Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
37963867
PubMed Central
PMC10645757
DOI
10.1038/s41467-023-42747-9
PII: 10.1038/s41467-023-42747-9
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- Basidiomycota * genetika MeSH
- haplotypy MeSH
- mapování chromozomů MeSH
- nemoci rostlin genetika MeSH
- odolnost vůči nemocem * genetika MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
Most rust resistance genes thus far isolated from wheat have a very limited number of functional alleles. Here, we report the isolation of most of the alleles at wheat stem rust resistance gene locus SR9. The seven previously reported resistance alleles (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, and Sr9h) are characterised using a synergistic strategy. Loss-of-function mutants and/or transgenic complementation are used to confirm Sr9b, two haplotypes of Sr9e (Sr9e_h1 and Sr9e_h2), Sr9g, and Sr9h. Each allele encodes a highly related nucleotide-binding site leucine-rich repeat (NB-LRR) type immune receptor, containing an unusual long LRR domain, that confers resistance to a unique spectrum of isolates of the wheat stem rust pathogen. The only SR9 protein effective against stem rust pathogen race TTKSK (Ug99), SR9H, differs from SR9B by a single amino acid. SR9B and SR9G resistance proteins are also distinguished by only a single amino acid. The SR9 allelic series found in the B subgenome are orthologs of wheat stem rust resistance gene Sr21 located in the A subgenome with around 85% identity in protein sequences. Together, our results show that functional diversification of allelic variants at the SR9 locus involves single and multiple amino acid changes that recognize isolates of wheat stem rust.
Centre for Desert Agriculture KAUST Thuwal 23955 6900 Saudi Arabia
CSIRO Agriculture and Food Canberra ACT 2601 Australia
Department of Plant Pathology University of Minnesota St Paul MN 55108 USA
Department of Plant Sciences University of California Davis CA 95616 USA
Howard Hughes Medical Institute Chevy Chase MD 20815 USA
Zobrazit více v PubMed
Carleton MA. Lessons from the grain rust epidemic of 1904. USDA Farmers Bull. 1905;219:1–24.
Stakman EC. Progress and problems in plant pathology. Ann. Appl. Biol. 1955;42:22–33. doi: 10.1111/j.1744-7348.1955.tb02407.x. DOI
Waldron, L. R. Stem Rust Epidemics and Wheat Breeding (Agricultural Experiment Station, North Dakota Agricultural College, 1935).
Evans LT. Responses to challenge: William Farrer and the making of wheat. J. Aust. Inst. Agric. Sci. 1980;46:3–13.
Ayliffe, M., Luo, M., Faris, J. & Lagudah, E. Disease resistance. In Wheat Improvement: Food Security in a Changing Climate (eds. Reynolds, M. P. & Braun, H.-J.), 341–360 (Springer, 2022).
Zhang W, et al. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl Acad. Sci. USA. 2017;114:E9483–E9492. doi: 10.1073/pnas.1706277114. PubMed DOI PMC
Chen S, Zhang W, Bolus S, Rouse MN, Dubcovsky J. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLoS Genet. 2018;14:e1007287. doi: 10.1371/journal.pgen.1007287. PubMed DOI PMC
Periyannan S, et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science. 2013;341:786–788. doi: 10.1126/science.1239028. PubMed DOI
Saintenac C, et al. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science. 2013;341:783–786. doi: 10.1126/science.1239022. PubMed DOI PMC
Mago R, et al. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat. Plants. 2015;1:15186. doi: 10.1038/nplants.2015.186. PubMed DOI
Moore JW, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 2015;47:1494–1498. doi: 10.1038/ng.3439. PubMed DOI
Krattinger SG, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323:1360–1363. doi: 10.1126/science.1166453. PubMed DOI
Chen S, et al. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. N. Phytol. 2020;225:948–959. doi: 10.1111/nph.16169. PubMed DOI
Steuernagel B, et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 2016;34:652–655. doi: 10.1038/nbt.3543. PubMed DOI
Zhang J, et al. A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat. Commun. 2021;12:3378. doi: 10.1038/s41467-021-23738-0. PubMed DOI PMC
Upadhyaya NM, et al. Genomics accelerated isolation of a new stem rust avirulence gene-wheat resistance gene pair. Nat. Plants. 2021;7:1220–1228. doi: 10.1038/s41477-021-00971-5. PubMed DOI
Arora S, et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 2019;37:139–143. doi: 10.1038/s41587-018-0007-9. PubMed DOI
Yu G, et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 2022;13:1607. doi: 10.1038/s41467-022-29132-8. PubMed DOI PMC
Yu G, et al. The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase. Nat. Genet. 2023;55:921–926. doi: 10.1038/s41588-023-01402-1. PubMed DOI PMC
Wang JJ, et al. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science. 2019;364:eaav5870. doi: 10.1126/science.aav5870. PubMed DOI
Wang J, et al. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science. 2019;364:eaav5868. doi: 10.1126/science.aav5868. PubMed DOI
Ma S, et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science. 2020;370:eabe3069. doi: 10.1126/science.abe3069. PubMed DOI
Martin R, et al. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science. 2020;370:eabd9993. doi: 10.1126/science.abd9993. PubMed DOI PMC
Forderer A, et al. A wheat resistosome defines common principles of immune receptor channels. Nature. 2022;610:532–539. doi: 10.1038/s41586-022-05231-w. PubMed DOI PMC
Zhao Y-B, et al. Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism. Sci. Adv. 2022;8:eabq5108. doi: 10.1126/sciadv.abq5108. PubMed DOI PMC
Bi G, et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell. 2021;184:3528–3541. doi: 10.1016/j.cell.2021.05.003. PubMed DOI
Salcedo A, et al. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science. 2017;358:1604–1606. doi: 10.1126/science.aao7294. PubMed DOI PMC
Knott DR, Anderson RG. The inheritance of rust resistance. I. The inheritance of stem rust resistance in ten varieties of common wheat. Can. J. Agric. Sci. 1956;36:174–195.
Green GJ, Knott DR, Watson IA, Pugsley AT. Seedling reactions to stem rust of lines of Marquis wheat with substituted genes for rust resistance. Can. J. Plant Sci. 1960;40:524–538. doi: 10.4141/cjps60-069. DOI
Rouse MN, et al. Characterization of Sr9h, a wheat stem rust resistance allele effective to Ug99. Theor. Appl. Genet. 2014;127:1681–1688. doi: 10.1007/s00122-014-2330-y. PubMed DOI
Flor HH. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971;9:275–296. doi: 10.1146/annurev.py.09.090171.001423. DOI
Sears ER. The aneuploids of common wheat. Mo. Agric. Exp. Stn. Bull. 1954;572:3–58.
Knott, D. R. The Wheat Rusts-Breeding for Resistance (Springer-Verlag, 1989).
Athwal DS, Watson IA. Inheritance and the genetic relationship of resistance possessed by two Kenya wheats of races of Puccinia graminis tritici. Proc. Linn. Soc. NSW. 1954;79:1–14.
Allard R, Shands R. Inheritance of resistance to stem rust and powdery mildew in cytologically stable spring wheats derived from Triticum timopheevi. Phytopathology. 1954;44:266–274.
Smith GS. Inheritance of stem rust reaction in tetraploid wheat hybrids I. Allelic genes in Mindum durum and Vernal emmer. Agron. J. 1957;49:134–137. doi: 10.2134/agronj1957.00021962004900030007x. DOI
Kenaschuk EO, Andeson RG, Knott DR. The inheritance of stem rust resistance to race 15B of stem rust in ten varieties of durum wheat. Can. J. Plant Sci. 1959;39:316–328. doi: 10.4141/cjps59-044. DOI
Watson IA, Luig NH. Leaf rust in wheat in Australia: a systemic scheme for the classification of strains. Proc. Linn. Soc. NSW. 1961;86:241–250.
McIntosh, R. A. & Luig, N. H. Recombination between genes for reaction to P. graminis at or near the Sr9 locus. In Proceedings of the 4th International Wheat Genetics Symposium (eds. Sears, E. R. & Sears, L. M.) 425–432 (Agricultural Experiment Station, University of Missouri, 1973).
Li H, et al. Mapping and characterization of a wheat stem rust resistance gene in durum wheat “Kronos”. Front. Plant Sci. 2021;12:751398. doi: 10.3389/fpls.2021.751398. PubMed DOI PMC
Loegering WQ. An allele for low reaction to Puccinia graminis tritici in Chinese Spring wheat. Phytopathology. 1975;65:925. doi: 10.1094/Phyto-65-925. DOI
Wessels E, et al. Mapping a resistance gene to Puccinia graminis f. sp. tritici in the bread wheat cultivar ‘Matlabas’. Plant Dis. 2019;103:2337–2344. doi: 10.1094/PDIS-10-18-1731-RE. PubMed DOI
McIntosh, R. A., Wellings, C. R. & Park, R. F. Wheat Rusts: An Atlas of Resistance Genes (CSIRO Australia, 1995).
He Z, Xia X, Chen W. Breeding for resistance to new race Ug99 of stem rust pathogen. J. Triticeae Crop. 2008;28:170–173.
Srichumpa P, Brunner S, Keller B, Yahiaoui N. Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 2005;139:885–895. doi: 10.1104/pp.105.062406. PubMed DOI PMC
Smith SM, Pryor AJ, Hulbert SH. Allelic and haplotypic diversity at the Rp1 rust resistance locus of maize. Genetics. 2004;167:1939–1947. doi: 10.1534/genetics.104.029371. PubMed DOI PMC
Ellis JG, Dodds PN, Lawrence GJ. Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu. Rev. Phytopathol. 2007;45:289–306. doi: 10.1146/annurev.phyto.45.062806.094331. PubMed DOI
Michelmore RW, Meyers BC. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998;8:1113–1130. doi: 10.1101/gr.8.11.1113. PubMed DOI
Rose LE, et al. The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics. 2004;166:1517–1527. doi: 10.1534/genetics.166.3.1517. PubMed DOI PMC
Bhullar NK, et al. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc. Natl Acad. Sci. USA. 2009;106:9519–9524. doi: 10.1073/pnas.0904152106. PubMed DOI PMC
Kanzaki H, et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 2012;72:894–907. doi: 10.1111/j.1365-313X.2012.05110.x. PubMed DOI
Bourras S, et al. Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew. Plant Cell. 2015;27:2991–3012. PubMed PMC
Knott, D. R. The inheritance of stem rust resistance in wheat. In Proceedings of 2nd International Wheat Genetics Symposium (ed. MacKey, J.) 156–166 (Genetics Institute, University of Lund, 1966).
Hiebert CW, et al. Genetics and mapping of stem rust resistance to Ug99 in the wheat cultivar Webster. Theor. Appl. Genet. 2010;121:65–69. doi: 10.1007/s00122-010-1291-z. PubMed DOI
Zhang JP, Zhang P, Dodds P, Lagudah E. How Target-sequence Enrichment and Sequencing (TEnSeq) pipelines have catalyzed resistance gene cloning in the wheat-rust pathosystem. Front. Plant Sci. 2020;11:678. doi: 10.3389/fpls.2020.00678. PubMed DOI PMC
Loegering WQ, Harmon DL. Wheat lines near-isogenic for reaction to Puccinia graminis tritici. Phytopathology. 1969;59:456–459.
Roelfs AP, McVey DV. Low infection types produced by Puccinia graminis f. sp. tritici and wheat lines with designated genes for resistance. Phytopathology. 1979;69:722–730. doi: 10.1094/Phyto-69-722. DOI
Singh RP, Bechere E, Abdalla O. Genetic analysis of resistance to stem rust in ten durum wheats. Phytopathology. 1992;82:919–922. doi: 10.1094/Phyto-82-919. DOI
Sharma JS, et al. Characterization of synthetic wheat line Largo for resistance to stem rust. G3 Genes Genomes Genet. 2021;11:jkab193. doi: 10.1093/g3journal/jkab193. PubMed DOI PMC
Saini J, et al. Identification, mapping, and marker development of stem rust resistance genes in durum wheat ‘Lebsock’. Mol. Breed. 2018;38:1–14. doi: 10.1007/s11032-018-0833-y. DOI
Olivera PD, et al. Races of Puccinia graminis f. sp tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia. Plant Dis. 2012;96:623–628. doi: 10.1094/PDIS-09-11-0793. PubMed DOI
Singh D, Park RF, McIntosh RA, Bariana HS. Characterisation of stem rust and stripe rust seedling resistance genes in selected wheat cultivars from the United Kingdom. J. Plant Pathol. 2008;90:553–562.
Casey LW, et al. The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proc. Natl Acad. Sci. USA. 2016;45:1876–1890. PubMed PMC
Gill BK, et al. Function and evolution of allelic variations of Sr13 conferring resistance to stem rust in tetraploid wheat (Triticum turgidum L.) Plant J. 2021;106:1674–1691. doi: 10.1111/tpj.15263. PubMed DOI PMC
Marchal C, et al. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat. Plants. 2018;4:662–668. doi: 10.1038/s41477-018-0236-4. PubMed DOI
Chen CH, et al. BED domain-containing NLR from wild barley confers resistance to leaf rust. Plant Biotechnol. J. 2021;19:1206–1215. doi: 10.1111/pbi.13542. PubMed DOI PMC
Marchal C, Wheat Genome Project. Haberer G, Spannagl M, Uauy C. Comparative genomics and functional studies of wheat BED-NLR Loci. Genes. 2020;11:1406. doi: 10.3390/genes11121406. PubMed DOI PMC
Chen J, et al. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science. 2017;358:1607–1610. doi: 10.1126/science.aao4810. PubMed DOI
Zhang J, et al. A strategy for identifying markers linked with stem rust resistance in wheat harbouring an alien chromosome introgression from a non-sequenced genome. Theor. Appl. Genet. 2019;132:125–135. doi: 10.1007/s00122-018-3201-8. PubMed DOI
Yu G, Hatta A, Periyannan S, Lagudah E, Wulff BBH. Isolation of wheat genomic DNA for gene mapping and cloning. Methods Mol. Biol. 2017;1659:207–213. doi: 10.1007/978-1-4939-7249-4_18. PubMed DOI
Krasileva KV, et al. Uncovering hidden variation in polyploid wheat. Proc. Natl Acad. Sci. USA. 2017;114:E913–E921. doi: 10.1073/pnas.1619268114. PubMed DOI PMC
Steuernagel B, Witek K, Jones JDG, Wulff BBH. MutRenSeq: a method for rapid cloning of plant disease resistance genes. Methods Mol. Biol. 2017;1659:215–229. doi: 10.1007/978-1-4939-7249-4_19. PubMed DOI
Ishida Y, Tsunashima M, Hiei Y, Komari T. Wheat (Triticum aestivum L.) transformation using immature embryos. Agrobacterium Protoc. 2015;1223:189–198. doi: 10.1007/978-1-4939-1695-5_15. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Pearce S, Vanzetti LS, Dubcovsky J. Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1. Plant Physiol. 2013;163:1433–1445. doi: 10.1104/pp.113.225854. PubMed DOI PMC
Rouse MN, Wanyera R, Njau P, Jin Y. Sources of resistance to stem rust race Ug99 in spring wheat germplasm. Plant Dis. 2011;95:762–766. doi: 10.1094/PDIS-12-10-0940. PubMed DOI
Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013;30:1229–1235. doi: 10.1093/molbev/mst012. PubMed DOI
Walkowiak S, et al. Multiple wheat genomes reveal global variation in modern breeding. Nature. 2020;588:277–283. doi: 10.1038/s41586-020-2961-x. PubMed DOI PMC
Danecek P, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC
Steuernagel B, et al. The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 2020;183:468–482. doi: 10.1104/pp.19.01273. PubMed DOI PMC
Ludwiczak J, Winski A, Szczepaniak K, Alva V, Dunin-Horkawicz S. DeepCoil—a fast and accurate prediction of coiled-coil domains in protein sequences. Bioinformatics. 2019;35:2790–2795. doi: 10.1093/bioinformatics/bty1062. PubMed DOI
Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC