A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28119729
PubMed Central
PMC5222868
DOI
10.3389/fpls.2016.02063
Knihovny.cz E-zdroje
- Klíčová slova
- SNP iSelect array, Triticum aestivum, chromosome deletion bin map, endosperm radiation hybrid panel, radiation hybrid map, wheat chromosome 4A,
- Publikační typ
- časopisecké články MeSH
Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequence. Here we report on the construction of high-density and high-resolution radiation hybrid (RH) map of chromosome 4A supported by high-density chromosome deletion map. A total of 119 endosperm-based RH lines of two RH panels and 15 chromosome deletion bin lines were genotyped with 90K iSelect single nucleotide polymorphism (SNP) array. A total of 2316 and 2695 markers were successfully mapped to the 4A RH and deletion maps, respectively. The chromosome deletion map was ordered in 19 bins and allowed precise identification of centromeric region and verification of the RH panel reliability. The 4A-specific RH map comprises 1080 mapping bins and spans 6550.9 cR with a resolution of 0.13 Mb/cR. Significantly higher mapping resolution in the centromeric region was observed as compared to recombination maps. Relatively even distribution of deletion frequency along the chromosome in the RH panel was observed and putative functional centromere was delimited within a region characterized by two SNP markers.
Department of Plant Pathology Kansas State University Manhattan KS USA
Department of Plant Sciences North Dakota State University Fargo ND USA
Zobrazit více v PubMed
Abouelhoda M. I., Kurtz S., Ohlebusch E. (2002). “The enhanced suffix array and its applications to genome analysis,” in Proceedings of the Second Workshop on Algorithms in Bioinformatics: Lecture Notes in Computer Science Vol. 2452 (Berlin: Springer-Verlag; ) 449–463.
Akhunov E., Nicolet C., Dvorak J. (2009). Single nucleotide polymorphism genotyping in polyploidy wheat with the Illumina GoldenGate assay. Theor. Appl. Genet. 119 507–517. 10.1007/s00122-009-1059-5 PubMed DOI PMC
Akhunov E. D., Goodyear A. W., Geng S., Qi L., Echalier B., Gill B. S., et al. (2003). The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res. 13 753–763. 10.1101/gr.808603 PubMed DOI PMC
Akpinar B. A., Magni F., Yuce M., Lucas S. J., Šimková H., Šafář J., et al. (2015). The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genomics 16:453 10.1186/s12864-015-1641-y PubMed DOI PMC
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Araki E., Miura H., Sawada S. (1999). Identification of genetic loci Affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor. Appl. Genet. 98 977–984. 10.1007/s001220051158 DOI
Ariyadasa R., Stein N. (2012). Advances in BAC-based physical mapping and map integration strategies in plants. J. Biomed. Biotechnol. 2012:184854 10.1155/2012/184854 PubMed DOI PMC
Bassi F. M., Kumar A., Zhang Q., Paux E., Huttner E., Kilian A., et al. (2013). Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. Theor. Appl. Genet. 126 1977–1990. 10.1007/s00122-013-2111-z PubMed DOI
Belova T., Grønvold L., Kumar A., Kianian S., He X., Lillemo M., et al. (2014). Utilization of deletion bins to anchor and order sequences along the wheat 7B chromosome. Theor. Appl. Genet. 127 2029–2040. 10.1007/s00122-014-2358-z PubMed DOI
Börner A., Schumann E., Fürste A., Cöster H., Leithold B., Röder S., et al. (2002). Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105 921–936. 10.1007/s00122-002-0994-1 PubMed DOI
Chapman J. A., Mascher M., Buluc A., Barry K., Georganas E., Session A., et al. (2015). A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 16:26 10.1186/s13059-015-0582-8 PubMed DOI PMC
Chen S. Y., Tsubouchi T., Rockmill B., Sandler J. S., Richards D. R., Vader G., et al. (2008). Global analysis of the meiotic crossover landscape. Dev. Cell 15 401–415. 10.1016/j.devcel.2008.07.006 PubMed DOI PMC
Choulet F., Alberti A., Theil S., Glover N., Barbe V., Daron J., et al. (2014a). Structural ad functional partitioning of bread wheat chromosome 3B. Science 345:1249721 10.1126/science.1249721 PubMed DOI
Choulet F., Caccamo M., Wright J., Alaux M., Šimková H., Šafář J., et al. (2014b). “The wheat black jack: advances towards sequencing the 21 chromosomes of bread wheat,” in Genomics of Plant Genetic Resources eds Tuberosa R., Graner A., Frison E. (Dordrecht: Springer; ) 405–438.
Choulet F., Wicker T., Rustenholz C., Paux E., Salse J., Leroy P., et al. (2010). Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable elements space. Plant Cell 22 1686–1701. 10.1105/tpc.110.074187 PubMed DOI PMC
Cox D. R., Burmeister M., Price E. R., Kim S., Myers R. M. (1990). Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250 245–250. 10.1126/science.2218528 PubMed DOI
Cruz V. M. V., Kilian A., Dierig D. A. (2013). Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PLoS ONE 8:e64062 10.1371/journal.pone.0064062 PubMed DOI PMC
Dilbirligi M., Erayman M., Sandhu D., Sidhu D., Gill K. S. (2004). Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166 461–481. 10.1534/genetics.166.1.461 PubMed DOI PMC
Endo T. R., Gill B. S. (1996). The deletion stocks of common wheat. J. Hered. 87 295–307. 10.1093/oxfordjournals.jhered.a023003 DOI
Eversole K., Feuillet C., Mayer K. F. X., Rogers J. (2014). Slicing the wheat genome. Science 345 285–287. 10.1126/science.1257983 PubMed DOI
Frenkel Z., Paux E., Mester D., Feuillet C., Korol A. (2010). LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes. BMC Bioinformatics 11:584 10.1186/1471-2105-11-584 PubMed DOI PMC
Hernandez P., Martis M., Dorado G., Pfeifer M., Gálvez S., Schaaf S., et al. (2012). Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 69 377–386. 10.1111/j.1365-313X.2011.04808.x PubMed DOI
IWGSC (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788 10.1126/science.1251788 PubMed DOI
Jakobson I., Peusha H., Timofejeva L., Järve K. (2006). Adult plant and seedling resistance to powdery mildew in a Triticum aestivum x Triticum militinae hybrid line. Theor. Appl. Genet. 112 760–766. 10.1007/s00122-005-0181-2 PubMed DOI
Kobayashi F., Wu J., Kanamori H., Tanaka T., Katagiri S., Karasawa W., et al. (2015). A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B. BMC Genomics 16:595 10.1186/s12864-015-1803-y PubMed DOI PMC
Korol A. B. (2013). “Recombination,” in Encyclopedia of Biodiversity 2nd edn Vol. 6 ed. Levin A. S. (Waltham, MA: Academic Press; ) 353–369.
Kubaláková M., Vrána J., Číhalíková J., Šimková H., Doležel J. (2002). Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 104 1362–1372. 10.1007/s00122-002-0888-2 PubMed DOI
Kumar A., Bassi F. M., Michalak de Jimenez M. K., Ghavami F., Mazaheri M., Simons K., et al. (2014). “Radiation hybrids: a valuable toll for genetic, genomic and functional analysis of plant genomes,” in Genomics of Plant Genetic Resources Vol. 1 eds Tuberosa R., Graner A., Frison E. (Dordrecht: Springer; ) 285–318.
Kumar A., Bassi F. M., Paux E., Al-Azzam O., Michalak de Jimenez M., Denton A. M., et al. (2012a). DNA repair and crossing over favour similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 13:339 10.1186/1471-2164-13-339 PubMed DOI PMC
Kumar A., Seetan R., Mergoum M., Tiwari V. K., Iqbal M. J., Wang Y., et al. (2015). Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly od large and complex plant genomes. BMC Genomics 16:800 10.1186/s12864-015-2030-2 PubMed DOI PMC
Kumar A., Simons K., Iqbal M. J., Michalak de Jiménez M., Bassi F. M., Ghavami F., et al. (2012b). Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics 13:597 10.1186/1471-2164-13-597 PubMed DOI PMC
Lukaszewski A., Curtis C. A. (1993). Physical distribution of recombination in B-genome chromosome of tetraploid wheat. Theor. Appl. Genet. 86 121–127. 10.1007/BF00223816 PubMed DOI
Maccaferri M., Ricci A., Salvi S., Milner S. G., Noli E., Martelli P. L., et al. (2015). A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol. J. 13 648–663. 10.1111/pbi.12288 PubMed DOI
Marone D., Laidò G., Gadaleta A., Colasuonno P., Ficco D. B. M., Giancaspro A., et al. (2012). A high-density consensus map of A and B wheat genomes. Theor. Appl. Genet. 125 1619–1638. 10.1007/s00122-012-1939-y PubMed DOI PMC
Mascher M., Muehlbauer G. J., Rokhsar D. S., Chapman J., Schmutz J., Barry K., et al. (2013). Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 76 718–727. 10.1111/tpj.12319 PubMed DOI PMC
Mazaheri M., Kianian P. M. A., Kumar A., Mergoum M., Seetan R., Soltani A., et al. (2015). Radiation hybrid map of barley chromosome 3H. Plant Genome 8 1–11. 10.3835/plantgenome2015.02.0005 PubMed DOI
McCartney C. A., Somers D. J., Humphreys D. G., Lukow O., Ames N., Noll J., et al. (2005). Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452x’AC Domain’. Genome 48 870–883. 10.1139/g05-055 PubMed DOI
Mester D., Ronin Y., Minkov D., Nevo E., Korol A. (2003). Constructing large-scale genetic maps using an evolutionary strategy algorithm. Genetics 165 2269–2282. PubMed PMC
Meyers B. C., Scalabrin S., Morgane M. (2004). Mappimg and sequencing complex genomes: let’s get physical! Nat. Rev. 5 578–588. 10.1038/nrg1404 PubMed DOI
Michalak de Jimenez M. K., Bassi F. M., Ghavami F., Simons K., Dizon R., Seetan R. I., et al. (2013). A radiation hybrid map of chromosome 1D reveals synteny conservation at a wheat speciation locus. Funct. Integr. Genomics 13 19–32. 10.1007/s10142-013-0318-3 PubMed DOI
Miftahudin K. R., Ma X. F., Mahmoud A. A., Layton J., Rodriguez Milla M. A., Chikmawati T., et al. (2004). Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 168 651–663. 10.1534/genetics.104.034827 PubMed DOI PMC
Newell W., Beck S., Lehrach H., Lyall A. (1998). Estimation of distances and map construction using radiation hybrids. Genome Res. 8 493–508. PubMed
Nussbaumer T., Martis M. M., Roessner S. K., Pfeifer M., Bader K. C., Sharma S., et al. (2013). MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res. 41 D1144–D1151. 10.1093/nar/gks1153 PubMed DOI PMC
Paux E., Legeai F., Guilhot N., Adam-Blomdon A., Alaux M., Salse J., et al. (2008a). Physical mapping in large genomes: accelerating anchoring of BAC contigs to genetic maps through in silico analysis. Funct. Integr. Genomics 8 29–32. 10.1007/s10142-007-0068-1 PubMed DOI
Paux E., Roger D., Badaeva E., Gay G., Bernard M., Sourdille P., et al. (2006). Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 48 463–474. 10.1111/j.1365-313X.2006.02891.x PubMed DOI
Paux E., Sourdille P., Salse J., Saintenac C., Choulet F., Leroy P., et al. (2008b). A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322 101–104. 10.1126/science.1161847 PubMed DOI
Philippe R., Paux E., Bertin I., Sourdille P., Choulet F., Laugier C., et al. (2013). A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol. 14:R64 10.1186/gb-2013-14-6-r64 PubMed DOI PMC
Qi L., Echalier B., Friebe B., Gill B. S. (2003). Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct. Integr. Genomics 3 39–55. PubMed
Qi L. L., Echalier B., Chao S., Lazo G. R., Butler G. E., Anderson O. D., et al. (2004). A chromosome bin map of 16,000 expressed sequence tag loci and distribution of gene among the three genomes of polyploid wheat. Genetics 168 701–712. 10.1534/genetics.104.034868 PubMed DOI PMC
Ronin Y., Mester D., Minkov D., Korol A. (2010). Building reliable genetic maps: different mapping strategies may result in different maps. Nat. Sci. 2 576–589. 10.4236/ns.2010.26073 DOI
Ronin Y., Minkov D., Mester D., Akhunov A., Korol A. (2015). “Building ultra-dense genetic maps in the presence of genotyping errors and missing data,” in Advances in Wheat Genetics: From Genome to Field eds Ogihara Y., Takumi S., Handa H. (Tokyo: Springer; ) 127–133.
Šafář J., Šimková H., Kubaláková M., Èíhalíková J., Suchánková P., Bartoš J., et al. (2010). Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet. Genome Res. 129 211–223. 10.1159/000313072 PubMed DOI
Saintenac C., Falque M., Martin O. C., Paux E., Feuillet C., Sourdille P. (2009). Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181 393–403. 10.1534/genetics.108.097469 PubMed DOI PMC
Sandhu D., Gill K. S. (2002). Gene-containing regions of wheat and the other grass genomes. Plant Physiol. 128 803–811. 10.1104/pp.010745 PubMed DOI PMC
Sears E. R., Sears L. (1978). “Tetelocentric chromosomes of common wheat,” in Proceedings of the 5th International Wheat Genetics symposium ed. Ramanujams S. (New Delhi: Indian Agricultural Reseach Institute; ) 389–407.
Shorinola O., Bird N., Simmonds J., Berry S., Henriksson T., Jack P., et al. (2016). The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. J. Exp. Bot. 67 4169–4178. 10.1093/jxb/erw194 PubMed DOI PMC
Šimková H., Svensson J. T., Condamine P., Hřibová E., Suchánková P., Bhat P. R., et al. (2008). Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294 10.1186/1471-2164-9-294 PubMed DOI PMC
Sourdille P., Singh S., Cadalen T., Brown-Guedira G. L., Gay G., Qi L., et al. (2004). Microsatellite-based deletion bin system for establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct. Integr. Genomics 4 12–25. 10.1007/s10142-004-0106-1 PubMed DOI
Tiwari V. K., Heesacker A., Riera-Lizarazu O., Gunn H., Wang S., Wang Y., et al. (2016). A whole-genome, radiation hybrid mapping resource of hexaploid wheat. Plant J. 86 195–207. 10.1111/tpj.13153 PubMed DOI
Tiwari V. K., Riera-Lizarazu O., Gunn H. L., Lopez K., Iqbal M. J., Kianian S. F., et al. (2012). Endosperm tolerance of paternal aneuploidy allows radiation hybrid mapping of the wheat D-genome and a measure of γ ray-induced chromosome breaks. PLoS ONE 7:e48815 10.1371/journal.pone.0048815 PubMed DOI PMC
Tsõmbalova J., Karafiátová M., Vrána J., Kubaláková M., Peuša H., Jakobson I., et al. (2016). A haplotype specific to North European wheat (Triticum Q14 aestivum L.). Genet. Resour. Crop Evol. 1–12. 10.1007/s10722-016-0389-9 DOI
Wang S., Wong D., Forrest K., Allen A., Chao S., Huang B. E., et al. (2014). Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 12 787–796. 10.1111/pbi.12183 PubMed DOI PMC
Wang Y., Drader T., Tiwari V. K., Dong L., Kumar A., Huo N., et al. (2015). Development of a D genome specific marker resource for diploid and hexaploid wheat. BMC Genomics 16:646 10.1186/s12864-015-1852-2 PubMed DOI PMC
Winfield M. O., Allen A. M., Burridge A. J., Barker G. L. A., Benbow H. R., Wilkinson P. A., et al. (2015). High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 13 733–742. 10.1111/pbi.12485 PubMed DOI PMC