMed
Ratnayaka I, Båga M, Fowler DB, Chibbar RN. Construction and characterization of a BAC library of a cold-tolerant hexaploid wheat cultivar. Crop Science. 2005;45(4):1571–1577.
Shen B, Wang DM, McIntyre CL, Liu CJ. A ’Chinese Spring’ wheat (Triticum aestivum L.) bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome regions. Theoretical and Applied Genetics. 2005;111(8):1489–1494. PubMed
Luo M-C, Thomas C, You FM, et al. High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics. 2003;82(3):378–389. PubMed
Luo M-C, Ma Y, You FM, et al. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species. BMC Genomics. 2010;11(1, article 122) PubMed PMC
Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R, Dubcovsky J. Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome. 1999;42(6):1176–1182. PubMed
Akhunov ED, Akhunova AR, Dvořák J. BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Theoretical and Applied Genetics. 2005;111(8):1617–1622. PubMed
Moullet O, Zhang H-B, Lagudah ES. Construction and characterisation of a large DNA insert library from the D genome of wheat. Theoretical and Applied Genetics. 1999;99(1-2):305–313.
Xu Z, Deal KR, Li W, et al. Construction and characterization of five large-insert BAC and BIBAC libraries of Aegilops tauschii, the diploid donor of the wheat D genome. In: Abstracts of the International Conference “Plant and Animal Genome X”; 2002; San Diego, Calif, USA. Sherago International, Inc.; p. 101.
Dvořák J, Luo MC, Deal KR, et al. Physical map of the Aegilops tauschii genome and its utility for physical mapping of the wheat D genome. In: Abstracts of the International Conference “Plant and Animal Genome XVIII”; 2010; San Diego, Calif, USA. Sherago International, Inc.; p. 111.
Dvořák J, Yang Z-L, You FM, Luo M-C. Deletion polymorphism in wheat chromosome regions with contrasting recombination rates. Genetics. 2004;168(3):1665–1675. PubMed PMC
Wicker T, Yahiaoui N, Guyot R, et al. Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell. 2003;15(5):1186–1197. PubMed PMC
Feldman M, Levy AA. Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenetic and Genome Research. 2005;109(1–3):250–258. PubMed
Bennetzen JL. Patterns in grass genome evolution. Current Opinion in Plant Biology. 2007;10(2):176–181. PubMed
Doležel J, Šimková H, Kubaláková M, et al. Chromosome genomics in the triticeae. In: Feuillet C, Muehlbauer GJ, editors. Genetics and Genomics of the Triticeae. New York, NY, USA: Springer; 2009. pp. 285–316.
Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysak MA, Doležel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156(4):2033–2041. PubMed PMC
Šimková H, Číhalíková J, Vrána J, Lysák MA, Doležel J. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biologia Plantarum. 2003;46(3):369–373.
Šafář J, Bartoš J, Janda J, et al. Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant Journal. 2004;39(6):960–968. PubMed
Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.) Theoretical and Applied Genetics. 2002;104(8):1362–1372. PubMed
Janda J, Bartoš J, Šafář J, et al. Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theoretical and Applied Genetics. 2004;109(7):1337–1345. PubMed
Janda J, Šafář J, Kubaláková M, et al. Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B. Plant Journal. 2006;47(6):977–986. PubMed
Šafář J, Šimková H, Kubaláková M, et al. Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenetic and Genome Research. 2010;129(1–3):211–223. PubMed
Šimková H, Šafář J, Suchánková P, et al. A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS) BMC Genomics. 2008;9, article 237 PubMed PMC
Weng Y, Li W, Devkota RN, Rudd JC. Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theoretical and Applied Genetics. 2005;110(3):462–469. PubMed
Zhu LC, Smith CM, Fritz A, Boyko E, Voothuluru P, Gill BS. Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasms derived from Aegilops tauschii. Theoretical and Applied Genetics. 2005;111(5):831–837. PubMed
Castro AM, Vasicek A, Ellerbrook C, et al. Mapping quantitative trait loci in wheat for resistance against greenbug and Russian wheat aphid. Plant Breeding. 2004;123(4):361–365.
Miller CA, Altinkut A, Lapitan NLV. A microsatellite marker for tagging Dn2, a wheat gene conferring resistance to the Russian wheat aphid. Crop Science. 2001;41(5):1584–1589.
Liu XM, Smith CM, Friebe BR, Gill BS. Molecular mapping and allelic relationships of Russian wheat aphid-resistance genes. Crop Science. 2005;45(6):2273–2280.
Peng JH, Bai Y, Haley SD, Lapitan NLV. Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica. 2009;135(1):95–122. PubMed
Arraiano LS, Worland AJ, Ellerbrook C, Brown JKM. Chromosomal location of a gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ’Synthetic 6x’. Theoretical and Applied Genetics. 2001;103(5):758–764.
Adhikari TB, Cavaletto JR, Dubcovsky J, Gieco JO, Schlatter AR, Goodwin SB. Molecular mapping of the Stb4 gene for resistance to Septoria tritici blotch in wheat. Phytopathology. 2004;94(11):1198–1206. PubMed
Huang XQ, Kempf H, Canal MW, Röder MS. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.) Theoretical and Applied Genetics. 2004;109(5):933–943. PubMed
Röder MS, Huang X-Q, Börner A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Functional and Integrative Genomics. 2008;8(1):79–86. PubMed
Sambrook J, Russel DW. Molecular Cloning: A Laboratory Manual. New York, NY, USA: Cold Spring Harbor Laboratory Press; 2001.
You FM, Luo M-C, Gu YQ, et al. GenoProfiler: batch processing of high-throughput capillary fingerprinting data. Bioinformatics. 2007;23(2):240–242. PubMed
Soderlund C, Longden I, Mott R. FPC: a system for building contigs from restriction fingerprinted clones. Computer Applications in the Biosciences. 1997;13(5):523–535. PubMed
Werner JE, Endo TR, Gill BS. Toward a cytogenetically based physical map of the wheat genome. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(23):11307–11311. PubMed PMC
Gill BS, Friebe B, Endo TR. Standard karyotype and nomenclature system for description of chromosome bands and structural abberrations in wheat (Triticum aestivum) Genome. 1991;34(5):830–839.
Cenci A, Chantret N, Kong X, et al. Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum) Theoretical and Applied Genetics. 2003;107(5):931–939. PubMed
Clarke L, Carbon J. A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell. 1976;9(1):91–99. PubMed
Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C. Chromosome-based genomics in the cereals. Chromosome Research. 2007;15(1):51–66. PubMed
Febrer M, Wilhelm E, Al-Kaff N, et al. Rapid identification of the three homoeologues of the wheat dwarfing gene Rht using a novel PCR-based screen of three-dimensional BAC pools. Genome. 2009;52(12):993–1000. PubMed
Paux E, Sourdille P, Salse J, et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science. 2008;322(5898):101–104. PubMed
Šafář J, Šimková H, Kubaláková M, et al. Generating resources for genomics of wheat homoeologous chromosome group 3: 3AS- and 3DS-specific BAC libraries. Journal of Genetics and Breeding. 2007;61:151–160.
Bartos J, Magni F, Šafář FJ, et al. Building physical map of wheat chromosome arm 3DS. In: Abstracts of the International Conference “Plant and Animal Genome XVIII”; 2010; San Diego, Calif, USA. Sherago International, Inc.;
Paux E, Sourdille P, Salse J, et al. The Big B of Bread Wheat -3B-exploring the structure, function and evolution of the hexaploid wheat genome. In: Appels R, Eastwood R, Lagudah E, et al., editors. In: Proceedings of the 11th International Wheat Genetics Symposium; 2008; Sydney, Australia. Sydney University Press; p. O22.
Shoemaker RC, Grant D, Olson T, et al. Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome. 2008;51(4):294–302. PubMed
The Dark Matter of Large Cereal Genomes: Long Tandem Repeats
Features of the organization of bread wheat chromosome 5BS based on physical mapping
An efficient approach to BAC based assembly of complex genomes
Chromosomal genomics facilitates fine mapping of a Russian wheat aphid resistance gene
The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements
LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome