The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements

. 2015 Jun 13 ; 16 (1) : 453. [epub] 20150613

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26070810
Odkazy

PubMed 26070810
PubMed Central PMC4465308
DOI 10.1186/s12864-015-1641-y
PII: 10.1186/s12864-015-1641-y
Knihovny.cz E-zdroje

BACKGROUND: The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution. RESULTS: The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins. CONCLUSIONS: Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.

Zobrazit více v PubMed

International Rice Genome Sequencing Project The map-based sequence of the rice genome. Nature. 2005;436:793–800. doi: 10.1038/nature03895. PubMed DOI

Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–1115. doi: 10.1126/science.1178534. PubMed DOI

Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496:91–95. doi: 10.1038/nature12028. PubMed DOI

Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496:87–90. doi: 10.1038/nature11997. PubMed DOI

Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS. Ancient hybridizations among the ancestral genomes of bread wheat. Science. 2014;345:1250092–2. doi: 10.1126/science.1250092. PubMed DOI

Mayer KFX, Rogers J, Pozniak C, Eversole K, Feuillet C, Gill B. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:8–1251788. PubMed

Van Slageren M: Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). International Center for Agricultural Research in the Dry Areas (1994); 1994:513.

Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo M-C. Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol. 2006;23:1386–1396. doi: 10.1093/molbev/msl004. PubMed DOI

Smith DB, Flavell RB. Characterisation of the wheat genome by renaturation kinetics. Chromosoma. 1975;50.

Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, et al. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell. 2010;22:1686–1701. doi: 10.1105/tpc.110.074187. PubMed DOI PMC

Vrana J, Kubalakova M, Simkova H, Cihalikova J, Lysak MA, Dolezel J. Flow Sorting of Mitotic Chromosomes in Common Wheat (Triticum aestivum L.). Genetics. Genetics. 2000;156:2033–2041. PubMed PMC

Kubaláková M, Vrána J, Cíhalíková J, Simková H, Dolezel J. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.) Theor Appl Genet. 2002;104:1362–1372. doi: 10.1007/s00122-002-0888-2. PubMed DOI

Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science. 2008;322:101–104. doi: 10.1126/science.1161847. PubMed DOI

Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014;345:1249721–1. doi: 10.1126/science.1249721. PubMed DOI

Lucas SJ, Akpınar BA, Kantar M, Weinstein Z, Aydınoğlu F, Safář J, et al. Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A. PLoS One. 2013;8 doi: 10.1371/journal.pone.0059542. PubMed DOI PMC

Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C, et al. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol. 2013;14:R64. doi: 10.1186/gb-2013-14-6-r64. PubMed DOI PMC

Breen J, Wicker T, Shatalina M, Frenkel Z, Bertin I, Philippe R, et al. A physical map of the short arm of wheat chromosome 1A. PLoS One. 2013;8 doi: 10.1371/journal.pone.0080272. PubMed DOI PMC

Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Šimková H, et al. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol. 2013;14:R138. doi: 10.1186/gb-2013-14-12-r138. PubMed DOI PMC

Poursarebani N, Nussbaumer T, Simková H, Safář J, Witsenboer H, van Oeveren J, et al. Whole genome profiling (WGP(TM)) and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A. 2014. PubMed PMC

Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EYS, et al. Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J. 2011;9:768–775. doi: 10.1111/j.1467-7652.2010.00587.x. PubMed DOI

Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L, et al. Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet. 2012;124:423–432. doi: 10.1007/s00122-011-1717-2. PubMed DOI

Vitulo N, Albiero A, Forcato C, Campagna D, Dal Pero F, Bagnaresi P, et al. First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One. 2011;6 doi: 10.1371/journal.pone.0026421. PubMed DOI PMC

Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S, et al. Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 2012;69:377–386. doi: 10.1111/j.1365-313X.2011.04808.x. PubMed DOI

Tanaka T, Kobayashi F, Joshi GP, Onuki R, Sakai H, Kanamori H, et al. Next-generation survey sequencing and the molecular organization of wheat chromosome 6B. DNA Res. 2014;21:103–114. doi: 10.1093/dnares/dst041. PubMed DOI PMC

Lucas SJ, Akp Nar BA, Imková H, Kubaláková M, El Dole J, Budak H. Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications. BMC Genomics. 2014;15:1080. doi: 10.1186/1471-2164-15-1080. PubMed DOI PMC

Akpinar BA, Lucas SJ, Vrána J, Doležel J, Budak H. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum) 2014. PubMed

Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, et al. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 2006;48:463–474. doi: 10.1111/j.1365-313X.2006.02891.x. PubMed DOI

Lucas SJ, Šimková H, Šafář J, Jurman I, Cattonaro F, Vautrin S, et al. Functional features of a single chromosome arm in wheat (1AL) determined from its structure. Funct Integr Genomics. 2012;12:173–182. doi: 10.1007/s10142-011-0250-3. PubMed DOI

Sehgal SK, Li W, Rabinowicz PD, Chan A, Simková H, Doležel J, et al. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC Plant Biol. 2012;12:64. doi: 10.1186/1471-2229-12-64. PubMed DOI PMC

Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491:705–710. doi: 10.1038/nature11650. PubMed DOI PMC

Nelson WM, Bharti AK, Butler E, Wei F, Fuks G, Kim H, et al. Whole-genome validation of high-information-content fingerprinting. Plant Physiol. 2005;139:27–38. doi: 10.1104/pp.105.061978. PubMed DOI PMC

Frenkel Z, Paux E, Mester D, Feuillet C, Korol A. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes. BMC Bioinformatics. 2010;11:584. doi: 10.1186/1471-2105-11-584. PubMed DOI PMC

Sears E, Sears L. The telocentric chromosomes of common wheat. 1978. pp. 389–407.

Safár J, Simková H, Kubaláková M, Cíhalíková J, Suchánková P, Bartos J, et al. Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res. 2010;129:211–223. doi: 10.1159/000313072. PubMed DOI

Luo M-C, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, et al. High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics. 2003;82:378–389. doi: 10.1016/S0888-7543(03)00128-9. PubMed DOI

Rustenholz C, Hedley PE, Morris J, Choulet F, Feuillet C, Waugh R, et al. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources. BMC Genomics. 2010;11:714. doi: 10.1186/1471-2164-11-714. PubMed DOI PMC

Rustenholz C, Choulet F, Laugier C, Safár J, Simková H, Dolezel J, et al. A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. Plant Physiol. 2011;157:1596–1608. doi: 10.1104/pp.111.183921. PubMed DOI PMC

Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) Theor Appl Genet. 2004;109:1105–1114. doi: 10.1007/s00122-004-1740-7. PubMed DOI

Mayer KFX, Taudien S, Martis M, Simková H, Suchánková P, Gundlach H, et al. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 2009;151:496–505. doi: 10.1104/pp.109.142612. PubMed DOI PMC

Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B, Scholz U, et al. Frequent Gene Movement and Pseudogene Evolution Is Common to the Large and Complex Genomes of Wheat, Barley, and Their Relatives. Plant Cell. 2011;23:1706–1718. doi: 10.1105/tpc.111.086629. PubMed DOI PMC

Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, et al. Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics. 2009;9:473–484. doi: 10.1007/s10142-009-0129-8. PubMed DOI

Conesa A, Götz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832. doi: 10.1155/2008/619832. PubMed DOI PMC

Thakur K, Chawla V, Bhatti S, Swarnkar MK, Kaur J, Shankar R, et al. De novo transcriptome sequencing and analysis for Venturia inaequalis, the devastating apple scab pathogen. PLoS One. 2013;8 doi: 10.1371/journal.pone.0053937. PubMed DOI PMC

Kumar M, Gantasala NP, Roychowdhury T, Thakur PK, Banakar P, Shukla RN, et al. De Novo Transcriptome Sequencing and Analysis of the Cereal Cyst Nematode. Heterodera avenae PLoS One. 2014;9 doi: 10.1371/journal.pone.0096311. PubMed DOI PMC

Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004;5:123–135. doi: 10.1038/nrg1271. PubMed DOI

Initiative TAG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. doi: 10.1038/35048692. PubMed DOI

Kubaláková M, Valárik M, Barto J, Vrána J, Cíhalíková J, Molnár-Láng M, et al. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome. 2003;46:893–905. doi: 10.1139/g03-054. PubMed DOI

Simková H, Safář J, Kubaláková M, Suchánková P, Cíhalíková J, Robert-Quatre H, et al. BAC libraries from wheat chromosome 7D: efficient tool for positional cloning of aphid resistance genes. J Biomed Biotechnol. 2011;2011:302543. doi: 10.1155/2011/302543. PubMed DOI PMC

Scalabrin S, Morgante M, Policriti A. Automated FingerPrint Background removal: FPB. BMC Bioinformatics. 2009;10:127. doi: 10.1186/1471-2105-10-127. PubMed DOI PMC

You FM, Luo M-C, Gu YQ, Lazo GR, Deal K, Dvorak J, et al. GenoProfiler: batch processing of high-throughput capillary fingerprinting data. Bioinformatics. 2007;23:240–242. doi: 10.1093/bioinformatics/btl494. PubMed DOI

Kofler R, Schlötterer C, Lelley T. SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics. 2007;23:1683–1685. doi: 10.1093/bioinformatics/btm157. PubMed DOI

Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant J-P, et al. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J. 2010;8:196–210. doi: 10.1111/j.1467-7652.2009.00477.x. PubMed DOI

Allen AM, Barker GLA, Wilkinson P, Burridge A, Winfield M, Coghill J, et al. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.) Plant Biotechnol J. 2013;11:279–295. doi: 10.1111/pbi.12009. PubMed DOI

Poland JA, Brown PJ, Sorrells ME, Jannink J-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One. 2012;7 doi: 10.1371/journal.pone.0032253. PubMed DOI PMC

Luo M-C, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, et al. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci U S A. 2013;110:7940–7945. doi: 10.1073/pnas.1219082110. PubMed DOI PMC

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace