Discovery of functional NLRs using expression level, high-throughput transformation and large-scale phenotyping

. 2025 Oct ; 11 (10) : 2100-2114. [epub] 20250923

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40987916

Grantová podpora
BBS/E/J/000PR9795 RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
CRIS #5062-21220-025-000D United States Department of Agriculture | Agricultural Research Service (USDA Agricultural Research Service)
ARS 0500-00093-001-00-D United States Department of Agriculture | Agricultural Research Service (USDA Agricultural Research Service)

Odkazy

PubMed 40987916
PubMed Central PMC12537499
DOI 10.1038/s41477-025-02110-w
PII: 10.1038/s41477-025-02110-w
Knihovny.cz E-zdroje

Protecting crops from diseases is vital for the sustainable agricultural systems that are needed for food security. Introducing functional resistance genes to enhance the plant immune system is highly effective for disease resistance, but identifying new immune receptors is resource intensive. We observed that functional immune receptors of the nucleotide-binding domain leucine-rich repeat (NLR) class show a signature of high expression in uninfected plants across both monocot and dicot species. Here, by exploiting this signature combined with high-throughput transformation, we generated a wheat transgenic array of 995 NLRs from diverse grass species to identify new resistance genes for wheat. Confirming this proof of concept, we identified new resistance genes against the stem rust pathogen Puccinia graminis f. sp. tritici and the leaf rust pathogen Puccinia triticina, both major threats to wheat production. This pipeline facilitates the rapid identification of candidate NLRs and provides in planta gene validation of resistance. The accelerated discovery of new NLRs from a large gene pool of diverse and non-domesticated plant species will enhance the development of disease-resistant crops.

Zobrazit více v PubMed

Savary, S. et al. The global burden of pathogens and pests on major food crops. PubMed DOI

Ristaino, J. B. et al. The persistent threat of emerging plant disease pandemics to global food security. PubMed DOI PMC

Bebber, D. P. Range-expanding pests and pathogens in a warming world. PubMed DOI

Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. PubMed DOI PMC

Shaw, M. W. & Osborne, T. M. Geographic distribution of plant pathogens in response to climate change. DOI

Kettles, G. J. & Luna, E. Food security in 2044: how do we control the fungal threat? PubMed DOI

Hovmøller, M. S., Thach, T. & Justesen, A. F. Global dispersal and diversity of rust fungi in the context of plant health. PubMed DOI

Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant–pathogen interactions. PubMed DOI

Luo, M. et al. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. PubMed DOI

van Esse, H. P., Reuber, T. L. & van der Does, D. Genetic modification to improve disease resistance in crops. PubMed DOI PMC

Hafeez, A. N. et al. Creation and judicious application of a wheat resistance gene atlas. PubMed DOI

Wulff, B. B. & Krattinger, S. G. The long road to engineering durable disease resistance in wheat. PubMed DOI

Schulze-Lefert, P. & Panstruga, R. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. PubMed DOI

Panstruga, R. & Moscou, M. J. What is the molecular basis of nonhost resistance? PubMed DOI

Bevan, M. W. et al. Genomic innovation for crop improvement. PubMed DOI

Mascher, M. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. PubMed DOI

Van Der Biezen, E. A. & Jones, J. D. Plant disease-resistance proteins and the gene-for-gene concept. PubMed DOI

Cesari, S., Bernoux, M., Moncuquet, P., Kroj, T. & Dodds, P. N. A novel conserved mechanism for plant NLR protein pairs: the ‘integrated decoy’ hypothesis. PubMed DOI PMC

Saur, I. M., Panstruga, R. & Schulze-Lefert, P. NOD-like receptor-mediated plant immunity: from structure to cell death. PubMed DOI

Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M. & Bergelson, J. Fitness costs of R-gene-mediated resistance in PubMed DOI

Xiao, S., Brown, S., Patrick, E., Brearley, C. & Turner, J. G. Enhanced transcription of the PubMed DOI PMC

Palma, K. et al. Autoimmunity in PubMed DOI PMC

Deng, Y. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. PubMed DOI

Lai, Y. & Eulgem, T. Transcript-level expression control of plant NLR genes. PubMed DOI PMC

Brown, J. K. M. Yield penalties of disease resistance in crops. PubMed DOI

Brown, J. K. M. & Rant, J. C. Fitness costs and trade-offs of disease resistance and their consequences for breeding arable crops. DOI

Richard, M. M. S., Gratias, A., Meyers, B. C. & Geffroy, V. Molecular mechanisms that limit the costs of NLR-mediated resistance in plants. PubMed DOI PMC

Bergelson, J. & Purrington, C. B. Surveying patterns in the cost of resistance in plants. DOI

Tan, X. et al. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in PubMed DOI PMC

Balint‐Kurti, P. The plant hypersensitive response: concepts, control and consequences. PubMed DOI PMC

Karasov, T. L., Chae, E., Herman, J. J. & Bergelson, J. Mechanisms to mitigate the trade-off between growth and defense. PubMed DOI PMC

Stokes, T. L., Kunkel, B. N. & Richards, E. J. Epigenetic variation in PubMed DOI PMC

Howles, P. et al. Autoactive alleles of the flax PubMed DOI

Hatta, M. A. M. et al. The wheat PubMed DOI PMC

Brabham, H. J. et al. Barley MLA3 recognizes the host-specificity effector Pwl2 from PubMed DOI PMC

Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. PubMed DOI

Chen, S., Zhang, W., Bolus, S., Rouse, M. N. & Dubcovsky, J. Identification and characterization of wheat stem rust resistance gene PubMed DOI PMC

Mago, R. et al. The wheat PubMed DOI

Periyannan, S. et al. The gene PubMed DOI

Saintenac, C. et al. Identification of wheat gene PubMed DOI PMC

Zhang, J. et al. A recombined PubMed DOI PMC

Zhang, W. et al. Identification and characterization of PubMed DOI PMC

Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. PubMed DOI

Luo, J. et al. Identification and characterization of PubMed DOI PMC

Zhang, J. et al. Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus PubMed DOI PMC

Upadhyaya, N. M. et al. Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair. PubMed DOI

Cloutier, S. et al. Leaf rust resistance gene PubMed DOI

Feuillet, C. et al. Map-based isolation of the leaf rust disease resistance gene PubMed DOI PMC

Hewitt, T. et al. Wheat leaf rust resistance gene PubMed DOI

Lin, G. et al. Cloning of the broadly effective wheat leaf rust resistance gene PubMed DOI PMC

Mapuranga, J. et al. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. PubMed PMC

Sharma, D. et al. A single NLR gene confers resistance to leaf and stripe rust in wheat. PubMed DOI PMC

Thind, A. K. et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. PubMed DOI

Yan, X. et al. High-temperature wheat leaf rust resistance gene PubMed DOI

Huang, L. et al. Evolution of new disease specificity at a simple resistance locus in a crop–weed complex: reconstitution of the PubMed DOI PMC

Ishida, Y., Tsunashima, M., Hiei, Y. & Komari, T. Wheat ( PubMed DOI

Bettgenhaeuser, J. et al. The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. PubMed DOI PMC

Kawashima, C. G. et al. A pigeonpea gene confers resistance to Asian soybean rust in soybean. PubMed DOI

Witek, K. et al. A complex resistance locus in PubMed DOI PMC

Wu, C. H. et al. NLR network mediates immunity to diverse plant pathogens. PubMed DOI PMC

Adachi, H. & Kamoun, S. NLR receptor networks in plants. PubMed DOI

Zhang, X.-C. & Gassmann, W. RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. PubMed DOI PMC

Dinesh-Kumar, S. P. & Baker, B. J. Alternatively spliced PubMed DOI PMC

Tang, F., Yang, S., Gao, M. & Zhu, H. Alternative splicing is required for RCT1-mediated disease resistance in PubMed DOI

Cesari, S. et al. The rice resistance protein pair RGA4/RGA5 recognizes the PubMed DOI PMC

Periyannan, S. et al. Identification of a robust molecular marker for the detection of the stem rust resistance gene PubMed DOI

Bailey, P. C. et al. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. PubMed DOI PMC

Cesari, S. et al. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. PubMed DOI PMC

Wang, X. et al. The PubMed DOI

Rouse, M. N., Olson, E. L., Gill, B. S., Pumphrey, M. O. & Jin, Y. Stem rust resistance in DOI

Maekawa, T. et al. Subfamily-specific specialization of RGH1/MLA immune receptors in wild barley. PubMed DOI

Förderer, A. et al. A wheat resistosome defines common principles of immune receptor channels. PubMed DOI PMC

Saur, I. M. et al. Multiple pairs of allelic MLA immune receptor–powdery mildew AVRA effectors argue for a direct recognition mechanism. PubMed PMC

Contreras, M. P. et al. Resurrection of plant disease resistance proteins via helper NLR bioengineering. PubMed DOI PMC

Li, X., Clarke, J. D., Zhang, Y. & Dong, X. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. PubMed DOI

Oldroyd, G. E. D. & Staskawicz, B. J. Genetically engineered broad-spectrum disease resistance in tomato. PubMed DOI PMC

Yang, S. et al. Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease. PubMed DOI PMC

Yi, H. & Richards, E. J. A cluster of disease resistance genes in PubMed DOI PMC

Yi, H. & Richards, E. J. Phenotypic instability of PubMed DOI PMC

Halterman, D. A., Wei, F. & Wise, R. P. Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. PubMed DOI PMC

Guo, H., Wang, S. & Jones, J. D. Autoactive PubMed DOI PMC

Shirano, Y., Kachroo, P., Shah, J. & Klessig, D. F. A gain-of-function mutation in an PubMed DOI PMC

Yang, X.-M. et al. Broad-spectrum resistance gene PubMed DOI PMC

Borrill, P. et al. An autoactive NB-LRR gene causes PubMed PMC

Tong, M. et al. E3 ligase SAUL1 serves as a positive regulator of PAMP-triggered immunity and its homeostasis is monitored by immune receptor SOC3. PubMed DOI

Lorang, J. et al. Tricking the guard: exploiting plant defense for disease susceptibility. PubMed DOI PMC

Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. PubMed DOI

Ma, S. et al. Oligomerization-mediated autoinhibition and cofactor binding of a plant NLR. PubMed DOI PMC

Wang, J. et al. Reconstitution and structure of a plant NLR resistosome conferring immunity. PubMed DOI

Komori, T. et al. High-throughput phenotypic screening of random genomic fragments in transgenic rice identified novel drought tolerance genes. PubMed DOI

Moseman, J. G. Isogenic barley lines for reaction to DOI

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. PubMed PMC

Mapleson, D. et al. KAT: a K-mer Analysis Toolkit to quality control NGS datasets and genome assemblies. PubMed PMC

R Core Team

Wickham, H.

Halterman, D., Zhou, F., Wei, F., Wise, R. P. & Schulze-Lefert, P. The MLA6 coiled-coil, NBS-LRR protein confers PubMed DOI

Gibson, D. G. Programming biological operating systems: genome design, assembly and activation. PubMed DOI

Hensel, G., Kastner, C., Oleszczuk, S., Riechen, J. & Kumlehn, J. PubMed PMC

Yeo, F. K. et al. Golden SusPtrit: a genetically well transformable barley line for studies on the resistance to rust fungi. PubMed DOI

Bartlett, J. G., Alves, S. C., Smedley, M., Snape, J. W. & Harwood, W. A. High-throughput PubMed DOI PMC

Close, T. J. et al. Development and implementation of high-throughput SNP genotyping in barley. PubMed DOI PMC

Dreiseitl, A. A novel resistance against powdery mildew found in winter barley cultivars. DOI

Kølster, P., Munk, L., Stølen, O. & Løhde, J. Near-isogenic barley lines with genes for resistance to powdery mildew. DOI

Kølster, P. & Stølen, O. Barley isolines with genes for resistance to DOI

Dreiseitl, A. Postulation of specific disease resistance genes in cereals: a widely used method and its detailed description. PubMed DOI PMC

Torp, J., Jensen, H. P. & Jørgensen, J. H. Powdery mildew resistance genes in 106 northwest European spring barley cultivars.

Andrews, S. FastQC.

Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. PubMed PMC

Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. PubMed DOI

Camacho, C. et al. BLAST+: architecture and applications. PubMed PMC

Witek, K. et al. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. PubMed DOI

Foster, S. J. et al. PubMed DOI

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. PubMed PMC

Posit Team

Haas, B. J. TransDecoder.

Jones, P. et al. InterProScan 5: genome-scale protein function classification. PubMed DOI PMC

Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. PubMed PMC

Afrasiabi, C., Samad, B., Dineen, D., Meacham, C. & Sjölander, K. The PhyloFacts FAT-CAT web server: ortholog identification and function prediction using fast approximate tree classification. PubMed DOI PMC

Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. PubMed

Huang, L. et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. PubMed PMC

Liu, W. et al. The stripe rust resistance gene PubMed DOI

Srichumpa, P., Brunner, S., Keller, B. & Yahiaoui, N. Allelic series of four powdery mildew resistance genes at the PubMed DOI PMC

Yahiaoui, N., Srichumpa, P., Dudler, R. & Keller, B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene PubMed DOI

Halterman, D. A. & Wise, R. P. A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. PubMed DOI

Yarbrough, D., Wachter, R. M., Kallio, K., Matz, M. V. & Remington, S. J. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. PubMed DOI PMC

Huang, S., Steffenson, B. J., Sela, H. & Stinebaugh, K. Resistance of PubMed DOI

Scott, J. C., Manisterski, J., Sela, H., Ben-Yehuda, P. & Steffenson, B. J. Resistance of PubMed DOI

Roelfs, A. P. & Martens, J. An international system of nomenclature for DOI

Stakman, E. C., Stewart, D. & Loegering, W. Q.

Zhang, D., Bowden, R. L., Yu, J., Carver, B. F. & Bai, G. Association analysis of stem rust resistance in U.S. winter wheat. PubMed DOI PMC

Kolmer, J. Leaf rust of wheat: pathogen biology, variation and host resistance. DOI

Zadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. DOI

Peterson, R., Campbell, A. & Hannah, A. A diagrammatic scale for estimating rust severity on leaves and stem of cereals.

Mascher, M. et al. Long-read sequence assembly: a technical evaluation in barley. PubMed DOI PMC

Zhu, T. et al. Optical maps refine the bread wheat PubMed DOI PMC

Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. PubMed PMC

Tegenfeldt F. et al. OrthoDB and BUSCO update: annotation of orthologs with wider sampling of genomes. PubMed PMC

Löytynoja, A. Phylogeny-aware alignment with PRANK. PubMed

Moscou, M. & Brabham, H. Source data for Brabham et al. 2024 bioRxiv.

Kourelis, J., Sakai, T., Adachi, H. & Kamoun, S. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...