Chromosome genomics facilitates the marker development and selection of wheat-Aegilops biuncialis addition, substitution and translocation lines
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No.CZ.02.1.01/0.0/0.0/16_019/0000827
ERDF project Plants as a Tool for Sustainable Global Development
K135057
Hungarian National Research, Development and Innovation Office
H2020-MSCA-IF-2016-746253
Marie Curie Fellowship Grant award AEGILWHEAT
PubMed
37993509
PubMed Central
PMC10665447
DOI
10.1038/s41598-023-47845-8
PII: 10.1038/s41598-023-47845-8
Knihovny.cz E-zdroje
- MeSH
- Aegilops * genetika MeSH
- chromozomy rostlin genetika MeSH
- genetické markery MeSH
- genomika MeSH
- hybridizace in situ fluorescenční MeSH
- pšenice * genetika MeSH
- translokace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- genetické markery MeSH
The annual goatgrass, Aegilops biuncialis is a rich source of genes with considerable agronomic value. This genetic potential can be exploited for wheat improvement through interspecific hybridization to increase stress resistance, grain quality and adaptability. However, the low throughput of cytogenetic selection hampers the development of alien introgressions. Using the sequence of flow-sorted chromosomes of diploid progenitors, the present study enabled the development of chromosome-specific markers. In total, 482 PCR markers were validated on wheat (Mv9kr1) and Ae. biuncialis (MvGB642) crossing partners, and 126 on wheat-Aegilops additions. Thirty-two markers specific for U- or M-chromosomes were used in combination with GISH and FISH for the screening of 44 Mv9kr1 × Ae. biuncialis BC3F3 genotypes. The predominance of chromosomes 4M and 5M, as well as the presence of chromosomal aberrations, may indicate that these chromosomes have a gametocidal effect. A new wheat-Ae. biuncialis disomic 4U addition, 4M(4D) and 5M(5D) substitutions, as well as several introgression lines were selected. Spike morphology and fertility indicated that the Aegilops 4M or 5M compensated well for the loss of 4D and 5D, respectively. The new cytogenetic stocks represent valuable genetic resources for the introgression of key genes alleles into wheat.
Zobrazit více v PubMed
Tadesse W, et al. Genetic gains in wheat breeding and its role in feeding the world. Crop Breed. Genet. Genome. 2019;1:e190005.
Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica. 1996;91:59–87. doi: 10.1007/BF00035277. DOI
van Slageren, M. W. Wild Wheats. A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). (Wageningen Agricultural University/ICARDA, 1994).
Ivanizs L, et al. Unlocking the genetic diversity and population structure of a wild gene source of wheat, Aegilops biuncialis Vis., and its relationship with the heading time. Front. Plant Sci. 2019;10:1531. doi: 10.3389/fpls.2019.01531. PubMed DOI PMC
Ivanizs L, et al. Identification of new QTLs for dietary fiber content in Aegilops biuncialis. Int. J. Mol. Sci. 2022;23:3821. doi: 10.3390/ijms23073821. PubMed DOI PMC
Molnár I, et al. Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct. Plant Biol. 2004;31:1149–1159. doi: 10.1071/FP03143. PubMed DOI
Dulai S, et al. Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. J. Plant Phys. 2014;171:509–517. doi: 10.1016/j.jplph.2013.11.015. PubMed DOI
Darko E, et al. Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci. Rep. 2020;10:22327. doi: 10.1038/s41598-020-79372-1. PubMed DOI PMC
Makkouk KM, Comeau A, Ghulam W. Resistance to barley yellow dwarf luteovirus in Aegilops species. Can. J. Plant Sci. 1994;74:631–634. doi: 10.4141/cjps94-113. DOI
Li H, et al. Discovery of powdery mildew resistance gene candidates from Aegilops biuncialis chromosome 2Mb based on transcriptome sequencing. PLoS One. 2019;14:e0220089. doi: 10.1371/journal.pone.0220089. PubMed DOI PMC
Damania AB, Pecetti L. Variability in a collection of Aegilops species and evaluation for yellow rust resistance at two locations in Northern Syria. J. Genet. Breed. 1990;44:97–102.
Dimov, A., Zaharieva, M. & Mihova, S. Rust and powdery mildew resistance in Aegilops accessions from Bulgaria. In Biodiversity and Wheat Improvement (ed. Damania, A. B.). 165–169 (Wiley, 1993).
Kwiatek M, Błaszczyk L, Wiśniewska H, Apolinarska B. Aegilops-Secale amphiploids: Chromosome categorisation, pollen viability and identification of fungal disease resistance genes. J. Appl. Genet. 2012;53:37–40. doi: 10.1007/s13353-011-0071-z. PubMed DOI PMC
Olivera PD, Rouse MN, Jin Y. Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front. Plant Sci. 2018;9:1719. doi: 10.3389/fpls.2018.01719. PubMed DOI PMC
Zhou J, et al. Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits characterization of a wheat. Genet. Mol. Res. 2014;13:660–669. doi: 10.4238/2014.January.28.11. PubMed DOI
Farkas A, et al. Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat-Aegilops biuncialis substitution and 3Mb.4BS translocation. Genome. 2014;57:61–67. doi: 10.1139/gen-2013-0204. PubMed DOI
Rakszegi M, et al. Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front. Plant Sci. 2017;8:1529. doi: 10.3389/fpls.2017.01529. PubMed DOI PMC
Schneider A, Molnár I, Molnár-Láng M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163:1–19. doi: 10.1007/s10681-007-9624-y. DOI
Kishii M. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 2019;10:585. doi: 10.3389/fpls.2019.00585. PubMed DOI PMC
Zhang, P. et al. Wheat-Aegilops introgressions. In Alien Introgression in Wheat (eds. Molnár-Láng, M., Ceoloni, C. & Doležel, J.). 221–243 (Springer, 2015). 10.1007/978-3-319-23494-6.
Logojan AA, Molnár-Láng M. Production of Triticum aestivum–Aegilops biuncialis chromosome additions. Cereal Res. Commun. 2000;28:221–228. doi: 10.1007/BF03543597. DOI
Schneider A, Linc G, Molnár I, Molnár-Láng M. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Genome. 2005;48:1070–1082. doi: 10.1139/g05-062. PubMed DOI
Tan F, et al. Characterization of a new synthetic wheat-Aegilops biuncialis partial amphiploid. J. Biotechnol. 2009;8:3215–3218.
Zhao H, et al. Comparative study on drought tolerance of wheat and wheat-Aegilops biuncialis 6Ub addition lines. J. Food Agricult. Environ. 2013;11:1046–1052.
Song L, et al. Molecular cytogenetic identification of wheat-Aegilops biuncialis 5Mb disomic addition line with tenacious and black glumes. Int. J. Mol. Sci. 2020;21:4053. doi: 10.3390/ijms21114053. PubMed DOI PMC
Molnár I, Benavente E, Molnár-Láng M. Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum –Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome. 2009;52:156–165. doi: 10.1139/G08-114. PubMed DOI
Kuraparthy V, et al. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor. Appl. Genet. 2007;114:1379–1389. doi: 10.1007/s00122-007-0524-2. PubMed DOI
Peil A, et al. The application of wheat microsatellites to identify disomic Triticum aestivum–Aegilops markgrafii addition lines. Theor. Appl. Genet. 1998;96:138–146. doi: 10.1007/s001220050720. DOI
Schneider A, Molnár I, Molnár-Láng M. Selection of U and M genome-specific wheat SSR markers using wheat-Aegilops biuncialis and wheat-Ae. geniculata addition lines. Euphytica. 2010;175:357–364. doi: 10.1007/s10681-010-0180-5. DOI
Nagy ED, Molnár I, Schneider A, Kovács G, Molnár-Láng M. Characterization of chromosome-specific S-SAP markers and their use in studying genetic diversity in Aegilops species. Genome. 2006;49:289–296. doi: 10.1139/g05-109. PubMed DOI
Howard T, et al. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J. Exp. Bot. 2011;62:2217–2228. doi: 10.1093/jxb/erq423. PubMed DOI PMC
Molnár I, et al. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One. 2013;8:e70844. doi: 10.1371/journal.pone.0070844. PubMed DOI PMC
Liu C, et al. Characterization, identification and evaluation of a set of wheat-Aegilops comosa chromosome lines. Sci. Rep. 2019;9:4773. doi: 10.1038/s41598-019-41219-9. PubMed DOI PMC
Molnár I, et al. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 2016;88:452–467. doi: 10.1111/tpj.13266. PubMed DOI
Men W, et al. Mapping of the novel powdery mildew resistance gene Pm2Mb from Aegilops biuncialis based on ph1b-induced homoeologous recombination. Theor. Appl. Genet. 2022;135:2993–3003. doi: 10.1007/s00122-022-04162-4. PubMed DOI
Zwyrtková J, Šimková H, Doležel J. Chromosome genomics uncovers plant genome organization and function. Biotechnol. Adv. 2021;46:107659. doi: 10.1016/j.biotechadv.2020.107659. PubMed DOI
International Wheat Genome Sequencing Consortium (IWGSC), et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science361, eaar7191 (2018). PubMed
Martis MM, et al. Reticulate evolution of the rye genome. Plant Cell. 2013;25:3685–3698. doi: 10.1105/tpc.113.114553. PubMed DOI PMC
International Barley Genome Sequencing Consortium (IBGSC), et al. A physical, genetic and functional sequence assembly of the barley genome. Nature491, 711–716 (2012). PubMed
Yu G, et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 2022;13:1607. doi: 10.1038/s41467-022-29132-8. PubMed DOI PMC
Zwyrtková J, et al. Draft sequencing crested wheatgrass chromosomes identified evolutionary structural changes and genes and facilitated the development of SSR markers. Int. J. Mol. Sci. 2022;23:3191. doi: 10.3390/ijms23063191. PubMed DOI PMC
Molnár I, Cifuentes M, Schneider A, Benavente E, Molnár-Láng M. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann. Bot. 2011;107:65–76. doi: 10.1093/aob/mcq215. PubMed DOI PMC
Said M, et al. Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front. Plant. Sci. 2021;12:689031. doi: 10.3389/fpls.2021.689031. PubMed DOI PMC
Said M, et al. Flow karyotyping of wheat-Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes. Front. Plant. Sci. 2022;13:1017958. doi: 10.3389/fpls.2022.1017958. PubMed DOI PMC
Tiwari VK, et al. Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5Mg of Aegilops geniculata. Plant J. 2015;84:733–746. doi: 10.1111/tpj.13036. PubMed DOI
Tiwari VK, et al. SNP discovery for mapping alien introgressions in wheat. BMC Genomics. 2014;15:273. doi: 10.1186/1471-2164-15-273. PubMed DOI PMC
Poczai P, et al. Advances in plant gene-targeted and functional markers: A review. Plant Methods. 2013;9:6. doi: 10.1186/1746-4811-9-6. PubMed DOI PMC
Burt C, Nicholson P. Exploiting colinearity among grass species to map the Aegilops ventricosa-derived Pch1 eyespot resistance in wheat and establish its relationship to Pch2. Theor. Appl. Genet. 2011;123:1387–1400. doi: 10.1007/s00122-011-1674-9. PubMed DOI
Gong W, et al. Agronomic traits and molecular marker identification of wheat-Aegilops caudata addition lines. Front. Plant. Sci. 2017;8:1743. doi: 10.3389/fpls.2017.01743. PubMed DOI PMC
King J, et al. A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol. J. 2016;15:217–226. doi: 10.1111/pbi.12606. PubMed DOI PMC
Grewal S, et al. Development of Wheat-Aegilops caudata introgression lines and their characterization using genome-specific KASP markers. Front. Plant. Sci. 2020;11:606. doi: 10.3389/fpls.2020.00606. PubMed DOI PMC
Ando K, et al. Introgression of a novel Ug99-effective stem rust resistance gene into wheat and development of Dasypyrum villosum chromosome-specific markers via genotyping-by-sequencing (GBS) Plant Dis. 2019;103:1068–1074. doi: 10.1094/PDIS-05-18-0831-RE. PubMed DOI
Zhang H, Jia J, Gale MD, Devos KM. Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor. Appl. Genet. 1998;96:69–75. doi: 10.1007/s001220050710. DOI
Türkösi E, et al. Transfer of the ph1b deletion chromosome 5B from Chinese Spring wheat into a winter wheat line and induction of chromosome rearrangements in wheat-Aegilops biuncialis hybrids. Front. Plant Sci. 2022;13:875676. doi: 10.3389/fpls.2022.875676. PubMed DOI PMC
Endo TR. Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn. J. Genet. 1990;65:135–152. doi: 10.1266/jjg.65.135. DOI
Endo TR, Gill BS. The deletion stocks of common wheat. J. Hered. 1996;87:295–307. doi: 10.1093/oxfordjournals.jhered.a023003. DOI
Friebe BR, Tuleen NA, Gill BS. Development and indentification of a complete set of Triticum aestivum–Aegilops geniculata chromosome addition lines. Genome. 1999;42:374–380. doi: 10.1139/g99-011. DOI
Endo, T. R. Gametocidal genes. In Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics. 121–131 (2015). 10.1007/978-3-319-23494-6_5/COVER.
Tsujimoto H, Tsunewaki K. Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides. Can. J. Genet. Cytol. 1984;26:78–84. doi: 10.1139/g84-013. DOI
Endo TR. The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chrom. Res. 2007;15:67–75. doi: 10.1007/s10577-006-1100-3. PubMed DOI
Kwiatek M, et al. Transmission of the Aegilops ovata chromosomes carrying gametocidal factors in hexaploid triticale (×Triticosecale Wittm.) hybrids. J. Appl. Genet. 2016;57:305–315. doi: 10.1007/s13353-015-0332-3. PubMed DOI PMC
Kwiatek MT, et al. Gametocidal factor transferred from Aegilops geniculata Roth can be adapted for large-scale chromosome manipulations in cereals. Front. Plant. Sci. 2017;8:409. doi: 10.3389/fpls.2017.00409. PubMed DOI PMC
Shi F, Endo TR. Production of wheat–barley disomic addition lines possessing an Aegilops cylindrica gametocidal chromosome. Genes Genet. Syst. 1997;72:243–248. doi: 10.1266/ggs.72.243. DOI
Shi F, Endo TR. Genetic induction of structural changes in barley chromosomes added to common wheat by a gametocidal chromosome derived from Aegilops cylindrica. Genes Genet. Syst. 1999;74:49–54. doi: 10.1266/ggs.74.49. DOI
Shi F, Endo TR. Genetic induction of chromosomal rearrangements in barley chromosome 7H added to common wheat. Chromosoma. 2000;109:358–363. doi: 10.1007/s004120000085. PubMed DOI
Guan P, et al. Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.) Front. Plant Sci. 2018;9:529. doi: 10.3389/fpls.2018.00529. PubMed DOI PMC
Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW. RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor. Appl. Genet. 1995;90:1174–1179. doi: 10.1007/BF00222940. PubMed DOI
Snape JW, et al. Mapping frost tolerance loci in wheat and comparative mapping with other cereals. Acta Agron. Hung. 1997;45:265–270.
Tóth B, Galiba G, Fehér E, Sutka J, Snape JW. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor. Appl. Genet. 2003;107:509–514. doi: 10.1007/s00122-003-1275-3. PubMed DOI
Cattivelli L, et al. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol. Biol. 2002;48:649–665. doi: 10.1023/A:1014824404623. PubMed DOI
Liu G, et al. Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theor. Appl. Genet. 2014;127:2415–2432. doi: 10.1007/s00122-014-2387-7. PubMed DOI
Wang Z, et al. Identification and validation of novel low-tiller number QTL in common wheat. Theor. Appl. Genet. 2016;129:603–612. doi: 10.1007/s00122-015-2652-4. PubMed DOI
Börner A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) Theor. Appl. Genet. 2002;105:921–936. doi: 10.1007/s00122-002-0994-1. PubMed DOI
Gao F, et al. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese spring. Front. Plant Sci. 2015;6:1099. doi: 10.3389/fpls.2015.01099. PubMed DOI PMC
Guo J, et al. Association and validation of yield-favored alleles in Chinese cultivars of common wheat (Triticum aestivum L.) PLoS One. 2015;10:1–18. PubMed PMC
Hedden P. The genes of the green revolution. Trends Genet. 2003;19:5–9. doi: 10.1016/S0168-9525(02)00009-4. PubMed DOI
Peng J, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999;400:256–261. doi: 10.1038/22307. PubMed DOI
Achard P, et al. Integration of plant responses to environmentally activated phytohormonal signals. Science. 2006;311:91–94. doi: 10.1126/science.1118642. PubMed DOI
Kiss T, et al. Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.) Mol. Breed. 2014;34:297–310. doi: 10.1007/s11032-014-0034-2. PubMed DOI PMC
Kiss T, et al. Effects of ambient temperature in association with photoperiod on phenology and on the expressions of major plant developmental genes in wheat (Triticum aestivum L.) Plant Cell Environ. 2017;40:1629–1642. doi: 10.1111/pce.12971. PubMed DOI
Law CN, Worland AJ, Giorgi B. The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat. Heredity. 1976;36:49–58. doi: 10.1038/hdy.1976.5. DOI
Barrett B, Bayram M, Kidwell K. Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat using reciprocal mapping populations. Plant Breed. 2002;121:400–406. doi: 10.1046/j.1439-0523.2002.732319.x. DOI
Molnár-Láng M, Linc G, Sutka J. Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica. 1996;90:301–305. doi: 10.1007/BF00027480. DOI
Nagaki K, Tsujimoto H, Isono K, Sasakuma T. Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome. 1995;38:479–486. doi: 10.1139/g95-063. PubMed DOI
Contento A, Heslop-Harrison JS, Schwarzacher T. Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet. Genome Res. 2005;109:34–42. doi: 10.1159/000082379. PubMed DOI
Gerlach WL, Bedbrook JR. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979;7:1869–1885. doi: 10.1093/nar/7.7.1869. PubMed DOI PMC
Said M, et al. Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. Theor. Appl. Genet. 2019;132:2881–2898. doi: 10.1007/s00122-019-03394-1. PubMed DOI PMC
Šimková H, et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics. 2008;9:294. doi: 10.1186/1471-2164-9-294. PubMed DOI PMC
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI
Molnár I, et al. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii. Theor. Appl. Genet. 2014;127:1091–1104. doi: 10.1007/s00122-014-2282-2. PubMed DOI
Gametocidal genes: from a discovery to the application in wheat breeding