The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/J004553/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/P012574/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/J/000PR9795
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
34824299
PubMed Central
PMC8617247
DOI
10.1038/s41467-021-27288-3
PII: 10.1038/s41467-021-27288-3
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- fyziologická adaptace MeSH
- hostitelská specificita * MeSH
- imunita rostlin * MeSH
- ječmen (rod) imunologie MeSH
- jedlá semena MeSH
- nemoci rostlin imunologie MeSH
- pšenice MeSH
- Puccinia MeSH
- receptory imunologické MeSH
- ribozomální proteiny MeSH
- rostlinné proteiny imunologie MeSH
- šlechtění rostlin MeSH
- zemědělské plodiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- MLA1 protein, Hordeum vulgare MeSH Prohlížeč
- receptory imunologické MeSH
- ribozomální proteiny MeSH
- rostlinné proteiny MeSH
Crop losses caused by plant pathogens are a primary threat to stable food production. Stripe rust (Puccinia striiformis) is a fungal pathogen of cereal crops that causes significant, persistent yield loss. Stripe rust exhibits host species specificity, with lineages that have adapted to infect wheat and barley. While wheat stripe rust and barley stripe rust are commonly restricted to their corresponding hosts, the genes underlying this host specificity remain unknown. Here, we show that three resistance genes, Rps6, Rps7, and Rps8, contribute to immunity in barley to wheat stripe rust. Rps7 cosegregates with barley powdery mildew resistance at the Mla locus. Using transgenic complementation of different Mla alleles, we confirm allele-specific recognition of wheat stripe rust by Mla. Our results show that major resistance genes contribute to the host species specificity of wheat stripe rust on barley and that a shared genetic architecture underlies resistance to the adapted pathogen barley powdery mildew and non-adapted pathogen wheat stripe rust.
AgBiome Research Triangle Park NC 27709 USA
Department of Plant Pathology University of Minnesota St Paul MN 55108 USA
Department of Plant Sciences University of Cambridge Downing Street Cambridge CB2 3EA UK
John Innes Centre Norwich Research Park Norwich NR4 7UH UK
KWS SAAT SE and Co KGaA 37574 Einbeck Germany
NIAB 93 Lawrence Weaver Road Cambridge CB3 0LE England UK
The James Hutton Institute Invergowrie Dundee DD2 5DA Scotland UK
The Sainsbury Laboratory University of East Anglia Norwich Research Park Norwich NR4 7UK England UK
Zobrazit více v PubMed
Panstruga R, Moscou MJ. What is the molecular basis of nonhost resistance? Mol. Plant-Microbe Interact. 2020;33:1253–1264. PubMed
Heath MC. A comparative study of non-host interactions with rust fungi. Physiol. Plant Pathol. 1977;10:73–88.
Eriksson, J. Ueber die Specialisirung des Parasitismus bei den Getreiderostpilzen. Berichte der Deutschen Botanischen Gesellschaft 12 (1894).
Marchal, É. De la spécialisation du parasitisme chez l’Erysiphe graminis. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences CXXXV, 210–212 (1902).
Nielsen J. Host range of the smut species Ustilago nuda and Ustilago tritici in the tribe Triticeae. Can. J. Bot. /Rev. Can. Bot. 1978;56:901–915.
Edel-Hermann V, Lecomte C. Current status of Fusarium oxysporum formae speciales and races. Phytopathology. 2019;109:512–530. PubMed
Kato, H. Biological and genetical aspects in the perfect state of rice blast fungus Pyricularia oryzae Cav. and its allies. In: Gamma Field Symposia No. 17. Mutation Breeding for Disease Resistance, 1–22 (1978).
Crute, I. in The Downy Mildews (ed Spenser, D. M.) 237–255 (Academic Press, 1981).
Saharan, G. S. & Verma, P. R. White Rusts: a Review of Economically Important Species (International Development Research Centre, 1992).
Riley R, Macer RCF. The chromosomal distribution of the genetic resistance of rye to wheat pathogens. Can. J. Genet. Cytol. 1966;8:640–653.
Tosa Y. Genetic analysis of the avirulence of wheatgrass powdery mildew fungus on common wheat. Genome. 1989;32:913–917.
Thordal-Christensen H. Fresh insights into processes of nonhost resistance. Curr. Opin. Plant Biol. 2003;6:351–357. PubMed
Jones JD, Dangl JL. The plant immune system. Nature. 2006;444:323–329. PubMed
Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 2009;60:379–406. PubMed
Boutrot F, Zipfel C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 2017;55:257–286. PubMed
Jacob F, Vernaldi S, Maekawa T. Evolution and conservation of plant NLR functions. Front. Immunol. 2013;4:297. PubMed PMC
Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 2009;7:185–195. PubMed
de Jonge R, et al. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science. 2010;329:953–955. PubMed
Toruno TY, Stergiopoulos I, Coaker G. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal Manners. Annu. Rev. Phytopathol. 2016;54:419–441. PubMed PMC
Michelmore RW, Meyers BC. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998;8:1113–1130. PubMed
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010;11:539–548. PubMed
Gassmann W, Hinsch ME, Staskawicz BJ. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J. 1999;20:265–277. PubMed
Deslandes L, et al. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl Acad. Sci. USA. 2003;100:8024–8029. PubMed PMC
Narusaka M, et al. RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. Plant J. 2009;60:218–226. PubMed
Birker D, et al. A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J. 2009;60:602–613. PubMed
Nombela G, Williamson VM, Muniz M. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol. Plant-Microbe Interact. 2003;16:645–649. PubMed
Atamian HS, Eulgem T, Kaloshian I. SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta. 2012;235:299–309. PubMed
Briggs FN, Stanford EH. Linkage of factors for resistance to mildew in barley. J. Genet. 1938;37:107–117. PubMed PMC
Zhou F, et al. Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell. 2001;13:337–350. PubMed PMC
Wei F, Wing RA, Wise RP. Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell. 2002;14:1903–1917. PubMed PMC
Seeholzer S, et al. Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol. Plant-Microbe Interact. 2010;23:497–509. PubMed
Brabham, H. J., Hernández-Pinzón, I., Holden, S., Lorang, J. & Moscou, M. J. An ancient integration in a plant NLR is maintained as a trans-species polymorphism. bioRxiv10.1101/239541 (2018).
Jørgensen JH. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 1994;13:97–119.
Kinizios S, Jahoor A, Fischbeck G. Powdery-mildew-resistance genes Mla29 and Mla32 in H. spontaneum derived winter-barley lines. Plant Breed. /Z. Pflanzenzucht. 1995;114:265–266.
Periyannan S, et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science. 2013;341:786–788. PubMed
Jordan T, et al. The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. Plant J. 2011;65:610–621. PubMed
Mago R, et al. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat. Plants. 2015;1:15186. PubMed
Lu X, et al. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Proc. Natl Acad. Sci. USA. 2016;113:E6486–E6495. PubMed PMC
Chen J, et al. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science. 2017;358:1607. PubMed
Saur IM, et al. Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism. eLife. 2019;8:e44471. PubMed PMC
Savary S, et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evolution. 2019;3:430–439. PubMed
Derevnina L, Zhou M, Singh D, Wellings CR, Park RF. The genetic basis of resistance to barley grass yellow rust (Puccinia striiformis f. sp. pseudo-hordei) in Australian barley cultivars. Theor. Appl. Genet. 2015;128:187–197. PubMed
Dracatos PM, Haghdoust R, Singh D, Park RF. Exploring and exploiting the boundaries of host specificity using the cereal rust and mildew models. N. Phytol. 2018;218:453–462. PubMed
Haghdoust R, Singh D, Garnica DP, Park RF, Dracatos PM. Isolate specificity and polygenic inheritance of resistance in barley to diverse heterologous Puccinia striiformis isolates. Phytopathology. 2018;108:617–626. PubMed
Niks RE, Alemu SK, Marcel TC, van Heyzen S. Mapping genes in barley for resistance to Puccinia coronata from couch grass and to P. striiformis from brome, wheat and barley. Euphytica. 2015;206:487–499.
Straib W. Untersuchungen über das Vorkommen physiologischer Rassen des Gelbrostes (Puccinia glumarum) in den Jaren 1935/36 und über die Aggressivität einiger neuer Formen auf Getreide und Gräsern. Arb. biol. Abt. (Anst. -Reichsanst.), Berl. 1937;22:91–119.
Dawson AM, et al. The development of quick, robust, quantitative phenotypic assays for describing the host-nonhost landscape to stripe rust. Front. Plant Sci. 2015;6:876. PubMed PMC
Close TJ, et al. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 2009;10:582. PubMed PMC
Hovmøller MS, Sørensen CK, Walter S, Justesen AF. Diversity of Puccinia striiformis on cereals and grasses. Annu. Rev. Phytopathol. 2011;49:197–217. PubMed
Thomas, W. et al. HGCA Project Report 528: Association Genetics of UK Elite Barley (AGOUEB) (Agriculture and Horticulture Development Board, 2014).
Steffenson BJ, et al. A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aust. J. Agric. Res. 2007;58:532–544.
Atienza SG, Jafary H, Niks RE. Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta. 2004;220:71–79. PubMed
Yeo FK, et al. Golden SusPtrit: a genetically well transformable barley line for studies on the resistance to rust fungi. Theor. Appl. Genet. 2014;127:325–337. PubMed
Li K, et al. Fine mapping of barley locus Rps6 conferring resistance to wheat stripe rust. Theor. Appl. Genet. 2016;129:845–859. PubMed PMC
Dawson AM, et al. Isolation and fine mapping of Rps6: an intermediate host resistance gene in barley to wheat stripe rust. Theor. Appl. Genet. 2016;129:831–843. PubMed PMC
Büschges R, et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 1997;88:695–705. PubMed
Wei F, et al. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics. 1999;153:1929–1948. PubMed PMC
Moseman JG. Isogenic barley lines for reaction to Erysiphe graminis f. sp. hordei. Crop Sci. 1972;12:681–682.
Kølster P, Munk L, Stølen O, Løhde J. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci. 1986;26:903–907.
Kølster P, Stølen O. Barley isolines with genes for resistance to Erysiphe graminis f. sp. hordei in the recurrent parent ‘Siri’. Plant Breed. /Z. Pflanzenzucht. 1987;98:79–82.
Maekawa T, et al. Subfamily-specific specialization of RGH1/MLA immune receptors in wild barley. Mol. Plant-Microbe Interact. 2019;32:107–119. PubMed
Halterman DA, Wise RP. A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J. 2004;38:215–226. PubMed
Schreiber M, et al. A genome assembly of the barley ‘Transformation Reference’ cultivar Golden Promise. G3 (Bethesda) 2020;10:1823–1827. PubMed PMC
Bauer S, et al. The leucine-rich repeats in allelic barley MLA immune receptors define specificity towards sequence-unrelated powdery mildew avirulence effectors with a predicted common RNase-like fold. PLoS Path. 2021;17:e1009223. PubMed PMC
Inukai T, Vales MI, Hori K, Sato K, Hayes PM. RMo1 confers blast resistance in barley and is located within the complex of resistance genes containing Mla, a powdery mildew resistance gene. Mol. Plant-Microbe Interact. 2006;19:1034–1041. PubMed
Leng Y, et al. The gene conferring susceptibility to spot blotch caused by Cochliobolus sativus is located at the Mla locus in barley cultivar Bowman. Theor. Appl. Genet. 2018;131:1531–1539. PubMed
Wiesner-Hanks T, Nelson R. Multiple disease resistance in plants. Annu. Rev. Phytopathol. 2016;54:229–252. PubMed
Milligan SB, et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell. 1998;10:1307–1319. PubMed PMC
Debieu M, Huard-Chauveau C, Genissel A, Roux F, Roby D. Quantitative disease resistance to the bacterial pathogen Xanthomonas campestris involves an Arabidopsis immune receptor pair and a gene of unknown function. Mol. Plant Pathol. 2016;17:510–520. PubMed PMC
Le Roux C, et al. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell. 2015;161:1074–1088. PubMed
Sarris PF, et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell. 2015;161:1089–1100. PubMed
Maekawa T, Kracher B, Vernaldi S, Ver Loren van Themaat E, Schulze-Lefert P. Conservation of NLR-triggered immunity across plant lineages. Proc. Natl Acad. Sci. USA. 2012;109:20119–20123. PubMed PMC
Ames N, Dreiseitl A, Steffenson BJ, Muehlbauer GJ. Mining wild barley for powdery mildew resistance. Plant Pathol. 2015;64:1396–1406.
Collard BC, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2008;363:557–572. PubMed PMC
Meehan F, Murphy HC. A new Helminthosporium blight of oats. Science. 1946;104:413–414. PubMed
Inoue Y, et al. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science. 2017;357:80–83. PubMed
Ullrich, S. E. Barley, Production, Improvement, and Uses. Vol. 1 (Wiley-Blackwell, 2011).
Wellings CR. Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust. J. Agric. Res. 2007;58:567–575.
Chen XM, Line RF, Leung H. Virulence and polymorphic DNA relationships of Puccinia striiformis f. sp. hordei to other rusts. Phytopathology. 1995;85:1335–1342.
Bettgenhaeuser J, et al. The genetic architecture of colonization resistance in Brachypodium distachyon to non-adapted stripe rust (Puccinia striiformis) isolates. PLoS Genet. 2018;14:e1007637. PubMed PMC
Hubbard A, et al. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol. 2015;16:23. PubMed PMC
Niks RE, van Heyzen S, Szabo LJ, Alemu SK. Host status of barley to Puccinia coronata from couch grass and P. striiformis from wheat and brome. Eur. J. Plant Pathol. 2013;136:393–405.
Brown JK, Tellier A. Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu. Rev. Phytopathol. 2011;49:345–367. PubMed
Horsley RD, et al. Identification of QTLs associated with Fusarium head blight resistance in barley accession CIho 4196. Crop Sci. 2006;46:145–156.
Sato K, Nankaku N, Takeda K. A high-density transcript linkage map of barley derived from a single population. Heredity. 2009;103:110–117. PubMed
Dreiseitl A. A novel resistance against powdery mildew found in winter barley cultivars. Plant Breed. 2019;138:840–845.
Stewart CN, Jr, Via LE. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. BioTechniques. 1993;14:748–750. PubMed
Dreiseitl A. Pathogenic divergence of Central European and Australian populations of Blumeria graminis f. sp. hordei. Ann. Appl. Biol. 2014;165:364–372.
Torp, J., Jensen, H. P. & Jørgensen, J. H. Powdery mildew resistance genes in 106 Northwest European spring barley cultivars. Kongelige Veterinaer- Og Landbohoejskole, 75–102 (1978).
McNeal FH, Konzak CF, Smith EP, Tate WS, Russell TS. A uniform system for recording and processing cereal research data. U. S. Dep. Agriculture-Agric. Res. Serv. ARS. 1971;34–121:42.
Ayliffe M, et al. Nonhost resistance of rice to rust pathogens. Mol. Plant-Microbe Interact. 2011;24:1143–1155. PubMed
Kota R, et al. EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Funct. Integr. Genomics. 2008;8:223–233. PubMed
Muñoz-Amatriaín M, et al. An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome. 2011;4:238–249.
Mascher M, et al. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ) Plant J. 2013;76:718–727. PubMed PMC
Poland JA, Brown PJ, Sorrells ME, Jannink JL. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE. 2012;7:e32253. PubMed PMC
Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19:889–890. PubMed
Basten, C. J., Weir, B. S. & Zeng, Z.-B. In: Proc. 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software (eds C. Smith et al.) 65-66 (Organizing Committee, 5th World Congress on Genetics Applied to Livestock Production, Guelph, Ontario, Canada).
Basten, C. J., Weir, B. S. & Zeng, Z.-B. QTL Cartographer Version 1.16 (Department of Statistics, North Carolina State University, 2002).
Lauter N, Moscou MJ, Habiger J, Moose SP. Quantitative genetic dissection of shoot architecture traits in maize: towards a functional genomics approach. Plant. Genome. 2008;1:99–110.
Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. PubMed PMC
Witek K, et al. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat. Biotechnol. 2016;34:656–660. PubMed
IBGSC. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–716. PubMed
Halterman D, Zhou F, Wei F, Wise RP, Schulze-Lefert P. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J. 2001;25:335–348. PubMed
Gibson DG. Programming biological operating systems: genome design, assembly and activation. Nat. Methods. 2014;11:521. PubMed
Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J. Agrobacterium-mediated gene transfer to cereal crop plants: Current protocols for barley, wheat, triticale, and maize. Int. J. Plant Genomics. 2009;2009:9. PubMed PMC
Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA. High-throughput Agrobacterium-mediated barley transformation. Plant Methods. 2008;4:22. PubMed PMC
Moscou, M. J. Source data for all figures in the manuscript entitled ‘The barley immune receptor Mla recognizes multiple pathogens and contr ibutes to host range dynamics’. Figshare, 10.6084/m9.figshare.16918774 (2021).
Moscou, M. J. Genotypic and phenotypic analysis of 31 barley populations inoculated with wheat stripe rust. Figshare, 10.6084/m9.figshare.7763018.v1 (2021).
Moscou, M. J. QKcartographer: a set of scripts for processing QTL Cartographer output. Figshare, 10.6084/m9.figshare.16912210.v1 (2021).
Moscou, M. J. QKdomain: a set of scripts that can be used for domain analysis. Figshare, 10.6084/m9.figshare.16923799 (2021).
Moscou, M. J. Q. Kgenome. A set of scripts for converting genomes based on resequencing information. Figshare, 10.6084/m9.figshare.16923802 (2021).
A single NLR gene confers resistance to leaf and stripe rust in wheat
Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae
Rare Virulences and Great Pathotype Diversity of a Central European Blumeria hordei Population
A lineage-specific Exo70 is required for receptor kinase-mediated immunity in barley