Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18565235
PubMed Central
PMC2453526
DOI
10.1186/1471-2164-9-294
PII: 1471-2164-9-294
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná genetika MeSH
- fyzikální mapování chromozomů metody MeSH
- genetické markery MeSH
- ječmen (rod) genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- polymerázová řetězová reakce MeSH
- průtoková cytometrie MeSH
- techniky amplifikace nukleových kyselin metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- genetické markery MeSH
BACKGROUND: Flow cytometry facilitates sorting of single chromosomes and chromosome arms which can be used for targeted genome analysis. However, the recovery of microgram amounts of DNA needed for some assays requires sorting of millions of chromosomes which is laborious and time consuming. Yet, many genomic applications such as development of genetic maps or physical mapping do not require large DNA fragments. In such cases time-consuming de novo sorting can be minimized by utilizing whole-genome amplification. RESULTS: Here we report a protocol optimized in barley including amplification of DNA from only ten thousand chromosomes, which can be isolated in less than one hour. Flow-sorted chromosomes were treated with proteinase K and amplified using Phi29 multiple displacement amplification (MDA). Overnight amplification in a 20-microlitre reaction produced 3.7 - 5.7 micrograms DNA with a majority of products between 5 and 30 kb. To determine the purity of sorted fractions and potential amplification bias we used quantitative PCR for specific genes on each chromosome. To extend the analysis to a whole genome level we performed an oligonucleotide pool assay (OPA) for interrogation of 1524 loci, of which 1153 loci had known genetic map positions. Analysis of unamplified genomic DNA of barley cv. Akcent using this OPA resulted in 1426 markers with present calls. Comparison with three replicates of amplified genomic DNA revealed >99% concordance. DNA samples from amplified chromosome 1H and a fraction containing chromosomes 2H - 7H were examined. In addition to loci with known map positions, 349 loci with unknown map positions were included. Based on this analysis 40 new loci were mapped to 1H. CONCLUSION: The results indicate a significant potential of using this approach for physical mapping. Moreover, the study showed that multiple displacement amplification of flow-sorted chromosomes is highly efficient and representative which considerably expands the potential of chromosome flow sorting in plant genomics.
Zobrazit více v PubMed
The Community Sequecing Program
Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C. Chromosome-based genomics in cereals. Chromosome Res. 2007;15:51–66. PubMed
Peterson DG. Reduced representation strategies and their application to plant genomes. In: Meksem K, Kahl G, editor. The Handbook of Plant Genome Mapping: Genetic and Physical Mapping. Weinheim: WILEY-VCH Verlag GmbH & Co. KgaA; 2005. pp. 307–335.
Keller B, Feuillet C, Yahiaoui N. Map-based isolation of disease resistance genes from bread wheat: cloning in a supersize genome. Genet Res. 2005;85:93–100. PubMed
Bossolini E, Wicker T, Knobel P, Keller B. Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant Journal. 2007;49:704–717. PubMed
Doležel J, Kubaláková M, Bartoš J, Macas J. Flow cytogenetics and plant genome mapping. Chromosome Res. 2004;12:77–91. PubMed
Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J. Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–2041. PubMed PMC
Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.) Theor Appl Genet. 2002;104:1362–1372. PubMed
Požárková D, Koblížková A, Román B, Torres AM, Lucretti S, Lysák MA, Doležel J, Macas J. Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plant. 2002;45:337–345.
Román B, Satovic Z, Požárková D, Macas J, Doležel J, Cubero JI, Torres AM. Development of a composite map in Vicia faba, breeding applications and future prospects. Theor Appl Genet. 2004;108:1079–1088. PubMed
Kofler R, Bartoš J, Gong L, Stift G, Suchánková P, Šimková H, Berenyi M, Burg K, Doležel J, Lelley T. Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1 PubMed
Vláèilová K, Ohri D, Vrána J, Číhalíková J, Kubaláková M, Kahl G, Doležel J. Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.) Chromosomes Res. 2002;10:695–706. PubMed
Neumann P, Požárková D, Vrána J, Doležel J, Macas J. Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.) Chromosome Res. 2002;10:63–71. PubMed
Kubaláková M, Vrána J, Číhalíková J, Lysák MA, Doležel J. Localisation of DNA sequences on plant chromosomes using PRINS and C-PRINS. Methods Cell Sci. 2001;23:71–82. PubMed
Kubaláková M, Kovářová P, Suchánková P, Číhalíková J, Bartoš J, Lucretti S, Watanabe N, Kianian SF, Doležel J. Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics. 2005;170:823–829. PubMed PMC
Valárik M, Bartoš J, Kovářová P, Kubaláková M, de Jong H, Doležel J. High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant Journal. 2004;37:940–950. PubMed
Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tušková R, Číhalíková J, Vrána J, Šimková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Doležel J, Chalhoub B. Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant Journal. 2004;39:960–968. PubMed
Janda J, Bartoš J, Šafář J, Kubaláková M, Valárik M, Číhalíková J, Šimková H, Caboche M, Sourdille P, Bernard M, Chalhoub B, Doležel J. Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet. 2004;109:1337–1345. PubMed
Janda J, Šafář J, Kubaláková M, Bartoš J, Kovářová P, Suchánková P, Pateyron S, Číhalíková J, Sourdille P, Šimková H, Fairaivre-Rampant P, Hřibová E, Bernard M, Lukaszewski A, Doležel J, Chalhoub B. Advanced resources for plant genomics: BAC library specific for the short arm of wheat chromosome 1B. Plant Journal. 2006;47:977–986. PubMed
Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy F, Korol A, Spielmeyer W, Appels R, Doležel J, Bernard M, Feuillet C. Abstracts of the International Conference Plant and Animal Genome XVI: 12–16 January 2008; San Diego, CA. Sherago International, Inc; 2008. Physical mapping in a giant genome: A chromosome landing-ready physical map of chromosome 3B of hexaploid wheat; p. 65.
McNeil MD, Kota R, Paux E, Dunn D, McLean R, Feuillet C, Li D, Kong X, Lagudah E, Zhang JC, Jia JZ, Spielmeyer W, Bellgard M, Appels R. BAC-derived markers for assaying the stem rust resistence gene, Sr2, in wheat breeding programs. Mol Breeding. 2008.
Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992;13:718–725. PubMed
Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA. 1992;89:5847–5851. PubMed PMC
Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA. 2002;99:5261–5266. PubMed PMC
Pinard R, de Winter A, Sarkis GJ, Gerstein MB, Tartaro KR, Plant RN, Egholm M, Rothberg JM, Leamon JH. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. BMC Genomics. 2006;7:216. PubMed PMC
Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 2001;11:1095–1099. PubMed PMC
Lage JM, Leamon JH, Pejovic T, Hamann S, Lacey M, Dillon D, Segraves R, Vossbrinck B, Gonzalez A, Pinkel D, Albertson DG, Costa J, Lizardi PM. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res. 2003;13:294–307. PubMed PMC
Hosono S, Faruqi AF, Dean FB, Du Y, Sun Z, Wu X, Du J, Kingsmore SF, Egholm M, Lasken RS. Unbiased whole-genome amplification directly from clinical samples. Genome Res. 2003;13:954–964. PubMed PMC
Barker DL, Hansen MS, Faruqi AF, Giannola D, Irsula OR, Lasken RS, Latterich M, Makarov V, Oliphant A, Pinter JH, Shen R, Sleptsova I, Ziehler W, Lai E. Two methods of whole genome amplification enable accurate genotyping across a 2320-SNP linkage panel. Genome Res. 2004;12:901–901. PubMed PMC
Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, Richter DJ, Gabriel S, Herman P, Sasaki H, Altshuler D, Li C, Meyerson M, Sellers WR. Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res. 2004;32:e71. PubMed PMC
Pask R, Rance HE, Barratt BJ, Nutland S, Smyth DJ, Sebastian M, Twells RCJ, Smith A, Lam AC, Smink LJ, Walker NM, Todd JA. Investigating the utility of combining Phi29 whole genome amplification and highly multiplexed single nucleotide polymorphism BeadArray genotyping. BMC Biotechnol. 2004;4:15. PubMed PMC
Park JW, Beaty TH, Boyce P, Scott AF, McIntosh I. Comparing whole-genome amplification methods and sources of biological samples for single-nucleotide polymorphism genotyping. Clin Chem. 2005;51:1520–1523. PubMed
Lysák MA, Číhalíková J, Kubaláková M, Šimková H, Künzel G, Doležel J. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.) Chromosome Res. 1999;7:431–444. PubMed
Doležel J, Binarová P, Lucretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant. 1989;31:113–120.
Suchánková P, Kubaláková M, Kovářová P, Bartoš J, Číhalíková J, Molnár-Láng M, Endo TR, Doležel J. Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet. 2006;113:651–659. PubMed
Rostoks N, Ramsay L, Mackenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA. 2006;103:18656–18661. PubMed PMC
Rook MS, Delach SM, Deyneko G, Worlock A, Wolfe JL. Whole genome amplification of DNA from laser capturemicrodissected tissue for high-throughput single nukleotide polymorphism and short tandem repeat genotyping. Am J Pathol. 2004;164:23–33. PubMed PMC
Bergen AW, Qi Y, Haque KA, Welch RA, Chanock SJ. Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance. BMC Biotechnol. 2005;5:24. PubMed PMC
Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A. A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet. 2007;114:823–839. PubMed
A single NLR gene confers resistance to leaf and stripe rust in wheat
Flow Cytometric Analysis and Sorting of Plant Chromosomes
The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase
Isolation and Sequencing of Chromosome Arm 7RS of Rye, Secale cereale
Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62
Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals
Chromosome analysis and sorting
A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat
Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa
Structural Variations Affecting Genes and Transposable Elements of Chromosome 3B in Wheats