Discovery of functional NLRs using expression level, high-throughput transformation and large-scale phenotyping
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BBS/E/J/000PR9795
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
CRIS #5062-21220-025-000D
United States Department of Agriculture | Agricultural Research Service (USDA Agricultural Research Service)
ARS 0500-00093-001-00-D
United States Department of Agriculture | Agricultural Research Service (USDA Agricultural Research Service)
PubMed
40987916
PubMed Central
PMC12537499
DOI
10.1038/s41477-025-02110-w
PII: 10.1038/s41477-025-02110-w
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- geneticky modifikované rostliny genetika MeSH
- nemoci rostlin * mikrobiologie imunologie genetika MeSH
- NLR proteiny * genetika metabolismus MeSH
- odolnost vůči nemocem * genetika MeSH
- pšenice * genetika mikrobiologie imunologie MeSH
- Puccinia fyziologie MeSH
- rostlinné proteiny * genetika metabolismus MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- NLR proteiny * MeSH
- rostlinné proteiny * MeSH
Protecting crops from diseases is vital for the sustainable agricultural systems that are needed for food security. Introducing functional resistance genes to enhance the plant immune system is highly effective for disease resistance, but identifying new immune receptors is resource intensive. We observed that functional immune receptors of the nucleotide-binding domain leucine-rich repeat (NLR) class show a signature of high expression in uninfected plants across both monocot and dicot species. Here, by exploiting this signature combined with high-throughput transformation, we generated a wheat transgenic array of 995 NLRs from diverse grass species to identify new resistance genes for wheat. Confirming this proof of concept, we identified new resistance genes against the stem rust pathogen Puccinia graminis f. sp. tritici and the leaf rust pathogen Puccinia triticina, both major threats to wheat production. This pipeline facilitates the rapid identification of candidate NLRs and provides in planta gene validation of resistance. The accelerated discovery of new NLRs from a large gene pool of diverse and non-domesticated plant species will enhance the development of disease-resistant crops.
Agri Bio Research Center Kaneka Corporation Iwata Shizuoka Japan
Department of Integrated Plant Protection Kroměříž Czech Republic
Department of Plant Pathology University of Minnesota St Paul MN USA
Gatsby Charitable Foundation London UK
Plant Innovation Center Japan Tobacco Inc Iwata Japan
The Sainsbury Laboratory University of East Anglia Norwich UK
USDA ARS Cereal Disease Laboratory University of Minnesota St Paul MN USA
Zobrazit více v PubMed
Savary, S. et al. The global burden of pathogens and pests on major food crops. PubMed DOI
Ristaino, J. B. et al. The persistent threat of emerging plant disease pandemics to global food security. PubMed DOI PMC
Bebber, D. P. Range-expanding pests and pathogens in a warming world. PubMed DOI
Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. PubMed DOI PMC
Shaw, M. W. & Osborne, T. M. Geographic distribution of plant pathogens in response to climate change. DOI
Kettles, G. J. & Luna, E. Food security in 2044: how do we control the fungal threat? PubMed DOI
Hovmøller, M. S., Thach, T. & Justesen, A. F. Global dispersal and diversity of rust fungi in the context of plant health. PubMed DOI
Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant–pathogen interactions. PubMed DOI
Luo, M. et al. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. PubMed DOI
van Esse, H. P., Reuber, T. L. & van der Does, D. Genetic modification to improve disease resistance in crops. PubMed DOI PMC
Hafeez, A. N. et al. Creation and judicious application of a wheat resistance gene atlas. PubMed DOI
Wulff, B. B. & Krattinger, S. G. The long road to engineering durable disease resistance in wheat. PubMed DOI
Schulze-Lefert, P. & Panstruga, R. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. PubMed DOI
Panstruga, R. & Moscou, M. J. What is the molecular basis of nonhost resistance? PubMed DOI
Bevan, M. W. et al. Genomic innovation for crop improvement. PubMed DOI
Mascher, M. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. PubMed DOI
Van Der Biezen, E. A. & Jones, J. D. Plant disease-resistance proteins and the gene-for-gene concept. PubMed DOI
Cesari, S., Bernoux, M., Moncuquet, P., Kroj, T. & Dodds, P. N. A novel conserved mechanism for plant NLR protein pairs: the ‘integrated decoy’ hypothesis. PubMed DOI PMC
Saur, I. M., Panstruga, R. & Schulze-Lefert, P. NOD-like receptor-mediated plant immunity: from structure to cell death. PubMed DOI
Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M. & Bergelson, J. Fitness costs of R-gene-mediated resistance in PubMed DOI
Xiao, S., Brown, S., Patrick, E., Brearley, C. & Turner, J. G. Enhanced transcription of the PubMed DOI PMC
Palma, K. et al. Autoimmunity in PubMed DOI PMC
Deng, Y. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. PubMed DOI
Lai, Y. & Eulgem, T. Transcript-level expression control of plant NLR genes. PubMed DOI PMC
Brown, J. K. M. Yield penalties of disease resistance in crops. PubMed DOI
Brown, J. K. M. & Rant, J. C. Fitness costs and trade-offs of disease resistance and their consequences for breeding arable crops. DOI
Richard, M. M. S., Gratias, A., Meyers, B. C. & Geffroy, V. Molecular mechanisms that limit the costs of NLR-mediated resistance in plants. PubMed DOI PMC
Bergelson, J. & Purrington, C. B. Surveying patterns in the cost of resistance in plants. DOI
Tan, X. et al. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in PubMed DOI PMC
Balint‐Kurti, P. The plant hypersensitive response: concepts, control and consequences. PubMed DOI PMC
Karasov, T. L., Chae, E., Herman, J. J. & Bergelson, J. Mechanisms to mitigate the trade-off between growth and defense. PubMed DOI PMC
Stokes, T. L., Kunkel, B. N. & Richards, E. J. Epigenetic variation in PubMed DOI PMC
Howles, P. et al. Autoactive alleles of the flax PubMed DOI
Hatta, M. A. M. et al. The wheat PubMed DOI PMC
Brabham, H. J. et al. Barley MLA3 recognizes the host-specificity effector Pwl2 from PubMed DOI PMC
Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. PubMed DOI
Chen, S., Zhang, W., Bolus, S., Rouse, M. N. & Dubcovsky, J. Identification and characterization of wheat stem rust resistance gene PubMed DOI PMC
Mago, R. et al. The wheat PubMed DOI
Periyannan, S. et al. The gene PubMed DOI
Saintenac, C. et al. Identification of wheat gene PubMed DOI PMC
Zhang, J. et al. A recombined PubMed DOI PMC
Zhang, W. et al. Identification and characterization of PubMed DOI PMC
Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. PubMed DOI
Luo, J. et al. Identification and characterization of PubMed DOI PMC
Zhang, J. et al. Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus PubMed DOI PMC
Upadhyaya, N. M. et al. Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair. PubMed DOI
Cloutier, S. et al. Leaf rust resistance gene PubMed DOI
Feuillet, C. et al. Map-based isolation of the leaf rust disease resistance gene PubMed DOI PMC
Hewitt, T. et al. Wheat leaf rust resistance gene PubMed DOI
Lin, G. et al. Cloning of the broadly effective wheat leaf rust resistance gene PubMed DOI PMC
Mapuranga, J. et al. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. PubMed PMC
Sharma, D. et al. A single NLR gene confers resistance to leaf and stripe rust in wheat. PubMed DOI PMC
Thind, A. K. et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. PubMed DOI
Yan, X. et al. High-temperature wheat leaf rust resistance gene PubMed DOI
Huang, L. et al. Evolution of new disease specificity at a simple resistance locus in a crop–weed complex: reconstitution of the PubMed DOI PMC
Ishida, Y., Tsunashima, M., Hiei, Y. & Komari, T. Wheat ( PubMed DOI
Bettgenhaeuser, J. et al. The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. PubMed DOI PMC
Kawashima, C. G. et al. A pigeonpea gene confers resistance to Asian soybean rust in soybean. PubMed DOI
Witek, K. et al. A complex resistance locus in PubMed DOI PMC
Wu, C. H. et al. NLR network mediates immunity to diverse plant pathogens. PubMed DOI PMC
Adachi, H. & Kamoun, S. NLR receptor networks in plants. PubMed DOI
Zhang, X.-C. & Gassmann, W. RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. PubMed DOI PMC
Dinesh-Kumar, S. P. & Baker, B. J. Alternatively spliced PubMed DOI PMC
Tang, F., Yang, S., Gao, M. & Zhu, H. Alternative splicing is required for RCT1-mediated disease resistance in PubMed DOI
Cesari, S. et al. The rice resistance protein pair RGA4/RGA5 recognizes the PubMed DOI PMC
Periyannan, S. et al. Identification of a robust molecular marker for the detection of the stem rust resistance gene PubMed DOI
Bailey, P. C. et al. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. PubMed DOI PMC
Cesari, S. et al. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. PubMed DOI PMC
Wang, X. et al. The PubMed DOI
Rouse, M. N., Olson, E. L., Gill, B. S., Pumphrey, M. O. & Jin, Y. Stem rust resistance in DOI
Maekawa, T. et al. Subfamily-specific specialization of RGH1/MLA immune receptors in wild barley. PubMed DOI
Förderer, A. et al. A wheat resistosome defines common principles of immune receptor channels. PubMed DOI PMC
Saur, I. M. et al. Multiple pairs of allelic MLA immune receptor–powdery mildew AVRA effectors argue for a direct recognition mechanism. PubMed PMC
Contreras, M. P. et al. Resurrection of plant disease resistance proteins via helper NLR bioengineering. PubMed DOI PMC
Li, X., Clarke, J. D., Zhang, Y. & Dong, X. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. PubMed DOI
Oldroyd, G. E. D. & Staskawicz, B. J. Genetically engineered broad-spectrum disease resistance in tomato. PubMed DOI PMC
Yang, S. et al. Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease. PubMed DOI PMC
Yi, H. & Richards, E. J. A cluster of disease resistance genes in PubMed DOI PMC
Yi, H. & Richards, E. J. Phenotypic instability of PubMed DOI PMC
Halterman, D. A., Wei, F. & Wise, R. P. Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. PubMed DOI PMC
Guo, H., Wang, S. & Jones, J. D. Autoactive PubMed DOI PMC
Shirano, Y., Kachroo, P., Shah, J. & Klessig, D. F. A gain-of-function mutation in an PubMed DOI PMC
Yang, X.-M. et al. Broad-spectrum resistance gene PubMed DOI PMC
Borrill, P. et al. An autoactive NB-LRR gene causes PubMed PMC
Tong, M. et al. E3 ligase SAUL1 serves as a positive regulator of PAMP-triggered immunity and its homeostasis is monitored by immune receptor SOC3. PubMed DOI
Lorang, J. et al. Tricking the guard: exploiting plant defense for disease susceptibility. PubMed DOI PMC
Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. PubMed DOI
Ma, S. et al. Oligomerization-mediated autoinhibition and cofactor binding of a plant NLR. PubMed DOI PMC
Wang, J. et al. Reconstitution and structure of a plant NLR resistosome conferring immunity. PubMed DOI
Komori, T. et al. High-throughput phenotypic screening of random genomic fragments in transgenic rice identified novel drought tolerance genes. PubMed DOI
Moseman, J. G. Isogenic barley lines for reaction to DOI
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. PubMed PMC
Mapleson, D. et al. KAT: a K-mer Analysis Toolkit to quality control NGS datasets and genome assemblies. PubMed PMC
R Core Team
Wickham, H.
Halterman, D., Zhou, F., Wei, F., Wise, R. P. & Schulze-Lefert, P. The MLA6 coiled-coil, NBS-LRR protein confers PubMed DOI
Gibson, D. G. Programming biological operating systems: genome design, assembly and activation. PubMed DOI
Hensel, G., Kastner, C., Oleszczuk, S., Riechen, J. & Kumlehn, J. PubMed PMC
Yeo, F. K. et al. Golden SusPtrit: a genetically well transformable barley line for studies on the resistance to rust fungi. PubMed DOI
Bartlett, J. G., Alves, S. C., Smedley, M., Snape, J. W. & Harwood, W. A. High-throughput PubMed DOI PMC
Close, T. J. et al. Development and implementation of high-throughput SNP genotyping in barley. PubMed DOI PMC
Dreiseitl, A. A novel resistance against powdery mildew found in winter barley cultivars. DOI
Kølster, P., Munk, L., Stølen, O. & Løhde, J. Near-isogenic barley lines with genes for resistance to powdery mildew. DOI
Kølster, P. & Stølen, O. Barley isolines with genes for resistance to DOI
Dreiseitl, A. Postulation of specific disease resistance genes in cereals: a widely used method and its detailed description. PubMed DOI PMC
Torp, J., Jensen, H. P. & Jørgensen, J. H. Powdery mildew resistance genes in 106 northwest European spring barley cultivars.
Andrews, S. FastQC.
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. PubMed PMC
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. PubMed DOI
Camacho, C. et al. BLAST+: architecture and applications. PubMed PMC
Witek, K. et al. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. PubMed DOI
Foster, S. J. et al. PubMed DOI
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. PubMed PMC
Posit Team
Haas, B. J. TransDecoder.
Jones, P. et al. InterProScan 5: genome-scale protein function classification. PubMed DOI PMC
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. PubMed PMC
Afrasiabi, C., Samad, B., Dineen, D., Meacham, C. & Sjölander, K. The PhyloFacts FAT-CAT web server: ortholog identification and function prediction using fast approximate tree classification. PubMed DOI PMC
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. PubMed
Huang, L. et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. PubMed PMC
Liu, W. et al. The stripe rust resistance gene PubMed DOI
Srichumpa, P., Brunner, S., Keller, B. & Yahiaoui, N. Allelic series of four powdery mildew resistance genes at the PubMed DOI PMC
Yahiaoui, N., Srichumpa, P., Dudler, R. & Keller, B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene PubMed DOI
Halterman, D. A. & Wise, R. P. A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. PubMed DOI
Yarbrough, D., Wachter, R. M., Kallio, K., Matz, M. V. & Remington, S. J. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. PubMed DOI PMC
Huang, S., Steffenson, B. J., Sela, H. & Stinebaugh, K. Resistance of PubMed DOI
Scott, J. C., Manisterski, J., Sela, H., Ben-Yehuda, P. & Steffenson, B. J. Resistance of PubMed DOI
Roelfs, A. P. & Martens, J. An international system of nomenclature for DOI
Stakman, E. C., Stewart, D. & Loegering, W. Q.
Zhang, D., Bowden, R. L., Yu, J., Carver, B. F. & Bai, G. Association analysis of stem rust resistance in U.S. winter wheat. PubMed DOI PMC
Kolmer, J. Leaf rust of wheat: pathogen biology, variation and host resistance. DOI
Zadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. DOI
Peterson, R., Campbell, A. & Hannah, A. A diagrammatic scale for estimating rust severity on leaves and stem of cereals.
Mascher, M. et al. Long-read sequence assembly: a technical evaluation in barley. PubMed DOI PMC
Zhu, T. et al. Optical maps refine the bread wheat PubMed DOI PMC
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. PubMed PMC
Tegenfeldt F. et al. OrthoDB and BUSCO update: annotation of orthologs with wider sampling of genomes. PubMed PMC
Löytynoja, A. Phylogeny-aware alignment with PRANK. PubMed
Moscou, M. & Brabham, H. Source data for Brabham et al. 2024 bioRxiv.
Kourelis, J., Sakai, T., Adachi, H. & Kamoun, S. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PubMed DOI PMC