Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BBS/E/J/000PR9780
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
35338132
PubMed Central
PMC8956640
DOI
10.1038/s41467-022-29132-8
PII: 10.1038/s41467-022-29132-8
Knihovny.cz E-zdroje
- MeSH
- Aegilops * genetika MeSH
- Basidiomycota * genetika MeSH
- nemoci rostlin genetika MeSH
- odolnost vůči nemocem genetika MeSH
- pšenice genetika MeSH
- rostlinné geny genetika MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.
AgBiome Inc Research Triangle Park NC 27709 USA
Agricultural Institute Centre for Agricultural Research ELKH Martonvásár 2462 Hungary
Alliance Management at Enko Chem 62 Maritime Dr Mystic CT 06355 USA
Blades Foundation Evanston IL USA
Crop Development Centre Department of Plant Sciences University of Saskatchewan Saskatoon SK Canada
Department of Agroecology Aarhus University Forsøgsvej 1 DK 4200 Slagelse Denmark
Department of Agronomy Kansas State University Manhattan KS 66506 USA
Department of Plant Pathology University of Minnesota St Paul MN 55108 USA
Institute for Cereal Crops Improvement Tel Aviv University Tel Aviv Israel
John Innes Centre Norwich Research Park Norwich NR4 7UH UK
Leibniz Institute of Plant Genetics and Crop Plant Research Seeland Germany
School of Plant Sciences and Food Security Tel Aviv University Tel Aviv Israel
Syngenta Flowers Downers Grove IL 60515 USA
The Sainsbury Laboratory University of East Anglia Norwich NR4 7UK UK
Zobrazit více v PubMed
Peterson, P. D. Stem Rust of Wheat: From Ancient Enemy to Modern Foe. Am. Phytopathol. Soc. (APS Press, St. Paul, 2001).
Le Roux J, Rijkenberg FH. Occurrence and pathogenicity of Puccinia graminis f. sp. tritici in South Africa during the period 1981–1985. Phytophylactica. 1987;19:467–472.
Addai, D. et al Potential economic impacts of the wheat stem rust strain Ug99 in Australia, ABARES research report, prepared for the Plant Biosecurity Branch, Department of Agriculture and Water Resources, Canberra (2018).
Pretorius ZA, Singh RP, Wagoire WW, Payne TS. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 2000;84:203. doi: 10.1094/PDIS.2000.84.2.203B. PubMed DOI
Jin Y, et al. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 2008;92:923–926. doi: 10.1094/PDIS-92-6-0923. PubMed DOI
Jin Y, et al. Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Dis. 2009;93:367–370. doi: 10.1094/PDIS-93-4-0367. PubMed DOI
Olivera P, et al. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013–14. Phytopathology. 2015;105:917–928. doi: 10.1094/PHYTO-11-14-0302-FI. PubMed DOI
Olivera Firpo PD, et al. Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathol. 2017;66:1258–1266. doi: 10.1111/ppa.12674. DOI
Lewis CM, et al. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun. Biol. 2018;1:13. doi: 10.1038/s42003-018-0013-y. PubMed DOI PMC
Bhattacharya S. Deadly new wheat disease threatens Europe’s crops. Nature. 2017;542:145–146. doi: 10.1038/nature.2017.21424. PubMed DOI
Shamanin V, et al. Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. Euphytica. 2016;212:287–296. doi: 10.1007/s10681-016-1769-0. DOI
Prank, M., Kenaley, S. C., Bergstrom, G. C., Acevedo, M. & Mahowald, N. M. Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environ. Res. Lett.14, 124053 (2019).
Hafeez AN, et al. Creation and judicious application of a wheat resistance gene atlas. Mol. Plant. 2021;14:1053–1070. doi: 10.1016/j.molp.2021.05.014. PubMed DOI
Moore JW, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 2015;47:1494–1498. doi: 10.1038/ng.3439. PubMed DOI
Krattinger SG, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323:1360–1363. doi: 10.1126/science.1166453. PubMed DOI
Zhang W, et al. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl Acad. Sci. USA. 2017;114:E9483–E9492. PubMed PMC
Chen S, Zhang W, Bolus S, Rouse MN, Dubcovsky J. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLoS Genet. 2018;14:e1007287. doi: 10.1371/journal.pgen.1007287. PubMed DOI PMC
Steuernagel B, et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 2016;34:652–655. doi: 10.1038/nbt.3543. PubMed DOI
Zhang J, et al. A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat. Commun. 2021;12:3378. doi: 10.1038/s41467-021-23738-0. PubMed DOI PMC
Periyannan S, et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science. 2013;341:786–789. doi: 10.1126/science.1239028. PubMed DOI
Saintenac C, et al. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science. 2013;341:783–786. doi: 10.1126/science.1239022. PubMed DOI PMC
Arora S, et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 2019;37:139–143. doi: 10.1038/s41587-018-0007-9. PubMed DOI
Mago R, et al. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat. Plants. 2015;1:15186. doi: 10.1038/nplants.2015.186. PubMed DOI
Chen S, et al. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. N. Phytol. 2020;225:948–959. doi: 10.1111/nph.16169. PubMed DOI
Gaurav, K. et al. Population genomic analysis of Aegilops tauschiii dentifies targets for bread wheat improvement. Nat. Biotechnol.10.1038/s41587-021-01058-4 (2021). PubMed PMC
Klymiuk V., Coaker G., Fahima T., Pozniak C. Tandem protein kinases emerge as new regulators of plant immunity. Mol. Plant Microbe. Interact.10.1094/MPMI-03-21-0073-CR (2021). PubMed PMC
Brueggeman R, et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl Acad. Sci. USA. 2002;99:9328–9333. doi: 10.1073/pnas.142284999. PubMed DOI PMC
Klymiuk V, et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 2018;9:3735. doi: 10.1038/s41467-018-06138-9. PubMed DOI PMC
Lu P, et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun. 2020;11:680. doi: 10.1038/s41467-020-14294-0. PubMed DOI PMC
Olivera PD, Steffenson BJ. Aegilops sharonensis: Origin, genetics, diversity, and potential for wheat improvement. Botany. 2009;87:740–756. doi: 10.1139/B09-040. DOI
Olivera PD, Anikster Y, Kolmer JA, Steffenson BJ. Resistance of Sharon goatgrass (Aegilops sharonensis) to fungal diseases of wheat. Plant Dis. 2007;91:942–950. doi: 10.1094/PDIS-91-8-0942. PubMed DOI
Scott JC, Manisterski J, Sela H, Ben-Yehuda P, Steffenson BJ. Resistance of Aegilops species from Israel to widely virulent African and Israeli races of the wheat stem rust pathogen. Plant Dis. 2014;98:1309–1320. doi: 10.1094/PDIS-01-14-0062-RE. PubMed DOI
Tsujimoto H, Tsunewaki K. Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides. Can. J. Genet. Cytol. 1984;26:78–84. doi: 10.1139/g84-013. DOI
Marais GF, McCallum B, Marais AS. Leaf Rust and Stripe Rust Resistance Genes Derived from Aegilops Sharonensis. Euphytica. 2006;149:373–380. doi: 10.1007/s10681-006-9092-9. DOI
Knight E, et al. Mapping the ‘breaker’ element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis. Theor. Appl. Genet. 2015;128:1049–1059. doi: 10.1007/s00122-015-2489-x. PubMed DOI PMC
Millet E, et al. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.) Genome. 2014;57:309–316. doi: 10.1139/gen-2014-0004. PubMed DOI
Millet E, et al. Genome targeted introgression of resistance to African stem rust from Aegilops sharonensis into bread wheat. Plant Genome. 2017;10:1–11. doi: 10.3835/plantgenome2017.07.0061. PubMed DOI
Yu G, et al. Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis. Theor. Appl. Genet. 2017;130:1207–1222. doi: 10.1007/s00122-017-2882-8. PubMed DOI PMC
Monat C, et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019;20:284. doi: 10.1186/s13059-019-1899-5. PubMed DOI PMC
International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science361, eaar7191 (2018). PubMed
Elshire RJ, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6:e19379. doi: 10.1371/journal.pone.0019379. PubMed DOI PMC
Uauy C, Wulff BBH, Dubcovsky J. Combining traditional mutagenesis with wew high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu Rev. Genet. 2017;51:435–454. doi: 10.1146/annurev-genet-120116-024533. PubMed DOI
Steuernagel B, et al. The NLR-Annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 2020;183:468–482. doi: 10.1104/pp.19.01273. PubMed DOI PMC
Kelley L, et al. The Phyre2 web portal for protein modelling, prediction and analysis. Nat. Protoc. 2015;10:845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC
McNicholas S, Potterton E, Wilson KS, Noble MEM. Presenting your structures: the CCP4mg molecular-graphics software. Acta Cryst. 2011;D67:386–394. PubMed PMC
Holliday GL, Mitchell JB, Thornton JM. Understanding the functional roles of amino acid residues in enzyme catalysis. J. Mol. Biol. 2009;390:560–577. doi: 10.1016/j.jmb.2009.05.015. PubMed DOI
Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241:42–52. doi: 10.1126/science.3291115. PubMed DOI
Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 1970;48:443–453. doi: 10.1016/0022-2836(70)90057-4. PubMed DOI
Lehti-Shiu MD, Shiu S-H. Diversity, classification and function of the plant protein kinase superfamily. Philos. Trans. R. Soc. B. 2012;367:2619–2639. doi: 10.1098/rstb.2012.0003. PubMed DOI PMC
Tello-Ruiz MK, et al. Gramene 2021: Harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res. 2021;49:D1452–D1463. doi: 10.1093/nar/gkaa979. PubMed DOI PMC
Howe KL, et al. Ensembl Genomes 2020—enabling non-vertebrate genomic research. Nucleic Acids Res. 2020;48:D689–D695. doi: 10.1093/nar/gkz890. PubMed DOI PMC
Chalupska D, et al. Acc homoeoloci and the evolution of wheat genomes. Proc. Natl Acad. Sci. USA. 2008;105:9691–9696. doi: 10.1073/pnas.0803981105. PubMed DOI PMC
Kourelis J, van der Hoorn RAL. Defended to the Nines: 25 Years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell. 2018;30:285–299. doi: 10.1105/tpc.17.00579. PubMed DOI PMC
Van der Biezen EA, Jones JDG. Plant disease-resistance proteins and the gene-for-gene concept. Trends Plant Sci. 1998;23:454–456. PubMed
Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–329. doi: 10.1038/nature05286. PubMed DOI
DeYoung BJ, Innes RW. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 2006;7:1243–1249. doi: 10.1038/ni1410. PubMed DOI PMC
Cesari S. Multiple strategies for pathogen perception by plant immune receptors. N. Phytol. 2018;219:17–24. doi: 10.1111/nph.14877. PubMed DOI
van Wersch S, Tian L, Hoy R, Li X. Plant NLRs: the whistleblowers of plant immunity. Plant Commun. 2020;1:100016. doi: 10.1016/j.xplc.2019.100016. PubMed DOI PMC
van der Hoorn RA, Kamoun S. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell. 2008;20:2009–2017. doi: 10.1105/tpc.108.060194. PubMed DOI PMC
Mackey D, Holt BF, 3rd, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell. 2002;108:743–754. doi: 10.1016/S0092-8674(02)00661-X. PubMed DOI
Kim MG, et al. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell. 2005;121:749–759. doi: 10.1016/j.cell.2005.03.025. PubMed DOI
Hofius D, et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell. 2009;137:773–783. doi: 10.1016/j.cell.2009.02.036. PubMed DOI
Wu AJ, Andriotis VM, Durrant MC, Rathjen JP. A patch of surface-exposed residues mediates negative regulation of immune signalling by tomato Pto kinase. Plant Cell. 2004;16:2809–2821. doi: 10.1105/tpc.104.024141. PubMed DOI PMC
Mucyn TS, et al. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell. 2006;18:2792–2806. doi: 10.1105/tpc.106.044016. PubMed DOI PMC
Martin GB, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993;262:1432–1435. doi: 10.1126/science.7902614. PubMed DOI
Wang G, et al. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe. 2015;18:285–295. doi: 10.1016/j.chom.2015.08.004. PubMed DOI
Lehti-Shiu MD, Zou C, Hanada K, Shiu SH. Evolutionary history and stress regulation of plant receptor-like kinase/Pelle genes. Plant Phys. 2009;150:12–26. doi: 10.1104/pp.108.134353. PubMed DOI PMC
Mascher M, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. doi: 10.1038/nature22043. PubMed DOI
Luo MC, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature. 2017;551:498–502. doi: 10.1038/nature24486. PubMed DOI PMC
Maccaferri M, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019;51:885–895. doi: 10.1038/s41588-019-0381-3. PubMed DOI
Ouyang, S. et al The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res. 35 (Database issue), D883–D887 (2007). PubMed PMC
Beier S, et al. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. Sci. Data. 2017;4:170044. doi: 10.1038/sdata.2017.44. PubMed DOI PMC
Eilam T, et al. Genome size and genome evolution in diploid Triticeae species. Genome. 2007;50:1029–1037. doi: 10.1139/G07-083. PubMed DOI
International Barley Genome Sequencing Consortium (IBGSC A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–716. doi: 10.1038/nature11543. PubMed DOI
Ling HQ, et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature. 2018;557:424–428. doi: 10.1038/s41586-018-0108-0. PubMed DOI PMC
Marcussen T, et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science. 2014;345:1250092. doi: 10.1126/science.1250092. PubMed DOI
Miki Y, et al. Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops. DNA Res. 2019;26:171–182. doi: 10.1093/dnares/dsy047. PubMed DOI PMC
Avni, R. et al. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant J.10.1111/tpj.15664 (2022). PubMed PMC
Tsujimoto H. Gametocidal genes in wheat and its relatives. IV. Functional relationships between six gametocidal genes. Genome. 1995;38:283–289. doi: 10.1139/g95-035. PubMed DOI
Friebe B, et al. Characterization of a knock-out mutation at the Gc2 locus in wheat. Chromosoma. 2003;111:509–517. doi: 10.1007/s00412-003-0234-8. PubMed DOI
Grewal S, et al. Comparative mapping and targeted-capture sequencing of the gametocidal loci in Aegilops sharonensis. Plant Genome. 2017;10:2. doi: 10.3835/plantgenome2016.09.0090. PubMed DOI
Sánchez-Martín J, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17:221. doi: 10.1186/s13059-016-1082-1. PubMed DOI PMC
Dracatos PM, et al. The coiled-coil NLR Rph1, confers leaf rust resistance in barley cultivar Sudan. Plant Physiol. 2019;179:1362–1372. doi: 10.1104/pp.18.01052. PubMed DOI PMC
Thind AK, et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 2017;35:793–796. doi: 10.1038/nbt.3877. PubMed DOI
Xing L, et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant. 2018;4:874–878. doi: 10.1016/j.molp.2018.02.013. PubMed DOI
Wulff BBH, Dhugga KS. Wheat–the cereal abandoned by GM. Science. 2018;361:451–452. doi: 10.1126/science.aat5119. PubMed DOI
Argentina first to market with drought-resistant GM wheat. Nat. Biotechnol. 39, 652 (2021). PubMed
Crop Solutions Announces Regulatory Approval of Drought Tolerant HB4® Wheat by Brazil’s CTNBio, https://www.businesswire.com/news/home/20211111006003/en/Bioceres-Crop-Solutions-Announces-Regulatory-Approval-of-Drought-Tolerant-HB4%C2%AE-Wheat-by-Brazil%E2%80%99s-CTNBio (2021).
Stakman EC. Barberry eradication prevents black rust in Western Europe. U. S. Dep. Agriculture, Dep. Circular. 1923;269:1–15.
Yu G, Hatta A, Periyannan S, Lagudah E, Wulff BBH. Isolation of wheat genomic DNA for gene mapping and cloning. Methods Mol. Biol. 2017;1659:207–213. doi: 10.1007/978-1-4939-7249-4_18. PubMed DOI
Jupe, F. et al. The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS ONE10.1371/journal.pgen.1007819 (2019). PubMed PMC
Vrána J, et al. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–2041. doi: 10.1093/genetics/156.4.2033. PubMed DOI PMC
Kubaláková M, et al. Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics. 2005;170:823–829. doi: 10.1534/genetics.104.039180. PubMed DOI PMC
Giorgi D, et al. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS ONE. 2013;8:e57994. doi: 10.1371/journal.pone.0057994. PubMed DOI PMC
Kubaláková M, Macas J, Doležel J. Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor. Appl Genet. 1997;94:758–763. doi: 10.1007/s001220050475. DOI
Molnár I, et al. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 2016;88:452–467. doi: 10.1111/tpj.13266. PubMed DOI
Zhang Y, Zhu M-L, Dai S-L. Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars. J Sytematics. Evolution. 2013;51:335–352.
Badaeva ED, Friebe B, Gill BS. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome. 1996;39:293–306. doi: 10.1139/g96-040. PubMed DOI
Šimková H, et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics. 2008;9:294. doi: 10.1186/1471-2164-9-294. PubMed DOI PMC
Bushnell B, Rood J, Singer E. BBMerge—accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12:e0185056. doi: 10.1371/journal.pone.0185056. PubMed DOI PMC
Li H. BFC: correcting Illumina sequencing errors. Bioinformatics. 2015;31:2885–2887. doi: 10.1093/bioinformatics/btv290. PubMed DOI PMC
Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics. 2016;32:i201–i208. doi: 10.1093/bioinformatics/btw279. PubMed DOI PMC
Luo R, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1:18. doi: 10.1186/2047-217X-1-18. PubMed DOI PMC
Chapman JA, et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 2015;16:26. doi: 10.1186/s13059-015-0582-8. PubMed DOI PMC
Mascher M, et al. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J. 2013;76:494–505. doi: 10.1111/tpj.12294. PubMed DOI PMC
Muñoz-Amatriaín M, et al. An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome. 2011;4:238–249. doi: 10.3835/plantgenome2011.08.0023. DOI
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC
Li H, et al. 1000 Genome Project Data Processing Subgroup, The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Poland JA, Rife TW. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 2012;5:92–102.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Sim NL, et al. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–W457. doi: 10.1093/nar/gks539. PubMed DOI PMC
Wypij, D. In Wiley StatsRef: Statistics Reference Online (eds N. Balakrishnan et al). 10.1002/9781118445112.stat04852 (2014).
Hayta S, et al. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.) Plant Methods. 2019;15:121. doi: 10.1186/s13007-019-0503-z. PubMed DOI PMC
Bartlett JG, et al. High-throughput Agrobacterium-mediated barley transformation. Plant Methods. 2008;4:22. doi: 10.1186/1746-4811-4-22. PubMed DOI PMC
Yu, G. et al. Reference genome-assisted identification of stem rust resistance gene Sr62 encoding a tandem kinase. Zenodo, https://zenodo.org/badge/latestdoi/394326594 (2022). PubMed PMC
A single NLR gene confers resistance to leaf and stripe rust in wheat
The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase
An unusual tandem kinase fusion protein confers leaf rust resistance in wheat
Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62